导航:首页 > 小学年级 > 小学四年级数学奥林匹克竞赛题

小学四年级数学奥林匹克竞赛题

发布时间:2021-02-26 19:37:56

小学四年级数学奥数题

1、“IMO”是国际数学奥林匹克的缩写,把这3个字母用3种不同颜色来写,现有5种不同颜色的笔,问共有多少钟不同的写法?

分析:从5个元素中取3个的排列:P(5、3)=5×4×3=60

2、从数字0、1、2、3、4、5中任意挑选5个组成能被5除尽且各位数字互异的五位数,那么共可以组成多少个不同的五位数?

分析:个位数字是0:P(5、4)=120;个位数字是5:P(5、4)-P(4、3)=120-24=96,(扣除0在首位的排列)合计120+96=216

另:此题乘法原理、加法原理结合用也是很好的方法。

3、用2、4、5、7这4个不同数字可以组成24个互不相同的四位数,将它们从小到大排列,那么7254是第多少个数?

分析:由已知得每个数字开头的各有24÷4=6个,从小到大排列7开头的从第6×3+1=19个开始,易知第19个是7245,第20个7254。

4、有些四位数由4个不为零且互不相同的数字组成,并且这4个数字的和等于12,将所有这样的四位数从小到大依次排列,第24个这样的四位数是多少?

分析:首位是1:剩下3个数的和是11有以下几种情况:⑴2+3+6=11,共有P(3、3)=6个;⑵2+4+5=11,共有P(3、3)=6个;

首位是2:剩下3个数的和是10有以下几种情况:⑴1+3+6=10,共有P(3、3)=6个;⑵1+4+5=10,共有P(3、3)=6个;以上正好24个,最大的易知是2631。

5、用0、1、2、3、4这5个数字,组成各位数字互不相同的四位数,例如1023、2341等,求全体这样的四位数之和。

分析:这样的四位数共有P(4、1)×P(4、3)=96个

1、2、3、4在首位各有96÷4=24次,和为(1+2+3+4)×1000×24=240000;
1、2、3、4在百位各有24÷4×3=18次,和为(1+2+3+4)×100×18=18000;
1、2、3、4在十位各有24÷4×3=18次,和为(1+2+3+4)×10×18=1800;
1、2、3、4在个位各有24÷4×3=18次,和为(1+2+3+4)×1×18=180;

总和为240000+18000+1800+180=259980

6、计算机上编程序打印出前10000个正整数:1、2、3、……、10000时,不幸打印机有毛病,每次打印数字3时,它都打印出x,问其中被错误打印的共有多少个数?

分析:共有10000个数,其中不含数字3的有: 五位数1个,四位数共8×9×9×9=5832个,三位数共8×9×9=648个,二位数共8×9=72个,一位数共8个,不含数字3的共有1+5832+648+72+8=6561 所求为10000-6561=3439个

7、在1000到9999之间,千位数字与十位数字之差(大减小)为2,并且4个数字各不相同的四位数有多少个?

分析:1□3□结构:8×7=56,3□1□同样56个,计112个;
2□4□结构:8×7=56,4□2□同样56个,计112个;
3□5□结构:8×7=56,5□3□同样56个,计112个;
4□6□结构:8×7=56,6□4□同样56个,计112个;
5□7□结构:8×7=56,7□5□同样56个,计112个;
6□8□结构:8×7=56,8□6□同样56个,计112个;
7□9□结构:8×7=56,9□7□同样56个,计112个;
2□0□结构:8×7=56,
以上共112×7×56=840个

8、如果从3本不同的语文书、4本不同的数学书、5本不同的外语书中选取2本不同学科的书阅读,那么共有多少种不同的选择?

分析:因为强调2本书来自不同的学科,所以共有三种情况:来自语文、数学:3×4=12;来自语文、外语:3×5=15;来自数学、外语:4×5=20;所以共有12+15+20=47

9、某条铁路线上,包括起点和终点在内原来共有7个车站,现在新增了3个车站,铁路上两站之间往返的车票不一样,那么,这样需要增加多少种不同的车票?

分析:方法一:一张车票包括起点和终点,原来有P(7、2)=42张,(相当于从7个元素中取2个的排列),现在有P(10、2)=90,所以增加90-42=48张不同车票。

方法二:1、新站为起点,旧站为终点有3×7=21张,2、旧站为起点,新站为终点有7×3=21张,3、起点、终点均为新站有3×2=6张,以上共有21+21+6=48张

10、7个相同的球放在4个不同的盒子里,每个盒子至少放一个,不同的放法有多少种?

分析:因为7=1+1+1+1+1+1+1,相当于从6个加号中取3个的组合,C(6、3)=20种

11、从19、20、21、22、……、93、94这76个数中,选取两个不同的数,使其和为偶数的选法总数是多少?

分析:76个数中,奇数38个,偶数38个 偶数+偶数=偶数:C(38、2)=703种,奇数+奇数=偶数:C(38、2)=703种,以上共有703+703=1406种

12、用两个3,一个1,一个2可组成若干个不同的四位数,这样的四位数一共有多少个?

分析:因为有两个3,所以共有P(4、4)÷2=12个

13、有5个标签分别对应着5个药瓶,恰好贴错3个标签的可能情况共有多少种?

分析:第一步考虑从5个元素中取3个来进行错贴,共有C(5、3)=10,第二步对这3个瓶子进行错贴,共有2种错贴方法,所以可能情况共有10×2=20种。

14、有9张同样大小的圆形纸片,其中标有数码“1”的有1张,标有数码“2”的有2张,标有数码“3”的有3张,标有数码“4”的有3张,把这9张圆形纸片如呼所示放置在一起,但标有相同数码的纸片不许*在一起。 ⑴如果M处放标有数码“3”的纸片,一共有多少种不同的放置方法? ⑵如果M处放标有数码“2”的纸片,一共有多少种不同的放置方法?

分析:

⑴如果M处放标有数码“3”的纸片,只有唯一结构: 在剩下的6个位置中,3个“4”必须隔开,共有奇、偶位2种放法,在剩下的3个位置上“1”有3种放法(同时也确定了“2”的放法)。 由乘法原理得共有2×3=6种不同的放法。

⑵如果M处放标有数码“2”的纸片,有如下几种情况:

结构一: 3个“3”和3个“4”共有2种放法,再加上2和1可以交换位置,所以共有2×2=4种;

结构二:3个“4”有奇、偶位2种选择(相应的“1”也定了,只能*着已有的“3”,加上2和3可以交换,所以共有2×2=4种;

结构三:3个“3”有奇、偶位2种选择,“1”有唯一选择,只能*到已有的“4”,加上2和4可以交换位置,所以共有2×2=4种,

以上共有4+4+4=12种不同的放法。

15、一台晚会上有6个演唱节目和4个舞蹈节目。问:⑴如果4个舞蹈节目要排在一起,有多少种不同的安排顺序?⑵如果要求每两个舞蹈节目之间至少安排一个演唱节目,一共有多少种不同的安排顺序?

