㈠ 五年级奥数题及答案40道
您好!
问题1 如果一个四位数与一个三位数的和是1999,并且四位数和三位数是由7个不同的数字组成的。那么,这样的四位数最多能有多少个?
这是北京市小学生第十五届《迎春杯》数学竞赛决赛试卷的第三大题的第4小题,也是选手们丢分最多的一道题。
得到a=1,b+e=9,(e≠0),c+f=9,d+g=9。
为了计算这样的四位数最多有多少个,由题设条件a,b,c,d,e,f,g互不相同,可知,数字b有7种选法(b≠1,8,9),c有6种选法(c≠1,8,b,e),d有4种选法(d≠1,8,b,e,c,f)。于是,依乘法原理,这样的四位数最多能有(7×6×4=)168个。
在解答完问题1以后,如果再进一步思考,不难使我们联想到下面一个问题。
问题2 有四张卡片,正反面各写有1个数字。第一张上写的是0和1,其他三张上分别写有2和3,4和5,7和8。现在任意取出其中的三张卡片,放成一排,那么一共可以组成多少个不同的三位数?
此题为北京市小学生第十四届《迎春杯》数学竞赛初赛试题。其解为:
后,十位数字b可取其他三张卡片的六种数字;最后个位数c可取剩余两张卡片的四种数字。综上所述,一共可以组成不同的三位数共(7×6×4=)168个。
如果从甲仓库搬67吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的2倍;如果从甲仓库搬17吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的5倍,原来两仓库各存货物多少吨?
67×(2+1)-17×(5+1)
=201-102
=99(吨)
99÷〔(5+1)-(2+1)〕
=99÷3
=33(吨)答:原来的乙有33吨。
(33+67)×2+67
=200+67
=267(吨)答:原来的甲有267吨。
分析:
1、如果从甲仓库搬67吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的2倍;
甲和乙总的数量没有变,总的数量包括2+1=3个现在的乙,现在的乙是原来的乙加上67得来。所以总的数量就包括3个原来的乙和3个67〔67×(2+1)=201〕。
2、如果从甲仓库搬17吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的5倍,
理由同上,总的数量包括5+1=6个原来的乙和6个17(即17×(5+1)=102)
3、从1和2可看出,原来3个乙和原来6个乙只相差3个乙,而这三个乙正好相差201-102=99吨。可求出原来的乙是多少,99÷3=33吨。
4、再求原来的甲即可。
甲每小时行12千米,乙每小时行8千米.某日甲从东村到西村,乙同时从西村到东村,以知乙到东村时,甲已先到西村5小时.求东西两村的距离
甲乙的路程是一样的,时间甲少5小时,设甲用t小时
可以得到
1. 12t=8(t+5)
t=10
所以距离=120千米
小明和小芳围绕着一个池塘跑步,两人从同一点出发,同向而行。小明:280米/分;小芳:220/分。8分后,小明追上小芳。这个池塘的一周有多少米?
280*8-220*8=480
这时候如果小明是第一次追上的话就是这样多
这时候小明多跑一圈...
1.用3.5.7.0组成一个两位数,( )乘( )的积最大.( )乘( )的积最小.
2.有一些积木的块数比50多,比70少,每7个一堆,多了一块,每9个一堆,还是多1块,这些积木有多少块?
3.6盆花要摆成4排,每排3盆,应该怎样摆?
4.4(1)班有4个人参加4X50米接力赛,问有多少种不同的安排方法?
5.能否从右图中选出5个数,使它们的和为60?为什么? 15 25 35
25 15 5
5 25 45
6.5饿连续偶数的和是240,这5个偶数分别是多少?
7.某人从甲地到乙地,先骑12小时摩托车,再骑9小时自行车正好到达.返回时,先骑21小时自行车,再骑8小时摩托车也正好到达.从甲地到乙地如果全骑摩托车需要多少时间?
1 70*53最大 30*75最小
2 64块
3 五角星形
4 4*3*2*1=24
5不能,因为都是奇数,奇数个奇数相加不可能得偶数
6.240/5=48,则其余偶数是:48-2=46,48-4=44,48+2=50,48+4=52
7.摩托车的速度是xkm/h,自行车速是ykm/h 。
21y+8x=12x+9y
4x=12y
x=3y
所以摩托车共需12+9/3=15小时
数出图中含有"*"号的长方形个数(含一个或二个都可以)
* * *
第1题儿子算出来是8+16+8=32个,答案却是30个.
第2题儿子算出来是(12+24+24+12)*2,然后减去2*重复的,9+18+9=36,答案说应该减去48个,为什么呢?
一、填空题
1.有两列火车,一列长102米,每秒行20米;一列长120米,每秒行17米.两车同向而行,从第一列车追及第二列车到两车离开需要几秒?
2.某人步行的速度为每秒2米.一列火车从后面开来,超过他用了10秒.已知火车长90米.求火车的速度.
3.现有两列火车同时同方向齐头行进,行12秒后快车超过慢车.快车每秒行18米,慢车每秒行10米.如果这两列火车车尾相齐同时同方向行进,则9秒后快车超过慢车,求两列火车的车身长.
4.一列火车通过440米的桥需要40秒,以同样的速度穿过310米的隧道需要30秒.这列火车的速度和车身长各是多少?
5.小英和小敏为了测量飞驶而过的火车速度和车身长,他们拿了两块跑表.小英用一块表记下了火车从她面前通过所花的时间是15秒;小敏用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是20秒.已知两电线杆之间的距离是100米.你能帮助小英和小敏算出火车的全长和时速吗?
6.一列火车通过530米的桥需要40秒,以同样的速度穿过380米的山洞需要30秒.求这列火车的速度与车身长各是多少米.
7.两人沿着铁路线边的小道,从两地出发,以相同的速度相对而行.一列火车开来,全列车从甲身边开过用了10秒.3分后,乙遇到火车,全列火车从乙身边开过只用了9秒.火车离开乙多少时间后两人相遇?
8. 两列火车,一列长120米,每秒行20米;另一列长160米,每秒行15米,两车相向而行,从车头相遇到车尾离开需要几秒钟?
9.某人步行的速度为每秒钟2米.一列火车从后面开来,越过他用了10秒钟.已知火车的长为90米,求列车的速度.
10.甲、乙二人沿铁路相向而行,速度相同,一列火车从甲身边开过用了8秒钟,离甲后5分钟又遇乙,从乙身边开过,只用了7秒钟,问从乙与火车相遇开始再过几分钟甲乙二人相遇?
二、解答题
11.快车长182米,每秒行20米,慢车长1034米,每秒行18米.两车同向并行,当快车车尾接慢车车尾时,求快车穿过慢车的时间?
12.快车长182米,每秒行20米,慢车长1034米,每秒行18米.两车同向并行,当两车车头齐时,快车几秒可越过慢车?
13.一人以每分钟120米的速度沿铁路边跑步.一列长288米的火车从对面开来,从他身边通过用了8秒钟,求列车的速度.
14.一列火车长600米,它以每秒10米的速度穿过长200米的隧道,从车头进入隧道到车尾离开隧道共需多少时间?