分析:⑴4个舞蹈节目要排在一起,好比把4个舞蹈?在一起看成一个节目,这样和6个演唱共有7个节目,全排列7!,加上4个舞蹈本身也有全排4!,所以共有7!×4!=120960种。

⑵4个舞蹈必须放在6个演唱之间,6个演唱包括头尾共有7个空档,7个空档取出4个放舞蹈共有P(7、4),加上6个演唱的全排6!,共有P(7、4)×6!=604800种。
1.计算:1991+199.1+19.91+1.991.

解析:1991+199.1+19.91+1.991
=1991+9+199.1+0.9+19.91+0.09+1.991+0.009-(9+0.9+0.09+0.009)
=2000+200+20+2-9.999
=2222-10+0.001
=2212.001

2.计算:7142.85÷3.7÷2.7×1.7×0.7.

解析:7142.85÷3.7÷2.7×1.7×0.7
=7142.85÷37÷27×17×7
=7142.85×7÷999×17
=49999.95÷999×17
=50.05×17
=850.85

3.光的速度是每秒30万千米,太阳离地球1亿5千万千米.问:光从太阳到地球要用几分钟?(答案保留一位小数.)

解析:150000000÷300000÷60=150÷3÷6=50÷6≈8.33≈8.3(分)
光从太阳到地球要用约8.3分钟。

4.已知105.5+[(40+□÷2.3) ×0.5-1.53] ÷(53.6÷26.8×0.125)=187.5,那么□所代表的数是多少?
解析:105.5+[(40+□÷2.3) ×0.5-1.53] ÷(53.6÷26.8×0.125)
=105.5+(20+□÷4.6-1.53)÷(2×26.8÷26.8×0.125)
=105.5+(18.47+□÷4.6) ÷0.25
=105.5+18.47÷0.25+□÷4.6÷0.25
=105.5+73.88+□÷1.15
因为105.5+73.88+□÷1.15=187.5
所以□=(187.5-105.5-73.88) ×1.15=8.12×1.15=8.12+0.812+0.406=9.338
答:□=9.338

5.22.5-(□×32-24×□) ÷3.2=10 在上面算式的两个方框中填入相同的数,使得等式成立。那么所填的数应是多少?

解析:22.5-(□×32-24×□) ÷3.2
=22.5-□×(32-24) ÷3.2
=22.5-□×8÷3.2
=22.5-□×2.5
因为22.5-□×2.5=10,所以□×2.5=22.5-10,□=(22.5-10) ÷2.5=5
答:所填的数应是5。

6.计算:0.1+0.3+0.5+0.7+0.9+0.11+0.13+0.15+0.17+0.19+0.21+…+0.99.

解析:0.1+0.3+0.5+0.7+0.9+0.11+0.13+0.15+0.17+0.19+0.21+…+0.99
=(0.1+0.9) ×5÷2+(0.11+0.99) ×45÷2
=2.5+24.75
=27.25

7.计算:37.5×21.5×0.112+35.5×12.5×0.112.

解析:37.5×21.5×0.112+35.5×12.5×0.112
=0.112×(37.5×21.5+35.5×12.5)
=0.112×(12.5×3×21.5+35.5×12.5)
=0.112×12.5×(3×21.5+35.5)
=0.112×12.5×100
=1250×(0.1+0.01+0.002)
=125+12.5+2.5
=140

8.计算:3.42×76.3+7.63×57.6+9.18×23.7.

解析:3.42×76.3+7.63×57.6+9.18×23.7
=7.63×(34.2+57.6)+9.18×23.7
=7.63×91.8+91.8×2.37
=(7.63+2.37) ×91.8
=10×91.8
=918

9.计算:(32.8×91-16.4×92-1.75×656) ÷(0.2×0.2).

解析:(32.8×91-16.4×92-1.75×656) ÷(0.2×0.2)
=(16.4×2×91-16.4×92-16.4×40×1.75) ÷(0.2×0.2)
=16.4×(182-92-70) ÷(0.2×0.2)
=16.4×20÷0.2÷0.2
=82×100
=8200

10.计算:(2+3.15+5.87) ×(3.15+5.87+7.32)-(2+3.15+5.87+7.32) ×(3.15+5.87).

解析:(2+3.15+5.87) ×(3.15+5.87+7.32)-(2+3.15+5.87+7.32) ×(3.15+5.87)
=(2+3.15+5.87) ×(3.15+5.87+7.32)-2×(3.15+5.87) -(3.15+5.87+7.32) ×(3.15+5.87)
=(3.15+5.87+7.32) ×(2+3.15+5.87-3.15-5.87) -2×(3.15+5.87)
=(3.15+5.87+7.32) ×2-2×(3.15+5.87)
=(3.15+5.87) ×2+7.32 ×2-2×(3.15+5.87)
=7.32×2
=14.64

11.求和式3+33+333+…+33…3(10个3)计算结果的万位数字.

解析:个位10个3相加,和为30,向十位进3; 十位9个3相加,和为27,加上个位的进位3得30,向百位进3; 百位8个3相加,和为24,加上十位的进位3得27,向千位进2; 千位7个3相加,和为21,加上百位的进位2得23,向万位进2; 万位6个3相加,和为18,加上千位的进位2得20,万位得数是0。
答:计算结果的万位数字是0。

12.计算:19+199+1999+…+199…9(1999个9).

解析:19+199+1999+…+199…9(1999个9)
=(20-1)+(200-1)+(2000-1)+…+(200…0(1999个0)-1)
=22…20(1999个2)-1999×1
=22…2(1996个2)0221

13.算式99…9(1992个9)×99…9(1992个9)+199…9(1992个9)的计算结果的末位有多少个零?

解析:99…9(1992个9)×99…9(1992个9)+199…9(1992个9)
=99…9(1992个9)×(100…0-1)(1992个0)+199…9(1992个9)
=99…9(1992个9) 0(1992个0) - 99…9(1992个9)+199…9(1992个9)
=99…9(1992个9) 0(1992个0)+100…0(1992个0)
=100…0(3984个0)

14.计算:33…3(10个3)×66…6(10个6).

解析:33…3(10个3)×66…6(10个6)
=33…3(10个3)×3×22…2(10个2)
=99…9(10个9)×22…2(10个2)
=(100…0(10个0)-1) ×22…2(10个2)
=22…2(10个2)00…0(10个0)-22…2(10个2)
=22…2(9个2)177(9个7)8

15.求算式99…9(1994个9)×88…8(1994个8)÷66…6(1994个6)的计算结果的各位数字之和.