———————————————答 案——————————————————————
一、填空题
120米
102米
17x米
20x米
尾
尾
头
头
1. 这题是“两列车”的追及问题.在这里,“追及”就是第一列车的车头追及第二列车的车尾,“离开”就是第一列车的车尾离开第二列车的车头.画线段图如下:
设从第一列车追及第二列车到两列车离开需要x秒,列方程得:
102+120+17 x =20 x
x =74.
2. 画段图如下:
头
90米
尾
10x
设列车的速度是每秒x米,列方程得
10 x =90+2×10
x =11.
头
尾
快车
头
尾
慢车
头
尾
快车
头
尾
慢车
3. (1)车头相齐,同时同方向行进,画线段图如下:
则快车长:18×12-10×12=96(米)
(2)车尾相齐,同时同方向行进,画线段图如下:
头
尾
快车
头
尾
慢车
头
尾
快车
头
尾
慢车
则慢车长:18×9-10×9=72(米)
4. (1)火车的速度是:(440-310)÷(40-30)=13(米/秒)
(2)车身长是:13×30-310=80(米)
5. (1)火车的时速是:100÷(20-15)×60×60=72000(米/小时)
(2)车身长是:20×15=300(米)
6. 设火车车身长x米,车身长y米.根据题意,得
①②
解得
7. 设火车车身长x米,甲、乙两人每秒各走y米,火车每秒行z米.根据题意,列方程组,得
①②
①-②,得:
火车离开乙后两人相遇时间为:
(秒) (分).
8. 解:从车头相遇到车尾离开,两车所行距离之和恰为两列车长之和,故用相遇问题得所求时间为:(120+60)¸(15+20)=8(秒).
9. 这样想:列车越过人时,它们的路程差就是列车长.将路程差(90米)除以越过所用时间(10秒)就得到列车与人的速度差.这速度差加上人的步行速度就是列车的速度.
90÷10+2=9+2=11(米)
答:列车的速度是每秒种11米.
10. 要求过几分钟甲、乙二人相遇,就必须求出甲、乙二人这时的距离与他们速度的关系,而与此相关联的是火车的运动,只有通过火车的运动才能求出甲、乙二人的距离.火车的运行时间是已知的,因此必须求出其速度,至少应求出它和甲、乙二人的速度的比例关系.由于本问题较难,故分步详解如下:
①求出火车速度 与甲、乙二人速度 的关系,设火车车长为l,则:
(i)火车开过甲身边用8秒钟,这个过程为追及问题:
故 ; (1)
(i i)火车开过乙身边用7秒钟,这个过程为相遇问题:
故 . (2)
由(1)、(2)可得: ,
所以, .
②火车头遇到甲处与火车遇到乙处之间的距离是:
.
③求火车头遇到乙时甲、乙二人之间的距离.
火车头遇甲后,又经过(8+5×60)秒后,火车头才遇乙,所以,火车头遇到乙时,甲、乙二人之间的距离为:
④求甲、乙二人过几分钟相遇?
(秒) (分钟)
答:再过 分钟甲乙二人相遇.
二、解答题
11. 1034÷(20-18)=91(秒)
12. 182÷(20-18)=91(秒)
13. 288÷8-120÷60=36-2=34(米/秒)
答:列车的速度是每秒34米.
14. (600+200)÷10=80(秒)
答:从车头进入隧道到车尾离开隧道共需80秒.
平均数问题
1. 蔡琛在期末考试中,政治、语文、数学、英语、生物五科的平均分是 89分.政治、数学两科的平均分是91.5分.语文、英语两科的平均分是84分.政治、英语两科的平均分是86分,而且英语比语文多10分.问蔡琛这次考试的各科成绩应是多少分?
2. 甲乙两块棉田,平均亩产籽棉185斤.甲棉田有5亩,平均亩产籽棉203斤;乙棉田平均亩产籽棉170斤,乙棉田有多少亩?
3. 已知八个连续奇数的和是144,求这八个连续奇数。
4. 甲种糖每千克8.8元,乙种糖每千克7.2元,用甲种糖5千克和多少乙种糖混合,才能使每千克糖的价钱为8.2元?
5. 食堂买来5只羊,每次取出两只合称一次重量,得到十种不同的重量(千克):47、50、51、52、53、54、55、57、58、59.问这五只羊各重多少千克?
等差数列
1、下面是按规律排列的一串数,问其中的第1995项是多少?
解答:2、5、8、11、14、……。 从规律看出:这是一个等差数列,且首项是2,公差是3, 这样第1995项=2+3×(1995-1)=5984
2、在从1开始的自然数中,第100个不能被3除尽的数是多少?
解答:我们发现:1、2、3、4、5、6、7、……中,从1开始每三个数一组,每组前2个不能被3除尽,2个一组,100个就有100÷2=50组,每组3个数,共有50×3=150,那么第100个不能被3除尽的数就是150-1=149.
3、把1988表示成28个连续偶数的和,那么其中最大的那个偶数是多少?
解答:28个偶数成14组,对称的2个数是一组,即最小数和最大数是一组,每组和为: 1988÷14=142,最小数与最大数相差28-1=27个公差,即相差2×27=54, 这样转化为和差问题,最大数为(142+54)÷2=98。
4、在大于1000的整数中,找出所有被34除后商与余数相等的数,那么这些数的和是多少?
解答:因为34×28+28=35×28=980<1000,所以只有以下几个数:
34×29+29=35×29
34×30+30=35×30
34×31+31=35×31
34×32+32=35×32
34×33+33=35×33
以上数的和为35×(29+30+31+32+33)=5425
5、盒子里装着分别写有1、2、3、……134、135的红色卡片各一张,从盒中任意摸出若干张卡片,并算出这若干张卡片上各数的和除以17的余数,再把这个余数写在另一张黄色的卡片上放回盒内,经过若干次这样的操作后,盒内还剩下两张红色卡片和一张黄色卡片,已知这两张红色的卡片上写的数分别是19和97,求那张黄色卡片上所写的数。
解答:因为每次若干个数,进行了若干次,所以比较难把握,不妨从整体考虑,之前先退到简单的情况分析: 假设有2个数20和30,它们的和除以17得到黄卡片数为16,如果分开算分别为3和13,再把3和13求和除以17仍得黄卡片数16,也就是说不管几个数相加,总和除以17的余数不变,回到题目1+2+3+……+134+135=136×135÷2=9180,9180÷17=540, 135个数的和除以17的余数为0,而19+97=116,116÷17=6……14, 所以黄卡片的数是17-14=3。
6、下面的各算式是按规律排列的:
1+1,2+3,3+5,4+7,1+9,2+11,3+13,4+15,1+17,……, 那么其中第多少个算式的结果是1992?
解答:先找出规律: 每个式子由2个数相加,第一个数是1、2、3、4的循环,第二个数是从1开始的连续奇数。 因为1992是偶数,2个加数中第二个一定是奇数,所以第一个必为奇数,所以是1或3, 如果是1:那么第二个数为1992-1=1991,1991是第(1991+1)÷2=996项,而数字1始终是奇数项,两者不符, 所以这个算式是3+1989=1992,是(1989+1)÷2=995个算式。
7、如图,数表中的上、下两行都是等差数列,那么同一列中两个数的差(大数减小数)最小是多少?
解答:从左向右算它们的差分别为:999、992、985、……、12、5。 从右向左算它们的差分别为:1332、1325、1318、……、9、2, 所以最小差为2。
8、有19个算式:
那么第19个等式左、右两边的结果是多少?
解答:因为左、右两边是相等,不妨只考虑左边的情况,解决2个问题: 前18个式子用去了多少个数? 各式用数分别为5、7、9、……、第18个用了5+2×17=39个, 5+7+9+……+39=396,所以第19个式子从397开始计算; 第19个式子有几个数相加? 各式左边用数分别为3、4、5、……、第19个应该是3+1×18=21个, 所以第19个式子结果是397+398+399+……+417=8547。
9、已知两列数: 2、5、8、11、……、2+(200-1)×3; 5、9、13、17、……、5+(200-1)×4。它们都是200项,问这两列数中相同的项数共有多少对?
解答:易知第一个这样的数为5,注意在第一个数列中,公差为3,第二个数列中公差为4,也就是说,第二对数减5即是3的倍数又是4的倍数,这样所求转换为求以5为首项,公差为12的等差数的项数,5、17、29、……, 由于第一个数列最大为2+(200-1)×3=599; 第二数列最大为5+(200-1)×4=801。新数列最大不能超过599,又因为5+12×49=593,5+12×50=605, 所以共有50对。
11、某工厂11月份工作忙,星期日不休息,而且从第一天开始,每天都从总厂陆续派相同人数的工人到分厂工作,直到月底,总厂还剩工人240人。如果月底统计总厂工人的工作量是8070个工作日(一人工作一天为1个工作日),且无人缺勤,那么,这月由总厂派到分厂工作的工人共多少人?
解答:11月份有30天。 由题意可知,总厂人数每天在减少,最后为240人,且每天人数构成等差数列,由等差数列的性质可知,第一天和最后一天人数的总和相当于8070÷15=538 也就是说第一天有工人538-240=298人,每天派出(298-240)÷(30-1)=2人, 所以全月共派出2*30=60人。
12、小明读一本英语书,第一次读时,第一天读35页,以后每天都比前一天多读5页,结果最后一天只读了35页便读完了;第二次读时,第一天读45页,以后每天都比前一天多读5页,结果最后一天只需读40页就可以读完,问这本书有多少页?
解答:第一方案:35、40、45、50、55、……35 第二方案:45、50、55、60、65、……40 二次方案调整如下: 第一方案:40、45、50、55、……35+35(第一天放到最后惶熘腥ィ?/P>第二方案:40、45、50、55、……(最后一天放到第一天) 这样第二方案一定是40、45、50、55、60、65、70,共385页。
13、7个小队共种树100棵,各小队种的查数都不相同,其中种树最多的小队种了18棵,种树最少的小队最少种了多少棵?
解答:由已知得,其它6个小队共种了100-18=82棵, 为了使钌俚男《又值氖髟缴僭胶茫
㈡ 小学五年级奥数题100道,急急急!!!!!
1,8.1×1.3-8÷1.3+1.9×1.3+11.9÷1.3
2,两个自然数的乘积是72,72除以这两个自然数的差,所得的尚等于其中一个自然数,这个商是( )。
3,一个数被7除,余数是3,该数的3倍被7除,余数是( )。
4,一个数除以39,商和余数相同,这个数最大是( )。
5,2、3、5、7 组成算式:( )=24
6,4、5、7、8 组成算式:( )=24
7,2004的约数中,大于100而小于200的数是( )。
8,已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?
9, 3箱苹果重45千克。一箱梨比一箱苹果多5千克,3箱梨重多少千克?
10,甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。甲比乙速度快,甲每小时比乙快多少千米?
11,李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。每支铅笔多少钱?
12,甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河 的两岸。由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。甲车每小时行40千米,乙车每小时行 45千米,两地相距多少千米?(交换乘客的时间略去不计)
13,学校组织两个课外兴趣小组去郊外活动。第一小组每小时走4.5千米,第二小组每小时行3.5千米。两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。多长时间能追上第二小组?
14,有甲乙两个仓库,每个仓库平均储存粮食32.5吨。甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?
15,甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。甲、乙两队每天共修多少米?
16,学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?
17,一列火车和一列慢车,同时分别从甲乙两地相对开出。快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?
18,.某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。运后结算时,共付运费4400元。托运中损坏了多少箱玻璃?
19,.五年级一中队和二中队要到距学校20千米的地方去春游。第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。第一中队先出发2小时后,第二中队再出发,第二中队出发后几小时才能追上一中队?
20,某厂运来一堆煤,如果每天烧1500千克,比计划提前一天烧完,如果每天烧1000千克,将比计划多烧一天。这堆煤有多少千克?
21,妈妈让小红去商店买5支铅笔和8个练习本,按价钱给小红3.8元钱。结果小红却买了8支铅笔和5本练习本,找回0.45元。求一支铅笔多少元?
22,学校组织外出参观,参加的师生一共360人。一辆大客车比一辆卡车多载10人,6辆大客车和8辆卡车载的人数相等。都乘卡车需要几辆?都乘大客车需要几辆?
23,某筑路队承担了修一条公路的任务。原计划每天修720米,实际每天比原计划多修80米,这样实际修的差1200米就能提前3天完成。这条公路全长多少米?
24,某鞋厂生产1800双鞋,把这些鞋分别装入12个纸箱和4个木箱。如果3个纸箱加2个木箱装的鞋同样多。每个纸箱和每个木箱各装鞋多少双?
25,某工地运进一批沙子和水泥,运进沙子袋数是水泥的2倍。每天用去30袋水泥,40袋沙子,几天以后,水泥全部用完,而沙子还剩120袋,这批沙子和水泥各多少袋?
26,.学校里买来了5个保温瓶和10个茶杯,共用了90元钱。每个保温瓶是每个茶杯价钱的4倍,每个保温瓶和每个茶杯各多少元?
27.一个车间,女工比男工少35人,男、女工各调出17人后,男工人数是女工人数的2倍。原有男工多少人?女工多少人?
28.李强骑自行车从甲地到乙地,每小时行12千米,5小时到达,从乙地返回甲地时因逆风多用1小时,返回时平均每小时行多少千米?
29.甲、乙二人同时从相距18千米的两地相对而行,甲每小时行走5千米,乙每小时走4千米。如果甲带了一只狗与甲同时出发,狗以每小时8千米的速度向乙跑去,遇到乙立即回头向甲跑去,遇到甲又回头向飞跑去,这样二人相遇时,狗跑了多少千米?
30.有红、黄、白三种颜色的球,红球和黄球一共有21个,黄球和白球一共有20个,红球和白球一共有19个。三种球各有多少个?