解析:99…9(1994个9)×88…8(1994个8)÷66…6(1994个6)
=9×11…1(1994个1)×8×11…1(1994个1)÷6÷11…1(1994个1)
=9×8÷6×11…1(1994个1)
=12×11…1(1994个1)
=(10+2)×11…1(1994个1)
=11…1(1995个1)+22…2(1994个1)
=13333…3(1993个1) 2
各位数字之和=1+1993×3+2=5982
答:计算结果的各位数字之和5982。

⑵ 求求求!!~~小学四年级数学名题!!~30道!有答案的~~急啊~快快快( ⊙ o ⊙ )

1、计算:1234+2341+3412+4123 (1994年奥数总决赛试题)

2、计算:1234×2345-1233×2346 (2006年浙江省夏令营竞赛试题)

3、计算:7+77+777+7777+77777 (第二届小学 “希望杯”四年级培训试题)

4、计算:998 +1413+9989

5、计算:125×25×128×39

6:计算:2.005×390+20.05×41+200.5×2 (第三届小学“希望杯”五年级决赛第1题)

7、小红和妈妈的年龄相差28岁,妈妈的年龄是小红年龄的5倍。妈妈 岁,
小红 岁。(差倍问题)

8、长度为140米的列车,若每小时60千米的速度通过一个400米长的隧道,要用 分钟。(火车行程问题)

1、计算:9999×1111+3333×6667 (全国小学“数学奥林匹克之星”邀请赛试题/2006年浙江省夏令营试题)

2、计算:123456×234567-234568×123455 (2005年四省小学数学夏令营试题/2006年“创新杯”试题)

3、计算:471471471471÷157157157157(2000年山东省莱州市竞赛试题)

4、计算:2008×20022002-2002×20082008(2005年浙江省夏令营试题/2002年全国小学“数学奥林匹克之星”邀请赛试题)

5、计算:98989898×99999999÷1010101÷11111111 (福建省第三届“小火炬”邀请赛试题)

1、客货两车同时从甲乙两站相对开出,客车每小时行54千米,货车每小时行48千米,两车相遇后又以原来的速度前进,到达对方站后立即返回,两车再次相遇时客车比货车多行了21.6千米。甲乙两站相距多少千米?
答案:122.4千米。

2、甲乙两地相距48千米,其中一部分是上坡路,其余是下坡路。某人骑自行车从甲地到达乙地后沿原路返回,去时用了4小时12分,返回用了3小时48分。已知自行车上坡是每小时行10千米,求自行车下坡每小时行多少千米?
答案:下坡每小时行15千米。

3、南北两镇之间全是山路,某人上山每小时走2千米,下山时每小时走5千米,从南镇到北镇要走38小时,从北镇到南镇要走32小时,两镇之间的路程是多少千米?从南镇到北镇的上山路和下山路各是多少千米?
答案:下山路为40千米,上山路为60千米 。

4、甲每小时行12千米,乙每小时行8千米.某日甲从东村到西村,乙同时从西村到东村,以知乙到东村时,甲已先到西村5小时.求东西两村的距离
甲乙的路程是一样的,时间甲少5小时,设甲用t小时
可以得到
1. 12t=8(t+5)
t=10
所以距离=120千米

5、小明和小芳围绕着一个池塘跑步,两人从同一点出发,同向而行。小明:280米/分;小芳:220/分。8分后,小明追上小芳。这个池塘的一周有多少米?
280*8-220*8=480
这时候如果小明是第一次追上的话就是这样多
这时候小明多跑一圈...

6、某人从甲地到乙地,先骑12小时摩托车,再骑9小时自行车正好到达.返回时,先骑21小时自行车,再骑8小时摩托车也正好到达.从甲地到乙地如果全骑摩托车需要多少时间?
摩托车的速度是xkm/h,自行车速是ykm/h 。
21y+8x=12x+9y
4x=12y
x=3y
所以摩托车共需12+9/3=15小时

7、有两列火车,一列长102米,每秒行20米;一列长120米,每秒行17米.两车同向而行,从第一列车追及第二列车到两车离开需要几秒?
设从第一列车追及第二列车到两列车离开需要x秒,列方程得:
102+120+17 x =20 x
x =74.

8、某人步行的速度为每秒2米.一列火车从后面开来,超过他用了10秒.已知火车长90米.求火车的速度.
设列车的速度是每秒x米,列方程得
10 x =90+2×10
x =11

9、现有两列火车同时同方向齐头行进,行12秒后快车超过慢车.快车每秒行18米,慢车每秒行10米.如果这两列火车车尾相齐同时同方向行进,则9秒后快车超过慢车,求两列火车的车身长.
快车长:18×12-10×12=96(米)
慢车长:18×9-10×9=72(米)

10、一列火车通过440米的桥需要40秒,以同样的速度穿过310米的隧道需要30秒.这列火车的速度和车身长各是多少?
(1)火车的速度是:(440-310)÷(40-30)=13(米/秒)
(2)车身长是:13×30-310=80(米)

11、小英和小敏为了测量飞驶而过的火车速度和车身长,他们拿了两块跑表.小英用一块表记下了火车从她面前通过所花的时间是15秒;小敏用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是20秒.已知两电线杆之间的距离是100米.你能帮助小英和小敏算出火车的全长和时速吗?
(1)火车的时速是:100÷(20-15)×60×60=72000(米/小时)
(2)车身长是:20×15=300(米)

12、一列火车通过530米的桥需要40秒,以同样的速度穿过380米的山洞需要30秒.求这列火车的速度与车身长各是多少米?
设火车车身长x米.根据题意,得
(530+X )÷40=(380+X )÷30
X=70
(530+X )÷40=600÷40=15(米/秒)

13、两列火车,一列长120米,每秒行20米;另一列长160米,每秒行15米,两车相向而行,从车头相遇到车尾离开需要几秒钟?
从车头相遇到车尾离开,两车所行距离之和恰为两列车长之和,故用相遇问题得所求时间为:(120+160)÷(15+20)=8(秒).

14、某人步行的速度为每秒钟2米.一列火车从后面开来,越过他用了10秒钟.已知火车的长为90米,求列车的速度.
列车越过人时,它们的路程差就是列车长.将路程差(90米)除以越过所用时间(10秒)就得到列车与人的速度差.这速度差加上人的步行速度就是列车的速度.
90÷10+2=9+2=11(米)

15、快车长182米,每秒行20米,慢车长1034米,每秒行18米.两车同向并行,当快车车尾接慢车车尾时,求快车穿过慢车的时间?
1034÷(20-18)=91(秒)

16、快车长182米,每秒行20米,慢车长1034米,每秒行18米.两车同向并行,当两车车头齐时,快车几秒可越过慢车?
182÷(20-18)=91(秒)

17、一人以每分钟120米的速度沿铁路边跑步.一列长288米的火车从对面开来,从他身边通过用了8秒钟,求列车的速度.
288÷8-120÷60=36-2=34(米/秒)

18、一列火车长600米,它以每秒10米的速度穿过长200米的隧道,从车头进入隧道到车尾离开隧道共需多少时间?
(600+200)÷10=80(秒)