31.在一根粗钢管上接细钢管。如果接2根细钢管共长18米,如果接5根细钢管共长33米。一根粗钢管和一根细钢管各长多少米?
32.水泥厂原计划12天完成一项任务,由于每天多生产水泥4.8吨,结果10天就完成了任务,原计划每天生产水泥多少吨?
33.学校举办歌舞晚会,共有80人参加了表演。其中唱歌的有70人,跳舞的有30人,既唱歌又跳舞的有多少人?
34.学校举办语文、数学双科竞赛,三年级一班有59人,参加语文竞赛的有36人,参加数学竞赛的有38人,一科也没参加的有5人。双科都参加的有多少人?
35.学校买了4张桌子和6把椅子,共用640元。2张桌子和5把椅子的价钱相等,桌子和椅子的单价各是多少元?
36.父亲今年45岁,5年前父亲的年龄是儿子的4倍,今年儿子多少岁?
37.有两桶油,甲桶油重是乙桶油重的4倍,如果从甲桶倒入乙桶18千克,两桶油就一样重,原来每桶各有多少千克油?
38.光明小学举办数学知识竞赛,一共20题。答对一题得5分,答错一题扣3分,不答得0分。小丽得了79分,她答对几道,答错几道,有几题没答?
39.甲列火车长240米,每秒行20米;乙列火车长264米,每秒行16米,两车相向而行,从两车头相遇到两车尾相离需要几秒?
40.一列火车长600米,通过一条长1150米的隧道,已知火车的速度是每分700米,问火车通过隧道需要几分?
41.小明从家里到学校,如果每分走50米,则正好到上课时间;如果每分走60米,则离上课时间还有2分。问小明从家里到学校有多远?
42.有一周长600米的环形跑道,甲、乙二人同时、同地、同向而行,甲每分钟跑300米,乙每分钟跑400米,经过几分钟二人第一次相遇?
43.有一个长方形纸板,如果只把长增加2厘米,面积就增加8平方米;如果只把宽增加2厘米,面积就增加12平方厘米。这个长方形纸板原来的面积是多少?
44.妈妈买苹果和梨各3千克,付出20元找回7.4元。每千克苹果2.4元,每千克梨多少元?
45.甲乙两人同时从相距135千米的两地相对而行,经过3小时相遇。甲的速度是乙的2倍,甲乙两人每小时各行多少千米?
46.盒子里有同样数目的黑球和白球。每次取出8个黑球和5个白球,取出几次以后,黑球没有了,白球还剩12个。一共取了几次?盒子里共有多少个球?
47.上午6时从汽车站同时发出1路和2路公共汽车,1路车每隔12分钟发一次,2路车每隔18分钟发一次,求下次同时发车时间。
48.父亲今年45岁,儿子今年15岁,多少年前父亲的年龄是儿子年龄的11倍?
49.王老师有一盒铅笔,如平均分给2名同学余1支,平均分给3名同学余2支,平均分给4名同学余3支,平均分给5名同学余4支。问这盒铅笔最少有多少支?
50.一块平行四边形地,如果只把底增加8米,或只把高增加5米,它的面积都增加40平方米。求这块平行四边形地原来的面积?
51.两个数的和是572,其中一个加数个位上是0,去掉0后,就与第二个加数相同。这两个数分别是多少?
52.一桶油连桶重16千克,用去一半后,连桶重9千克,桶重多少千米?
53.一桶油连桶重10千克,倒出一半后,连桶还重5.5千克,原来有油多少千克?
54.用一只水桶装水,把水加到原来的2倍,连桶重10千克,如果把水加到原来的5倍,连桶重22千克。桶里原有水多少千克?
55.小红和小华共有故事书36本。如果小红给小华5本,两人故事书的本数就相等,原来小红和小华各有多少本?
56.有5桶油重量相等,如果从每只桶里取出15千克,则5只桶里所剩下油的重量正好等于原来2桶油的重量。原来每桶油重多少千克?
57.把一根木料锯成3段需要9分钟,那么用同样的速度把这根木料锯成5段,需要多少分?
一道题一道题打很累啊,求采纳!!!
㈢ 小学五年级奥数题,及答案
五年级奥数题及答案
xy,zw分别表示一个两位数,若xy+zw=139,那么x+y+z+w=?
因为个位是,所以个位相加没有进位个位
即:个位数的和Y+W=9,而不会是19,29,39....
所以十位数的和X+Z=13
于是:x+y+z+w=22
2.有一条长500米的环行跑道,甲乙两人同时从跑道上的某一点出发,如果反向而跑,则1分钟后相遇;如果同向而跑,则10分钟后追上.以知甲比已跑的快,问:甲已两人每分钟各跑多少米?
反向,二人的速度和是:500/1=500
同向,二人的速度差是:500/10=50
甲的速度是:(500+50)/2=275米/分
乙的速度是:(500-50)/2=225米/分
3一个圆形跑道上,下午1:00,小明从A点,小强从B点同时出发相对而行,下午1:06两人相遇,下午1:10,小明到达B点,下午1:18,两人再次相遇.问:小明环行一周要多少分钟?
由题目得知,小强第一次相遇 前行了6分钟的距离小明行了4分钟,那么小明的速度是小强的:6/4=1。5倍。
又从第一次相遇 到第二次相遇 一共用了:18-6=12分。
所以小强的速度是:(1/12)/(1+1。5)=1/30
即小明的速度是:1/30*1。5=1/20
那么小明行一圈的时间是:1/(1/20)=20分。
4.a、b和c都是两位的自然数,a、b的个位数分别是7和5,c的十位数是1.如果满足等式ab+c=2005,则a+b+c=?
首先我们可以通过B的个位为5来判断C的个位应该为0
这样可以知道C的个位与十位是10
则AB应该为2005-10=1995,
相乘得1995的两位数中,只有57与35的个位数分别为7和5,因此判定
a+b+c=57+35+10=102
5——11题
1、22……2[2000个2]除以13所得的余数是多少?
2、1的平方+2的平方+3的平方……+2001的平方+2002的平方除以4的余数是多少?
3、数1998*1998*1998*……*1998[2000个1998连乘]的积除以7的余数是多少?
4、一个整数除以84的余数是46,那么他分别除以3、4、7所得的三个余数之和是多少?
5、甲、乙、丙、丁四个旅行团分别有游客69人、85人、93人、97人。现在要把四个旅行团分别进行分组,使每组都是A名游客,以便乘车前往参观旅游。已知甲、乙、丙三个团分成每组A人的若干组后,所剩下的人数相同,问丁旅行团分成每组A人的若干组后还剩下几人?
6、号码分别为37、57、77、和97的四名运动员进行乒乓球比赛,规定每两人比赛的盘数是他们号码的和除以3的余数,那么打球盘数最多的运动员是几号?他打了多少盘?