19、小明上午8时骑自行车以每小时12千米的速度从A地到B地,小强上午8时40分骑自行车以每小时16千米的速度从B地到A地,两人在A、B两地的中点处相遇,A、B两地间的路程是多少千米?
两人在两地间的路程的中点相遇,但小明比小强多行了40分钟,如果两人同时出发,相遇时,小明行的路程就比小强少12÷60×40=8(千米),就是当小强出发时,小明已经行了8千米,从8时40分起两人到两人相遇,由于小明每小时比小强少行16-12=4(千米),说明两人相遇时间是8÷4=2(小时),那么,A、B两地间的路程是8+(12+16)×2=64(千米)。

20、甲、乙两村相距3550米,小伟从甲村步行往乙村,出发5分钟后,小强骑自行车从乙村前往甲村,经过10分钟遇见小伟。小强骑车每分钟行的比小伟步行每分钟多160米,小伟每分钟走多少米?
如果小强每分钟少行160米,他行的速度就和小伟步行的速度相同,这样小强10分钟就少行了160×10=1600(米),小伟(5+10)分钟和小强10分钟一共行走的路程是3550-1600=1950(米),那么小伟每分钟走的路是1950÷(5+10+10)=78(米)。

21、客车从东城和货车从西城同时开出,相向而行,客车每小时行44千米,货车每小时行36千米,客车到西城比货车到东城早2小时。两车开出后多少小时在途中相遇?
当客车到西城时,货车离东城还有2×36=72(千米),而货车每小时行的比客车少44-36=8(千米),客车行东西城间的路程用的时间是72÷8=9(小时),因此东西城相距44×9=396(千米),两车从出发到相遇用的时间是;396÷(44+36)=4.95(小时)

22、甲、乙二人同一天从北京出发沿同一条路骑车往广州,甲每天行100千米,乙第一天行70千米,以后每天都比前一天多行3千米,直到追上甲,乙出发后第几天追上甲?
开始时,乙一天行的比甲少100-70=30(千米),以后乙每天多行3千米,到与甲速相同要经过30÷3=10(天),即前10天,甲、乙之间的距离是逐天拉大的,第11天两人速度相同,从第12天起,乙的速度开始比甲快,与甲的距离逐天拉近,所以,乙追上甲用的时间是:10×2+1=21(天)。

23、甲、乙两地相距10千米,快、慢两车都从甲地开往乙地,快车开出时,慢车已行了1.5千米,当快车到达乙地时,慢车距乙地还有1千米,那么快车在距乙地多少千米处追上慢车?
慢车行了1.5千米,快车才开出,而快车到达乙地时,慢车距乙地还有1千米,就是在快车行10千米的时间里,比慢车多行的路程为1.5+1=2.5(千米)。快车每行1千米比慢车多2.5÷10=0.25(千米)。

24、甲、乙两班进行越野行军比赛,甲班以4.5千米/时的速度走了路程的一半,又以5.5千米/时的速度走完了另一半;乙班在比赛过程中,一半时间以4.5千米/时的速度行进,另一半时间以5.5千米/时的速度行进。问:甲、乙两班谁将获胜?
快速行走的路程越长,所用时间越短。甲班快、慢速行走的路程相同,乙班快速行走的路程比慢速行走的路程长,所以乙班获胜。

25、轮船从A城到B城需行3天,而从B城到A城需行4天。从A城放一个无动力的木筏,它漂到B城需多少天?
轮船顺流用3天,逆流用4天,说明轮船在静水中行4-3=1(天),等于水流3+4=7(天),即船速是流速的7倍。所以轮船顺流行3天的路程等于水流3+3×7=24(天)的路程,即木筏从A城漂到B城需24天。

26、小红和小强同时从家里出发相向而行。小红每分走52米,小强每分走70米,二人在途中的A处相遇。若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇。小红和小强两人的家相距多少米?
因为小红的速度不变,相遇地点不变,所以小红两次从出发到相遇的时间相同。也就是说,小强第二次比第一次少走4分。由
(70×4)÷(90-70)=14(分)
可知,小强第二次走了14分,推知第一次走了18分,两人的家相距
(52+70)×18=2196(米)。

27、小明和小军分别从甲、乙两地同时出发,相向而行。若两人按原定速度前进,则4时相遇;若两人各自都比原定速度多1千米/时,则3时相遇。甲、乙两地相距多少千米?
每时多走1千米,两人3时共多走6千米,这6千米相当于两人按原定速度1时走的距离。所以甲、乙两地相距6×4=24(千米)

28、甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地。求甲原来的速度。
因为相遇前后甲、乙两人的速度和不变,相遇后两人合跑一圈用24秒,所以相遇前两人合跑一圈也用24秒,即24秒时两人相遇。
设甲原来每秒跑x米,则相遇后每秒跑(x+2)米。因为甲在相遇前后各跑了24秒,共跑400米,所以有24x+24(x+2)=400,解得x=7又1/3米。

29、 甲、乙两车分别沿公路从A,B两站同时相向而行,已知甲车的速度是乙车的1.5倍,甲、乙两车到达途中C站的时刻分别为5:00和16:00,两车相遇是什么时刻?
甲车到达C站时,乙车还需16-5=11(时)才能到达C站。乙车行11时的路程,两车相遇需11÷(1+1.5)=4.4(时)=4时24分,所以相遇时刻是9∶24。

30、 一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米。坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒?
快车上的人看见慢车的速度与慢车上的人看见快车的速度相同,所以两车的车长比等于两车经过对方的时间比,故所求时间为11

31、甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒可追上乙;若乙比甲先跑2秒,则甲跑4秒能追上乙。问:两人每秒各跑多少米?
甲乙速度差为10/5=2
速度比为(4+2):4=6:4
所以甲每秒跑6米,乙每秒跑4米。

32、一只野兔逃出80步后猎狗才追它,野兔跑 8步的路程猎狗只需跑3步,猎狗跑4步的时间兔子能跑9步。猎狗至少要跑多少步才能追上野兔?
狗跑12步的路程等于兔跑32步的路程,狗跑12步的时间等于兔跑27步的时间。所以兔每跑27步,狗追上5步(兔步),狗要追上80步(兔步)需跑[27×(80÷5)+80]÷8×3=192(步)。

33、甲、乙两人在铁路旁边以同样的速度沿铁路方向相向而行,恰好有一列火车开来,整个火车经过甲身边用了18秒,2分后又用15秒从乙身边开过。问:
(1)火车速度是甲的速度的几倍?
(2)火车经过乙身边后,甲、乙二人还需要多少时间才能相遇?
(1)设火车速度为a米/秒,行人速度为b米/秒,则由火车的 是行人速度的11倍;
(2)从车尾经过甲到车尾经过乙,火车走了135秒,此段路程一人走需1350×11=1485(秒),因为甲已经走了135秒,所以剩下的路程两人走还需(1485-135)÷2=675(秒)。

34、长江沿岸有A,B两码头,已知客船从A到B每天航行500千米,从B到A每天航行400千米。如果客船在A,B两码头间往返航行5次共用18天,那么两码头间的距离是多少千米?
800千米

35、客车长190米,货车长240米,两车分别以每秒20米和每秒23M的速度前进.在双轨铁路上,相遇时从车头相遇到车尾相离需几秒?
10秒.

⑶ 四年级英语奥林匹克竞赛题

maybe最低是四年级的,没有二年级的

⑷ 求小学奥林匹克数学题库

举一反三很不错

小学奥数举一反三 目录[隐藏]

目录
目录

小学奥数举一反三A版[1]作 者: 蒋顺 主编 出 版 社: 陕西人民教育出版社 出版时间: 2008-4-1 字 数: 200000 版 次: 5 页 数: 284 印刷时间: 2009-8-1 开 本: 大32开 印 次: 6 纸 张: 胶版纸 I S B N : 9787541984068 包 装: 平装 所属分类: 图书 >> 中小学教辅 >> 小学>> 数学 内容简介 小学数学竞赛活动是小学生课外活动中最具吸引力的活动形式之一。组织小学生参加数学竞赛能够激发学生产生钻研数学的浓厚兴趣,形成勇于实践、敢于创新的良好品质,还能够拓宽学生的知识面,提高学生素质,发展学生个性特长。为适应《基础教育课程改革纲要》的要求,我们组织了一批有丰富教学经验的老师编写了这套丛书,希望通过一日一例三练的形式,帮助小学生系统地掌握小学数学竞赛的基本内容。 本书编写力求体现以下特点:(1)一日三练,螺旋上升。(2)源于基础,难易有序。(3)注重训练,覆盖面广。(4)自助选择,便于自学。
[编辑本段]目录
第1周 找规律(一) 第2周 找规律(二) 第3周 简单推理 第4周 应用题(一) 第5周 算式谜(一) 第6周 算式谜(二) 第7周 最优化问题 第8周 巧妙求和(一) 第9周 变化规律(一) 第10周 变化规律(二) 第11周 错中求解 第12周 简单列举 第13周 和倍问题 第14周 植树问题 第15周 图形问题 第16周 巧妙求和(二) 第17周 数数图形(一) 第18周 数数图形(二) 第19周 应用题(二) 第20周 速算与巧算(一) 第21周 速算与巧算(二) 第22周 平均数问题 第23周 定义新运算 第24周 差倍问题 第25周 和差问题 第26周 巧算年龄 第27周 较复杂的和差倍问题 第28周 周期问题 第29周 行程问题(一) 第30周 用假设法解题 第31周 还原问题 第32周 逻辑推理 第33周 速算与巧算(三) 第34周 行程问题(二) 第35周 容斥问题 第36周 二进制 第37周 应用题(三) 第38周 应用题(四) 第39周 盈亏问题 第40周 数学开放题 参考答案 小学奥数举一反三 B版[2]作 者: 蒋顺,李济元 主编 出 版 社: 陕西人民教育出版社 出版时间: 2008-5-1 字 数: 130000 版 次: 3 页 数: 100 印刷时间: 2009-9-1 开 本: 16开 印 次: 8 纸 张: 胶版纸 I S B N : 9787541991417 包 装: 平装 所属分类: 图书 >> 中小学教辅 >> 小学四年级 >> 数学 内容简介 本书充分体现了对应思维、函数思维、空间思维、可逆思维、程序化思维和结构化思维等数学思维方式,是推进素质教育的好教材。学生在学习数学过程中,思维应占有重要地位。而思维又是学生在学习数学知识和掌握方法的基础上形成的,是数学知识与学生主体认识相互作用的结果。思维训练已成为当前数学教学的重要内容。 为了使学生获取数学思维能力,就必须以学生已有的数学概念为基础,运用学生已有的数学知识,灵活地处理新的问题,学生通过数学判断和推理等形式认识数学对象,掌握新知识。本书是其中一册。基于这种想法我们编辑了这套教材,供数学教师和学习数学的学生选用。对小学数学教学来说,主要任务是形成思维的敏捷性、思维的变通性和思维的独特性这几种思维品质。
[编辑本段]目录
第1周 找规律(一) 第2周 找规律(二) 第3周 简单推理 第4周 应用题(一) 第5周 算式谜(一) 第6周 算式谜(二) 第7周 最优化问题 第8周 巧妙求和(一) 第9周 变化规律(一) 第10周 变化规律(二) 期中测试(一) 第11周 错中求解 第12周 简单列举 第13周 和倍问题 第14周 植树问题 第15周 图形问题 第16周 巧妙求和(二) 第17、18周 数数图形 第19周 应用题(二) 第20周 速算与巧算(一) 期末测试(一) 第21周 速算与巧算(二) 第22周 平均数问题 第23周 定义新运算 第24周 差倍问题 第25周 和差问题 第26周 巧算年龄 第27周 较复杂的和差倍问题 第28周 周 期问题 第29周 行程问题(一) 第30周 用假设法解题 期中测试(二) 第31周 还原问题 第32周 逻辑推理 第33周 速算与巧算(三) 第34周 行程问题(二) 第35周 容斥问题 第36、37周 应用题(三) 第38周 应用题(四) 第39周 盈亏问题 第40周 数学开放题 期末测试(二)

⑸ 小学四年级奥数题及答案50题

小学四年级奥数题及答案和题目分析
一、按规律填数。
1)64,,40,36,34,( ) 2)8,15,10,13,12,11,( )
3)1、4、5、8、9、( )、13、( )、( ) 4)2、4、5、10、11、( )、( ) 5)5,9,13,17,21,( ),( ) 二、等差数列
1.在等差数列3,12,21,30,39,48,…中912是第几个数?
2.求1至100内所有不能被5或9整除的整数和

3.把210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5,那么,第1个数与第6个数分别是多少?

4.把从1开始的所有奇数进行分组,其中每组的第一个数都等于此组中所有数的个数,如(1),(3、5、7),(9、11、13、15、17、19、21、23、25),(27、29、……79),(81、……),求第5组中所有数的和
三、 平均数问题
1.已知9个数的平均数是72,去掉一个数后,余下的数平均数为78,去掉的数是______ . 2.某班有40名学生,期中数学考试,有两名同学因故缺考,这时班级平均分为89分,缺考的同学补考各得99分,这个班级中考平均分是_______ .
3.今年前5个月,小明每月平均存钱4.2元,从6月起他每月储蓄6元,那么从哪个月起小明的平均储蓄超过5元?
4.A、B、C、D四个数,每次去掉一个数,将其余下的三个数求平均数,这样计算了4次,得到下面4个数. 23, 26, 30, 33
A、B、C、D 4个数的平均数是多少?
5 A、B、C、D4个数,每次去掉一个数,将其余3个数求平均数,这样计算了4次得到下面4个数23、26、30、33,A、B、C、D4个数的和是 。
四、加减乘除的简便运算
1)100-98+96-94+92-90+……+8-6+4-2=( ) 2)1976+1977+……2000-1975-1976-……-1999=( ) 3)26×99 =( )
4)67×12+67×35+67×52+67=( )
5)(14+28+39)×(28+39+15)-(14+28+39+15)×(28+39)
五、数阵图
1、△、□、〇分别代表三个不同的数,并且;
△+△+△=〇+〇;〇+〇+〇+〇=□+□+□; △+〇+〇+□=60 求:△= 〇= □=
2.将九个连续自然数填入3行3列的九个空格中,使每一横行及每一竖列的三个数之和都等于60.
3.将从1开始的九个连续奇数填入3行3列的九个空格中,使每一横行、每一竖列及两条对角线上的三个数之和都相等.