1、222222可以整除13,所以2000个2的话包含333组循环,剩下最后的22,所以余数是9
2、因为每偶数项都能整除4,所以只剩下奇数项,我们能知道:1的平方+3的平方+5的平方+7的平方刚好也能被4整除,同样11的平方+13的平方+15的平方+17的平方他们也能被四整除,最后只剩下250个9的平方+2001的平方,所以最后只剩下250+1=251,所以余数为3
3、1998除以7余数是3,所以我们可以把1998=7*n+3
总共有2000个1998=7*n+3,所以最后就是2000个3相乘,即为3^2000=9^1000=(7+2)^1000,所以又变成求2^1000除以7的余数了,2^1000=1024^100=(146*7+2)^100,变成了2^100除以7的余数了,同理,最后变成1024除以7的余数了,也就是2,所以1998*1998*1998*……*1998[2000个1998连乘]的积除以7的余数是2.
4、设为84a+46,则84a能被3,4,7整除,答案即为46除以3、4、7所得的三个余数之和1+2+4=7
5、此题目的意思为,69=n1*A+a、85=n2*A+a、93=n3*A+a
16=(n2-n1)*A 8=(n3-n2)*A 24=(n3-n1)*A
所以我们可以知道A=8或者4,或者2,若为8则,丁所剩的人数为1,若A为4,余数为:1,所以不管A为8,还是4,还是2,余数都是1.
6、因为37号的各位和十位的和为10,57的为12,77的为14,97的为16,所以我么知道10+12除以3余数为1,10+14除以3余数为0,10+16的余数为2,12+14的余数为2,12+16的余数为1,14+16的余数为0,所以我们知道,37号要打3场,57要打4场,77要打2场,97要打3场,所以最多的是57号
12——16T
1.一部书,甲、乙两个打字员需要10天完成,两人合打8天后,余下的由乙单独打,若这部书由甲单独打需要28天完成。问乙又干了几天完成?
2.一批货物,A、B两辆汽车合运6天能运完这批货物的5/6,若单独运,A运完1/3,B运完1/2。若单独运,A、B各需要多少天?
3.有一些机器零件,甲单独完成需要17天,比乙单独完成多用了1天。两人合作8天后,剩下420个零件由甲单独制作,甲共制作了多少个零件?甲共干了几天?
4.水池上装有甲、乙两个水管,齐开两水管12小时注满水池。若甲管开5小时,乙管开6小时,只能注水池的9/20。若单独开甲管和乙管各需要几小时注满?
1.甲单独打需要28天,所以甲每天可以完成任务的1/28,甲乙合打十天完成,所以甲乙合打每天可以完成任务的1/10,所以乙每天可以完成任务的1/10-1/28=9/140,两人合打8天后还剩下任务的1/5,所以乙又干了1/5除以9/140=28/9天
2.两辆汽车合运6天完成5/6,所以合运一天可以完成5/36,A运完1/3的时候B可以运完1/2,所以B的速度是A的1.5倍,所以A每天可以运完这批货物的2/36,B可以运完3/36,所以A单独运需要18天,B单独运需要12天。
3.甲每天能完成1/17,乙每天能完成1/16,合干8天共完成33/34,剩下1/34为420个,所以这些零件一共有420*34=14280个,甲共制作了14280*8/17+420=7140个,一共干了1/34除以1/17+8=8.5天,所以甲一共干了8天半
4.甲乙齐开12小时注满,所以甲乙齐开每小时注入1/12,设甲每小时注入为X,乙为Y,5X+6Y=9/20,上式合并为5(x+y)+y=9/20,x+y是甲乙齐开的效率,就是1/12,带入式子得y=1/30,所以x=1/12-1/30=1/20,所以单开甲20小时注满,单开乙30小时注满
17.在300米长的环形跑道上,甲、乙两人同时同向并排起跑,甲平均每秒跑5米,乙平均每秒跑4.4米。两人起跑后的第一次相遇在起跑线前多少米? (列算式并算出答案(可写综合算式)
300/(5-4.4)=500秒
500*4.4=2200米
2200除以300等于7圈余100
所以两人起跑后的第一次相遇在起跑线前100米
18——20
1.小红从张村到李村,如果每小时走15千米,就可以比原计划早到24分钟,如果每小时走12千米,就会比原计划晚到15分钟,张村到李村的路程是多少?
设原来从张村到李庄需X小时
24分=0.4时 15分=0.25时
由于路程一定,速度和时间成反比例
15×(X-0.4)=12×(X+0.25)
X=3
张庄到李庄的路程是:15×(3-0.4)=39(千米)
2.一个书架宽88厘米,某一层上摆满了数学书和语文书,共90册,一本数学书厚0.8厘米,语文1.2厘米,语文和数学各有多少本?
设数学书x本 则语文书(90-x)本
0.8x+1.2(90-x)=88
x=50
90-x=40
数学书50本
语文书40本
3.某中学七年级举行足球赛,规定:胜一场3分,平一场1分,负一场0分,七年1班比赛中共积8分,其中胜与平的场数相同,负比胜多1场,胜,平,负各几场?
解:设胜的场数为x
3x+1x+0*(x+1)=8
4x=8
x=2
胜2场
平2场
负3场
㈣ 小学五年级奥数题及答案25道!!
奥赛专题 -- 称球问题
〔专题介绍〕称球问题是一类传统的趣味数学问题,它锻炼着一代又一代人的智力,历久不衰。下面几道称球趣题,请你先仔细考虑一番,然后再阅读解答,想来你一定会有所收获。
〔经典例题〕例1 有4堆外表上一样的球,每堆4个。已知其中三堆是正品、一堆是次品,正品球每个重10克,次品球每个重11克,请你用天平只称一次,把是次品的那堆找出来。
解 :依次从第一、二、三、四堆球中,各取1、2、3、4个球,这10个球一起放到天平上去称,总重量比100克多几克,第几堆就是次品球。
例2 有27个外表上一样的球,其中只有一个是次品,重量比正品轻,请你用天平只称三次(不用砝码),把次品球找出来。
解 :第一次:把27个球分为三堆,每堆9个,取其中两堆分别放在天平的两个盘上。若天平不平衡,可找到较轻的一堆;若天平平衡,则剩下来称的一堆必定较轻,次品必在较轻的一堆中。
第二次:把第一次判定为较轻的一堆又分成三堆,每堆3个球,按上法称其中两堆,又可找出次品在其中较轻的那一堆。
第三次:从第二次找出的较轻的一堆3个球中取出2个称一次,若天平不平衡,则较轻的就是次品,若天平平衡,则剩下一个未称的就是次品。
例3 把10个外表上一样的球,其中只有一个是次品,请你用天平只称三次,把次品找出来。
解:把10个球分成3个、3个、3个、1个四组,将四组球及其重量分别用A、B、C、D表示。把A、B两组分别放在天平的两个盘上去称,则
(1)若A=B,则A、B中都是正品,再称B、C。如B=C,显然D中的那个球是次品;如B>C,则次品在C中且次品比正品轻,再在C中取出2个球来称,便可得出结论。如B<C,仿照B>C的情况也可得出结论。
(2)若A>B,则C、D中都是正品,再称B、C,则有B=C,或B<C(B>C不可能,为什么?)如B=C,则次品在A中且次品比正品重,再在A中取出2个球来称,便可得出结论;如B<C,仿前也可得出结论。
(3)若A<B,类似于A>B的情况,可分析得出结论。
练习 有12个外表上一样的球,其中只有一个是次品,用天平只称三次,你能找出次品吗?