4 用1至9这9个数编制一个三阶幻方,写出所有可能的结果。所谓幻方是指在正方形的方格表的每个方格内填入不同的数,使得每行、每列和两条对角线上的各数之和相等;而阶数是指每行、每列所包含的方格的数。
六、和差倍问题
1.果园里一共种340棵桃树和杏树,其中桃树的棵数比杏树的3倍多20棵,两种树各种了多少棵?
2.一个长方形,周长是30厘米,长是宽的2倍,求这个长方形的面积。

3.甲、乙两个数,如果甲数加上320就等于乙数了.如果乙数加上460就等于甲数的3倍,两个数各是多少?

4.有两块同样长的布,第一块卖出25米,第二块卖出14米,剩下的布第二块是第一块的2倍,求每块布原有多少米?
5.果园里有桃树和梨树共150棵,桃树比梨树多20棵,两种果树各有多少棵?
6.甲、乙两桶油共重30千克,如果把甲桶中6千克油倒入乙桶,那么两桶油重量相等,问甲、乙两桶原有多少油?
七、年龄问题
1.兄弟俩今年的年龄和是30岁,当哥哥像弟弟现在这样大时,弟弟的年龄恰好是哥哥年龄的一半,哥哥今年几岁?
2.母女的年龄和是64岁,女儿年龄的3倍比母亲大8岁,求母女二人的年龄各是多少岁?
3.哥哥今年比小丽大12岁,8年前哥哥的年龄是小丽的4倍,今年二人各几岁?
4.爷爷今年72岁,孙子今年12岁,几年后爷爷的年龄是孙子的5倍?几年前爷爷的年龄是孙子的13倍?
八、假设问题
1、有42个同学参加植树,男生平均每人种3棵,女生平均每人种2棵,男生比女生多种56棵.男、女生各多少人?
2.某小学举行一次数学竞赛,共15道题,每做对一题得8分,每做错一题倒扣4分,小明共得了72分,他做对了多少道题?
3.一张试卷有25道题,答对一题得4分,答错或不答均倒扣1分,某同学共得60分,他答对了多少道题?
4.小华解答数学判断题,答对一题给4分,答错一题要倒扣4分,她答了20个判断题,结果只得了56分,她答错了多少道题?
5. 育才小学五年级举行数学竞赛,共10道题,每做对一道题得8分,错一题倒扣
5分,张小灵最终得分为41分,她做对了多少道题?
自己做吧,有了答案就不会好好做,对不起

⑹ 中国数学奥林匹克全国决赛

看了这个你就知道区别了

一、什么是“奥数”?
1、“奥数”究竟学些什么?
奥数”究竟是什么?它和我们平时学的数学课有什么区别和联系?我想大多数的家长和老师都不一定很清楚,可能就觉得只有那些思路比较新、怪,难度比较大的所谓“难题”、“偏题”才是“奥数”。其实不然。
奥数仍然是属于数学这一门学科,我想这是毫无疑问的。奥数中当然也有和我们平时所学的课堂上的数学相联系的部分,是课堂内容的深化和提高;但是奥数中更多的是和课堂上的数学看起来不沾边的内容,那么这部分内容究竟是什么,又来自于哪里呢?
数学的范围是极其广泛的,世界上最权威的分类法大概把数学分成了几十个大类,一百多个小类。我们从小学高年级的一元一次方程开始算起,一直到高中毕业,在七、八年的时间里,所涉及的数学类别也就是平面几何、三角函数、线性方程(组)、解析几何、立体几何、集合论、不等式、数列等等。作为数学教育,当然应该以这些内容为主,因为它们是数学的核心方法和领域,但是这些内容就是连初等数学的范畴也没有完全覆盖。
那好了,什么是奥数?其实就是我们平常数学课上所不讲、也没有时间去讲的一些数学分支的基础内容,比如图论、组合数学、数论,以及重要的数学思想,比如构造思想、特殊化思想、化归思想等等。这些内容的选择是很科学的,因为这些领域的基本方法和简单应用是不需要专门的数学工具的,而且带有很强的趣味性和游戏性。这些方法对于培养学生的数学兴趣,拓展它们的思维和知识面自然是很有帮助的。
顺便说一句,其实奥数里面,特别是中低年级奥数中,有很多内容是来自于中国古代数学专著的方法和思想,比如“盈亏问题”,比如“鸡兔同笼”,还比如高年级或中学奥数中要介绍的“中国剩余定理”等等。我认为这些方法看似简单,但是其中的确凝聚了中国古代数学家的超凡智慧,并且与西方的数学方程思想很不一样,独辟蹊径,自成一派。我想这也是中华优秀文化遗产的一部分,学习它自然是很有裨益的。
我们在“奥数”的教学实践中,并不是一味的去追求难,追求怪,也一直是本着“打实基础,灵活运用”的目的在操作,主要拓展学生的思维,加深它们对一些数学中看似不起眼的常识、小结论的认识,比如乘法分配律可以用来解决对角线垂直的任意四边形面积问题,再比如等比数列求和与循环小数化分数的方法间其实存在着本质的联系,并且里面还涉及到了一点“构造”的思想等等,于平凡处见不平凡,化腐朽为神奇,让学生在“我怎么没想到”的感叹声中不断加深对数学的认识,在不知不觉中进步。
2、“奥数”适合什么样的学生学习?
在我看来,奥数主要是针对课堂上的数学学得相对比较扎实,学有余力且又对于数学有着一定兴趣的学生。
但同时也要看到,适合学奥数的学生之间也是有差别的,奥数学习也是必须要分层次、分难度,根据不同的学生安排不同的内容和难度,因人因地因时而宜的。我觉得难度的选择,最好是以学生上课能听懂,课下花点功夫就能基本掌握为准。另一方面,我也很不赞成本末倒置的做法,如果平时数学课上的内容暂时还都没有学得比较好的话,那么还是要以平时课堂的数学内容为主,要不然花时花力花钱还于事无补。
3、“奥数”不等于“提前学”
我看到网上有一篇名叫《小学奥数热过了头》的文章,作者是上海数学特级教师周继光老师。在周老师看来,奥数好像就变成了是“提前学”的代名词。他在该文章中这样说道:最近笔者在书城的奥数“书海”中随意买了一本《冲刺金牌——全国小学数学奥林匹克竞赛最新优秀试题精选与题解》,它几乎囊括了全国各地2000-2002年的小学数学竞赛题。我从中找出38道有关几何图形的试题,全部做了一遍,发现竟有30道题要用到初二以上的知识,如勾股定理、根式运算、比例线段、等积变换等才能解决。另有七道题也要用到初预、初一的有关知识才能解决。只有一道题可用小学数学知识解决。书中的代数试题也有类似情况。试想一下,把这些题目让一般的小学生去啃,不是为难他们吗?如此不恰当的超前训练不仅对学生的思维发展不利,而且会使绝大部分学生从此惧怕数学而远离数学,甚至厌恶数学。沉重的心理压力将会阻碍学生身心健康发展,对此不少老师与家长深为忧虑。
周老师以上这段话,我不敢苟同。首先,同底等高(或等底同高)的三角形面积相等这一点是小学四年级的内容,所谓的“等积变换”其实在小学奥数里也就是这么点内容,最多再深入一步,等高的三角形面积之比等于底之比,至于旋转变换、反射变换等都是没有的。比例也是小学的内容,当然上海小学的内容可能比别处少一些,因为它有个初中预科班,其实就相当于一般的小学六年级。全国小学数学竞赛是不能因为上海的特殊情况而减少大纲内容的,如果周老师非把这部分内容也认为是初中的话,那这个问题就真的说不清楚了;其次,线段的比例自然也是小学的内容,只要不是涉及到相似三角形或平行线分线段成比例定理即可,就我的教学实践来看,全国小学数学竞赛的几何题目基本上只要利用三角形面积的简单变换就能解决,顶多加上一点简单的一元一次方程或者字母表示数,这也都是小学五年级的内容。 至于勾股定理,一般只涉及到勾三股四弦五,并不要去真的计算什么平方,即使计算也都是好数字,什么根式运算是压根就不会出现的。笔者曾经精选几道竞赛题写过一篇文章《剖析小学几何》,其中就介绍了华杯赛中的一些难题,也只要用到小学的知识,只不过灵活多了。
“提前学”好不好?我也认为不好,没有必要。那么奥数里究竟有没有提前学的数学知识?有。不过占的比例很少,大部分奥数的内容我在本文的第一部分交待了,它和正统的数学课堂讲的内容是没有交集的,平时的数学课会讲抽屉原理吗?会讲哥底斯堡七桥问题吗?会讲中国古代的“鸡兔同笼”,“盈亏问题”吗?不讲。同时,我们在教学实践中,一直是避免把初中的内容来讲;什么绝对值、实数、代数式(当然最基本的平方差、完全平方六年级下学期还是要教的)、严密的几何论证等等都是不讲的。六年级涉及到的一些证明问题,也都是一些染色问题、抽屉原则等等,并没有提前涉及中学的几何代数证明。
下面说说方程,就我和学生的接触来看,大部分学生在小学学习字母表示数,一元一次方程的时候并没有真正理解什么是方程的思维方式。通过奥数的学习,他们认识上得到了提高,培养了良好的方程思维,也明白了列方程和解方程是完全可以分开的两个数学思维活动过程。当然,小学奥数对方程的要求要比小学课本上稍多一些,六年级上学期要求一元一次方程的灵活运用,下学期要求简单的二元一次方程组的求解,但是我们绝不会涉及到一元二次方程的求解和根式运算。
因此,奥数并不是“提前学”,更不是有些人说的“数学中的杂技”,它就是课堂外的数学,和课堂内的数学是主干与支干的关系,既是课堂的提高和深化,又是拓展视野的数学园地。所谓“提前学”带给学生们的种种负担与不良影响并不适用于“奥数”,至少是不适用于“奥数”中的绝大部分内容。