奥赛专题 -- 鸡兔同笼问题
[专题介绍]鸡兔同笼问题是指在应用题中给出了鸡和兔子的总头数和总腿数,求鸡和兔子各有多少只的一类问题。鸡兔同笼问题在解答过程中用到假设的思路,可以假设都是兔子,这样总腿数就比实际腿数要多,多出来的腿数就是把鸡当兔子多算的,因此再除以一只鸡比一只兔子少的腿数就可以求得鸡有多少只。也可以假设成都是鸡,这样就可以求得兔有多少只。
[经典例题]例1 鸡兔同笼,头共46,足共128,鸡兔各几只?
[分析] :如果 46只都是兔,一共应有 4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚.如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚.那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了.所以,鸡的只数就是28,兔的只数是46-28=18。
解:①鸡有多少只?
(4×6-128)÷(4-2)
=(184-128)÷2
=56÷2
=28(只)
②免有多少只?
46-28=18(只)
答:鸡有28只,免有18只。
[总结]:先假设它们全是兔.于是根据鸡兔的总只数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看相差多少.每差2只脚就说明有一只鸡;将所差的脚数除以2,就可以算出共有多少只鸡.我们称这种解题方法为假设法.概括起来,解鸡兔同笼问题的基本关系式是:
鸡数=(每只兔脚数× 兔总数- 实际脚数)÷(每只兔子脚数-每只鸡的脚数)
兔数=鸡兔总数-鸡数
当然,也可以先假设全是鸡。
例2 鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?
[分析]: 这个例题与前面例题是有区别的,没有给出它们脚数的总和,而是给出了它们脚数的差.这又如何解答呢?
假设100只全是鸡,那么脚的总数是2×100=200(只)这时兔的脚数为0,鸡脚比兔脚多200只,而实际上鸡脚比兔脚多80只.因此,鸡脚与兔脚的差数比已知多了(200-80)=120(只),这是因为把其中的兔换成了鸡.每把一只兔换成鸡,鸡的脚数将增加2只,兔的脚数减少4只.那么,鸡脚与兔脚的差数增加(2+4)=6(只),所以换成鸡的兔子有120÷6=20(只).有鸡(100-20)=80(只)。
解:(2×100-80)÷(2+4)=20(只)。
100-20=80(只)。
答:鸡与兔分别有80只和20只。
例3 红英小学三年级有3个班共135人,二班比一班多5人,三班比二班少7人,三个班各有多少人?
[分析1] 我们设想,如果条件中三个班人数同样多,那么,要求每班有多少人就很容易了.由此得到启示,是否可以通过假设三个班人数同样多来分析求解。
结合下图可以想,假设二班、三班人数和一班人数相同,以一班为标准,则二班人数要比实际人数少5人.三班人数要比实际人数多7-5=2(人).那么,请你算一算,假设二班、三班人数和一班人数同样多,三个班总人数应该是多少?
解法1:
一班:[135-5+(7-5)]÷3=132÷3
=44(人)
二班:44+5=49(人)
三班:49-7=42(人)
答:三年级一班、 二班、三班分别有44人、 49人和 42人。
[分析2] 假设一、三班人数和二班人数同样多,那么,一班人数比实际要多5人,而三班要比实际人数多7人.这时的总人数又该是多少?
解法2:(135+ 5+ 7)÷3 = 147÷3 = 49(人)
49-5=44(人),49-7=42(人)
答:三年级一班、二班、三班分别有44人、49人和42人。
例4 刘老师带了41名同学去北海公园划船,共租了10条船.每条大船坐6人,每条小船坐4人,问大船、小船各租几条?
[分析] 我们分步来考虑:
①假设租的 10条船都是大船,那么船上应该坐 6×10= 60(人)。
②假设后的总人数比实际人数多了 60-(41+1)=18(人),多的原因是把小船坐的4人都假设成坐6人。
③一条小船当成大船多出2人,多出的18人是把18÷2=9(条)小船当成大船。
解:[6×10-(41+1)÷(6-4)
= 18÷2=9(条) 10-9=1(条)
答:有9条小船,1条大船。
例5 有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀),求蜻蜓有多少只?
[分析] 这是在鸡兔同笼基础上发展变化的问题.观察数字特点,蜻蜓、蝉都是6条腿,只有蜘蛛8条腿.因此,可先从腿数入手,求出蜘蛛的只数.我们假设三种动物都是6条腿,则总腿数为 6×18=108(条),所差 118-108=10(条),必然是由于少算了蜘蛛的腿数而造成的.所以,应有(118-108)÷(8-6)=5(只)蜘蛛.这样剩下的18-5=13(只)便是蜻蜓和蝉的只数.再从翅膀数入手,假设13只都是蝉,则总翅膀数1×13=13(对),比实际数少 20-13=7(对),这是由于蜻蜓有两对翅膀,而我们只按一对翅膀计算所差,这样蜻蜓只数可求7÷(2-1)=7(只).
解:①假设蜘蛛也是6条腿,三种动物共有多少条腿?
6×18=108(条)
②有蜘蛛多少只?
(118-108)÷(8-6)=5(只)
③蜻蜒、蝉共有多少只?
18-5=13(只)
④假设蜻蜒也是一对翅膀,共有多少对翅膀?1×13=13(对)
⑤蜻蜒多少只?
(20-13)÷ 2-1)= 7(只)
答:蜻蜒有7只.
参考资料:小数专业网
过桥问题(1)
1. 一列火车经过南京长江大桥,大桥长6700米,这列火车长140米,火车每分钟行400米,这列火车通过长江大桥需要多少分钟?
分析:这道题求的是通过时间。根据数量关系式,我们知道要想求通过时间,就要知道路程和速度。路程是用桥长加上车长。火车的速度是已知条件。
总路程: (米)
通过时间: (分钟)
答:这列火车通过长江大桥需要17.1分钟。
2. 一列火车长200米,全车通过长700米的桥需要30秒钟,这列火车每秒行多少米?
分析与解答:这是一道求车速的过桥问题。我们知道,要想求车速,我们就要知道路程和通过时间这两个条件。可以用已知条件桥长和车长求出路程,通过时间也是已知条件,所以车速可以很方便求出。
总路程: (米)
火车速度: (米)
答:这列火车每秒行30米。
3. 一列火车长240米,这列火车每秒行15米,从车头进山洞到全车出山洞共用20秒,山洞长多少米?
分析与解答:火车过山洞和火车过桥的思路是一样的。火车头进山洞就相当于火车头上桥;全车出洞就相当于车尾下桥。这道题求山洞的长度也就相当于求桥长,我们就必须知道总路程和车长,车长是已知条件,那么我们就要利用题中所给的车速和通过时间求出总路程。
总路程:
山洞长: (米)
答:这个山洞长60米。
和倍问题
1. 秦奋和妈妈的年龄加在一起是40岁,妈妈的年龄是秦奋年龄的4倍,问秦奋和妈妈各是多少岁?