至于全国决赛的资格,一般都是你所在学校选拔优秀学生参加地方上的预赛,然后再继续考试选拔最终代表本省/市参加全国决赛

⑺ 四年级上册奥数题及答案

四年级数学奥林匹克竞赛试题

参赛者班级: 姓名:

一、计算:

⑴20082008×2007-20072007×2008(10分)

⑵222222×999999(10分)

二、填空:(1—8题每题3分,9—14题每题7分。)

1、小军计算除法时把76写成67,结果得到的商是150余6,正确的结果应该是( )。

2、从10000里面连续减25,减( )次差是0?

3、小强今年11岁,小军今年17岁,两人年龄一共42岁时,小强( )岁。

4、用四个“5”和三个“0”,组成最大的且只读1个“0”的七位数是( )

5、小强、小清、小玲、小红四人中,小强不是最矮的,小红不是最高的,但比小强高,小玲不比大家高。请按从高到矮的顺序,把名字写出来。

( )

6、有两块木板各长80厘米,钉在一起的地方长10厘米,钉好后共长( )厘米?

7、两袋糖,一袋是84粒,一袋是20粒,每次从多的一袋里拿出8粒糖放到少的一袋里去,拿( )次才能使两袋糖的粒数同样多。

8、三棵树上停着24只鸟。如果从第一棵树上飞4只鸟到第二棵树上去,再从第二棵树飞5只鸟到第三树上去,那么三棵树上的小鸟的只数都相等,第二棵树上原有( )只?

9、用中国象棋的车,马,炮分别表示不同的自然数.如果:车÷马=2,炮÷车=4,炮-马=56,那么“车+马+炮”等于( ).

10、一个两位数,它的数字之和正好是9,而个位数字是十位数字的8倍,这个两位数是( )。

11、一张长方形纸片,长7厘米,宽5厘米.把它的右上角往下折叠,再把左下角往上折叠(如图).那么,未盖住的阴影部分的面积是( )平方厘米.

12、东东3年前的年龄与西西4年后的年龄之和是25岁,东东3年后的年龄等于西西l年前的年龄,求东东今年的年龄是( ),西西今年的年龄是( ).

13、在下面的3个方框内分别填入恰当的数字,可以使得这3个数的平均数是150.那么所填的3个数字之和是( ).

□,□8,□97

14、莉莉和莎莎一起从家去学校,莉莉步行,莎莎骑车.莎莎到学校发现自己没带文具盒,便立刻骑车回家去取,到家取出后又马上骑回学校,结果和莉莉一起到校.如果莉莉平均每分走53米,那么莎莎骑车平均每分行进( )米.

三、看规律填数

(1)0,1,3,8,21,( )(10分)

(2) (5分)

(3)下面乘法的算式中:A是( )、B是( )、C是( )、D是( )、E是( )。(5分)

⑻ 求 4年级 最难的奥林匹克奥数题

四年级 第试

2006年4月16日 上午8:30至10:00 得分:______

填空题(第小题4分,共60分)
1、25×32÷14+36÷21×25=________.