我们把秦奋的年龄作为1倍,“妈妈的年龄是秦奋的4倍”,这样秦奋和妈妈年龄的和就相当于秦奋年龄的5倍是40岁,也就是(4+1)倍,也可以理解为5份是40岁,那么求1倍是多少,接着再求4倍是多少?
(1)秦奋和妈妈年龄倍数和是:4+1=5(倍)
(2)秦奋的年龄:40÷5=8岁
(3)妈妈的年龄:8×4=32岁
综合:40÷(4+1)=8岁 8×4=32岁
为了保证此题的正确,验证
(1)8+32=40岁 (2)32÷8=4(倍)
计算结果符合条件,所以解题正确。
2. 甲乙两架飞机同时从机场向相反方向飞行,3小时共飞行3600千米,甲的速度是乙的2倍,求它们的速度各是多少?
已知两架飞机3小时共飞行3600千米,就可以求出两架飞机每小时飞行的航程,也就是两架飞机的速度和。看图可知,这个速度和相当于乙飞机速度的3倍,这样就可以求出乙飞机的速度,再根据乙飞机的速度求出甲飞机的速度。
甲乙飞机的速度分别每小时行800千米、400千米。
3. 弟弟有课外书20本,哥哥有课外书25本,哥哥给弟弟多少本后,弟弟的课外书是哥哥的2倍?
思考:(1)哥哥在给弟弟课外书前后,题目中不变的数量是什么?
(2)要想求哥哥给弟弟多少本课外书,需要知道什么条件?
(3)如果把哥哥剩下的课外书看作1倍,那么这时(哥哥给弟弟课外书后)弟弟的课外书可看作是哥哥剩下的课外书的几倍?
思考以上几个问题的基础上,再求哥哥应该给弟弟多少本课外书。根据条件需要先求出哥哥剩下多少本课外书。如果我们把哥哥剩下的课外书看作1倍,那么这时弟弟的课外书可看作是哥哥剩下的课外书的2倍,也就是兄弟俩共有的倍数相当于哥哥剩下的课外书的3倍,而兄弟俩人课外书的总数始终是不变的数量。
(1)兄弟俩共有课外书的数量是20+25=45。
(2)哥哥给弟弟若干本课外书后,兄弟俩共有的倍数是2+1=3。
(3)哥哥剩下的课外书的本数是45÷3=15。
(4)哥哥给弟弟课外书的本数是25-15=10。
试着列出综合算式:
4. 甲乙两个粮库原来共存粮170吨,后来从甲库运出30吨,给乙库运进10吨,这时甲库存粮是乙库存粮的2倍,两个粮库原来各存粮多少吨?
根据甲乙两个粮库原来共存粮170吨,后来从甲库运出30吨,给乙库运进10吨,可求出这时甲、乙两库共存粮多少吨。根据“这时甲库存粮是乙库存粮的2倍”,如果这时把乙库存粮作为1倍,那么甲、乙库所存粮就相当于乙存粮的3倍。于是求出这时乙库存粮多少吨,进而可求出乙库原来存粮多少吨。最后就可求出甲库原来存粮多少吨。
甲库原存粮130吨,乙库原存粮40吨。
列方程组解应用题(一)
1. 用白铁皮做罐头盒,每张铁皮可制盒身16个,或制盒底43个,一个盒身和两个盒底配成一个罐头盒,现有150张铁皮,用多少张制盒身,多少张制盒底,才能使盒身与盒底正好配套?
依据题意可知这个题有两个未知量,一个是制盒身的铁皮张数,一个是制盒底的铁皮张数,这样就可以用两个未知数表示,要求出这两个未知数,就要从题目中找出两个等量关系,列出两个方程,组在一起,就是方程组。
两个等量关系是:A做盒身张数+做盒底的张数=铁皮总张数
B制出的盒身数×2=制出的盒底数
用86张白铁皮做盒身,64张白铁皮做盒底。
奇数与偶数(一)
其实,在日常生活中同学们就已经接触了很多的奇数、偶数。
凡是能被2整除的数叫偶数,大于零的偶数又叫双数;凡是不能被2整除的数叫奇数,大于零的奇数又叫单数。
因为偶数是2的倍数,所以通常用 这个式子来表示偶数(这里 是整数)。因为任何奇数除以2其余数都是1,所以通常用式子 来表示奇数(这里 是整数)。
奇数和偶数有许多性质,常用的有:
性质1 两个偶数的和或者差仍然是偶数。
例如:8+4=12,8-4=4等。
两个奇数的和或差也是偶数。
例如:9+3=12,9-3=6等。
奇数与偶数的和或差是奇数。
例如:9+4=13,9-4=5等。
单数个奇数的和是奇,双数个奇数的和是偶数,几个偶数的和仍是偶数。
性质2 奇数与奇数的积是奇数。
偶数与整数的积是偶数。
性质3 任何一个奇数一定不等于任何一个偶数。
1. 有5张扑克牌,画面向上。小明每次翻转其中的4张,那么,他能在翻动若干次后,使5张牌的画面都向下吗?
同学们可以试验一下,只有将一张牌翻动奇数次,才能使它的画面由向上变为向下。要想使5张牌的画面都向下,那么每张牌都要翻动奇数次。
5个奇数的和是奇数,所以翻动的总张数为奇数时才能使5张牌的牌面都向下。而小明每次翻动4张,不管翻多少次,翻动的总张数都是偶数。
所以无论他翻动多少次,都不能使5张牌画面都向下。
2. 甲盒中放有180个白色围棋子和181个黑色围棋子,乙盒中放有181个白色围棋子,李平每次任意从甲盒中摸出两个棋子,如果两个棋子同色,他就从乙盒中拿出一个白子放入甲盒;如果两个棋子不同色,他就把黑子放回甲盒。那么他拿多少后,甲盒中只剩下一个棋子,这个棋子是什么颜色的?