2、如果5×(2+△×△)-4=2006,那么△=________。

3、如果数A减去数B的3倍,差是51;数A加上数B的2倍,和是111,那么数A=________,数B=________。

4、如图1,圆A表示1到50这50个自然数中能被3整除的数,圆B表示这50个数中能被5整除的数,则阴影部分表示的数是________。

5、有40个连续的自然数,其中最大的数是最小数的4倍,那么最大的数与最小的数之和是________。

6、牧羊人赶一群羊过10条河,每过一条河时都有一半的羊掉入河中,每次他都捞上3只,最后清查还剩6只。这群羊在过河前共有________只。

7、一群猴子分桃,桃子共有56个,每只猴子可以分到同样多的桃子。但在它们正要分桃时,又来了4只猴子,于是重新分配这些桃子,结果每只猴子分到的桃子数量相同,那么最后每只猴子分到____个桃子。

8、三只小猫去钓鱼,它们共钓上36条鱼,其中黑猫和花猫钓到的鱼的条数是白猫钓到的鱼的条件数的5倍,花猫钓到的鱼比另外两只猫钓到的鱼的条数的2倍少9条。黑猫钓上______条鱼。

9、从1,3,5,7中任取3个数字组成没有重复数字的三位数,这些三位数中能被3整除的有______个。

10、如图2,两个同样的铁环在一起长28厘米,每个铁环长16厘米。8个这样的铁环依此连在一起长_____厘长。

11、图3是3×3点阵,同一行(列)相邻两个点的距离为1。以点阵中的三个点为顶点构成三角形,其中面积为1的形状不同的三角形有______种。

12、如图4,用标号为1,2,3,4,5的五种大小不同的正方形拼成一个大方形,大长方形的长和宽分别是18,14,则标号为5的正方形的面积是______。

13、小强和小明一同到便利店购物,图5是他们两个购物的单据,由此计算出盐每袋___元,醋每袋___元

14、如图6所示的算式中,如果七个方格中的数字互不相同,那么和的最大值是______。

15、现在世界各国普遍采用的公历是1582年修订的格列高里历,它规定:公元年数被4除得尽的是闰年,但如被100除得尽而被400除不尽的则不是闰年。按此规定,从1582年至今共有_____个闰年。

二、解答题:(每小题10分,共40分。)要求:写出推算过程。

16、如图7所示,在三个圆圈中各填入一个自然数,使每条线段两端的两个数之和均为奇数。请问这样的填法存在吗?如不存在,请说明理由;如存在,请写出一种填法。

17.甲、乙两人分别从相距260千米的A、B两地同时沿笔直的公路乘车相向而行,各自前往B地、A地。甲每小时行32千米。乙每小时行48千米。甲、乙各有一个对讲机,当他们之间的距离小于20千米时,两人可用对讲机联络。问: (1)两人出发后多久可以开始用对讲机联络? (2)他们用对讲机联络后,经过多长时间相遇? (3)他们可用对讲机联络多长时间?

18.星期天早晨,小明发现闹钟因电池能量耗尽停走了。他换上新电池,估计了一下时间,将闹钟的指针拔到8:00。然后,小明离家前往天文馆。小明到达天文馆时,看到天文馆的标准时钟显示的时间是9:15。一个半小时后,小明从天文馆以同样的速度返回家中。看到闹钟显示的时间是11:20,请问,这时小明应该把闹钟调到什么时候才是准确的?

19.2005年,小张有一次出差的几天有日期数加起来恰好是60。问:小张出差了几天?是哪几天?(注:日期数指a月b日中的b,如4月16日的日期数是16)

第四届小学“希望杯”全国数学邀请赛

参考答案及评分标准

四年级 第2试

一、填空题(每小题4分)

二、解答题

16.不存在这样的填法。 (2分)

理由。设所填的数分别是a,b,c,如图所示。

假设a+b=奇数.

a+c=奇数,

b+c=奇数, (5分)

三式相加

左边=2(a+b+c),是偶数, (7分)

右边=三个奇数相加,是奇数, (9分)

而 偶效≠奇数,

所以不存在这样的填法.(10分)

17.(1)(260-20)÷(32+48)=3(小时)。 (3分)

(2)20÷(32+48)=0.25(小时)。 (6分)

(3)从甲、乙相遇到他们第二次相距20千米也用0.25小时.所以他们一共可用对讲机联络

0.25+0.25=0.5(小时)。 (9分)

答:略. (10分)

18.由小明11日钟显示的时间可知.小明出门共用了3小时20分钟。 (3分)

来回路上共用去1小时50分钟,回家路上用去55分钟. (6分)

从小明到达天文馆,到回到家中共经历2小时25分钟,小明到达天文馆时是9:15,所以回到家中的时间是11时40分,即应把闹钟调到11:40. (10分)

19.先考虑日期数是连续整数的情况。

因为 1+2+3+……+11=66>60,

所以 小张出差不会超过10天。 (2分)

显然,小张不可能只出差1天。

假设出差2天,且第1天的日期数是a,则

a+(a+1)=60,2a=59,

a不是整数,因此,小张不可能出差2天。

同理,有

a+(a+1)+(a+2)=60. a=19,可能出差3天;

a+(a+1)+(a+2)+(a+3)=60, 4a=54,不可能出差4天;

a+(a+1)+……+(a+4)=60, a=10,可能出差5天;

a+(a+1)+……+(a+5)=60, 6a=45,不可能出差6天;

a+(a+1)+……+(a十6)=60, 7a=39,不可能出差7天;

a+(a+1)+……+(a+7)=60, a=4,可能出差8天;

a+(a+1)+……+(a+8)=60, 9a=24,不可能出差9天;

a+(a+1)+……+(a+9)=60,lOa=15,不可能出差10天。 (6分)

再考虑跨了两个不同月份的情况.

2005年各月的最大日期敛有28,30,31三种.

因为 27+28+1+2<60,

27+28+1+2+3>60,

28+1+2+……+7<60,

28+1+2+……+8>60,

所以不可能跨过最大日期数是28的月份。

同理可判断不可能跨过最大日期数是31的月份。 (8分)

而 29+30+l=60,

30+1+2+……+7<60,

30+1+2+……+8>60,

所以可能在29日,30目,1日这三天出差。

综上所述,有4种可能:

(1)出差3天.从19目到21日;

(2)出差5天,从10日到14日;

(3)出差8天,从4日到11日;

(4)出差3天。分别是29日.30日,1日。 (10分)

⑼ 急需数学奥林匹克三,四年级题目及答案!!!

http://www.aoshu.cn/Article_L/Class17List.htm

http://www.psmath.com/Soft_Show.asp?SoftID=4

阅读全文

与小学四年级数学奥林匹克竞赛题相关的资料

热点内容
小学读书计划表格模板 浏览:342
小学语文四年级感叹句 浏览:243
天通苑中山实验小学 浏览:596
小学三年级语文补习班内容 浏览:921
吉安师范附属小学作文 浏览:396
小学教师备课网站 浏览:1
私立美男学院 浏览:383
小学六年级上册语文第六单元试卷凉州岛 浏览:915
小学1年级手gong大全 浏览:459
小学生手抄报的图片大全图片大全 浏览:68
小学健康知识讲座 浏览:120
小学毕业季适合发老师的句子 浏览:451
汕尾凤山中心小学校长 浏览:606
小学生毕业汇演舞蹈 浏览:702
小学生抗击疫情的表演 浏览:107
私立华联大学本科 浏览:61
小学三年级作文我想谢谢你400 浏览:855
中小学生睡眠问题 浏览:174
小学生公共生活守规则教案 浏览:313
淮河私立学校 浏览:99