不论李平从甲盒中拿出两个什么样的棋子,他总会把一个棋子放入甲盒。所以他每拿一次,甲盒子中的棋子数就减少一个,所以他拿180+181-1=360次后,甲盒里只剩下一个棋子。
如果他拿出的是两个黑子,那么甲盒中的黑子数就减少两个。否则甲盒子中的黑子数不变。也就是说,李平每次从甲盒子拿出的黑子数都是偶数。由于181是奇数,奇数减偶数等于奇数。所以,甲盒中剩下的黑子数应是奇数,而不大于1的奇数只有1,所以甲盒里剩下的一个棋子应该是黑子。
奥赛专题 -- 称球问题
例1 有4堆外表上一样的球,每堆4个。已知其中三堆是正品、一堆是次品,正品球每个重10克,次品球每个重11克,请你用天平只称一次,把是次品的那堆找出来。
解 :依次从第一、二、三、四堆球中,各取1、2、3、4个球,这10个球一起放到天平上去称,总重量比100克多几克,第几堆就是次品球。
2 有27个外表上一样的球,其中只有一个是次品,重量比正品轻,请你用天平只称三次(不用砝码),把次品球找出来。
解 :第一次:把27个球分为三堆,每堆9个,取其中两堆分别放在天平的两个盘上。若天平不平衡,可找到较轻的一堆;若天平平衡,则剩下来称的一堆必定较轻,次品必在较轻的一堆中。
第二次:把第一次判定为较轻的一堆又分成三堆,每堆3个球,按上法称其中两堆,又可找出次品在其中较轻的那一堆。
第三次:从第二次找出的较轻的一堆3个球中取出2个称一次,若天平不平衡,则较轻的就是次品,若天平平衡,则剩下一个未称的就是次品。
例3 把10个外表上一样的球,其中只有一个是次品,请你用天平只称三次,把次品找出来。
解:把10个球分成3个、3个、3个、1个四组,将四组球及其重量分别用A、B、C、D表示。把A、B两组分别放在天平的两个盘上去称,则
(1)若A=B,则A、B中都是正品,再称B、C。如B=C,显然D中的那个球是次品;如B>C,则次品在C中且次品比正品轻,再在C中取出2个球来称,便可得出结论。如B<C,仿照B>C的情况也可得出结论。
(2)若A>B,则C、D中都是正品,再称B、C,则有B=C,或B<C(B>C不可能,为什么?)如B=C,则次品在A中且次品比正品重,再在A中取出2个球来称,便可得出结论;如B<C,仿前也可得出结论。
(3)若A<B,类似于A>B的情况,可分析得出结论。
奥赛专题 -- 抽屉原理
【例1】一个小组共有13名同学,其中至少有2名同学同一个月过生日。为什么?
【分析】每年里共有12个月,任何一个人的生日,一定在其中的某一个月。如果把这12个月看成12个“抽屉”,把13名同学的生日看成13只“苹果”,把13只苹果放进12个抽屉里,一定有一个抽屉里至少放2个苹果,也就是说,至少有2名同学在同一个月过生日。
【例 2】任意4个自然数,其中至少有两个数的差是3的倍数。这是为什么?
【分析与解】首先我们要弄清这样一条规律:如果两个自然数除以3的余数相同,那么这两个自然数的差是3的倍数。而任何一个自然数被3除的余数,或者是0,或者是1,或者是2,根据这三种情况,可以把自然数分成3类,这3种类型就是我们要制造的3个“抽屉”。我们把4个数看作“苹果”,根据抽屉原理,必定有一个抽屉里至少有2个数。换句话说,4个自然数分成3类,至少有两个是同一类。既然是同一类,那么这两个数被3除的余数就一定相同。所以,任意4个自然数,至少有2个自然数的差是3的倍数。
【例3】有规格尺寸相同的5种颜色的袜子各15只混装在箱内,试问不论如何取,从箱中至少取出多少只就能保证有3双袜子(袜子无左、右之分)?
【分析与解】试想一下,从箱中取出6只、9只袜子,能配成3双袜子吗?回答是否定的。
按5种颜色制作5个抽屉,根据抽屉原理1,只要取出6只袜子就总有一只抽屉里装2只,这2只就可配成一双。拿走这一双,尚剩4只,如果再补进2只又成6只,再根据抽屉原理1,又可配成一双拿走。如果再补进2只,又可取得第3双。所以,至少要取6+2+2=10只袜子,就一定会配成3双。
思考:1.能用抽屉原理2,直接得到结果吗?
2.把题中的要求改为3双不同色袜子,至少应取出多少只?
3.把题中的要求改为3双同色袜子,又如何?
【例4】一个布袋中有35个同样大小的木球,其中白、黄、红三种颜色球各有10个,另外还有3个蓝色球、2个绿色球,试问一次至少取出多少个球,才能保证取出的球中至少有4个是同一颜色的球?
【分析与解】从最“不利”的取出情况入手。
最不利的情况是首先取出的5个球中,有3个是蓝色球、2个绿色球。
接下来,把白、黄、红三色看作三个抽屉,由于这三种颜色球相等均超过4个,所以,根据抽屉原理2,只要取出的球数多于(4-1)×3=9个,即至少应取出10个球,就可以保证取出的球至少有4个是同一抽屉(同一颜色)里的球。
故总共至少应取出10+5=15个球,才能符合要求。
思考:把题中要求改为4个不同色,或者是两两同色,情形又如何?
当我们遇到“判别具有某种事物的性质有没有,至少有几个”这样的问题时,想到它——抽屉原理,这是你的一条“决胜”之路。
奥赛专题 -- 还原问题
【例1】某人去银行取款,第一次取了存款的一半多50元,第二次取了余下的一半多100元。这时他的存折上还剩1250元。他原有存款多少元?
【分析】从上面那个“重新包装”的事例中,我们应受到启发:要想还原,就得反过来做(倒推)。由“第二次取余下的一半多100元”可知,“余下的一半少100元”是1250元,从而“余下的一半”是 1250+100=1350(元)
余下的钱(余下一半钱的2倍)是: 1350×2=2700(元)
用同样道理可算出“存款的一半”和“原有存款”。综合算式是:
[(1250+100)×2+50]×2=5500(元)
还原问题的一般特点是:已知对某个数按照一定的顺序施行四则运算的结果,或把一定数量的物品增加或减少的结果,要求最初(运算前或增减变化前)的数量。解还原问题,通常应当按照与运算或增减变化相反的顺序,进行相应的逆运算。
【例2】有26块砖,兄弟2人争着去挑,弟弟抢在前面,刚摆好砖,哥哥赶来了。哥哥看弟弟挑得太多,就拿来一半给自己。弟弟觉得自己能行,又
从哥哥那里拿来一半。哥哥不让,弟弟只好给哥哥5块,这样哥哥比弟弟多挑2块。问最初弟弟准备挑多少块?
【分析】我们得先算出最后哥哥、弟弟各挑多少块。只要解一个“和差问题”就知道:哥哥挑“(26+2)÷2=14”块,弟弟挑“26-14=12”块。
提示:解还原问题所作的相应的“逆运算”是指:加法用减法还原,减法用加法还原,乘法用除法还原,除法用乘法还原,并且原来是加(减)几,还原时应为减(加)几,原来是乘(除)以几,还原时应为除(乘)以几。
对于一些比较复杂的还原问题,要学会列表,借助表格倒推,既能理清数量关系,又便于验算。
奥赛专题 -- 鸡兔同笼问题
例1 鸡兔同笼,头共46,足共128,鸡兔各几只?
[分析] :如果 46只都是兔,一共应有 4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚.如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚.那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了.所以,鸡的只数就是28,兔的只数是46-28=18。
解:①鸡有多少只?
(4×6-128)÷(4-2)
=(184-128)÷2
=56÷2
=28(只)
②免有多少只?
46-28=18(只)
答:鸡有28只,免有18只。
例2 鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?
[分析]: 这个例题与前面例题是有区别的,没有给出它们脚数的总和,而是给出了它们脚数的差.这又如何解答呢?
假设100只全是鸡,那么脚的总数是2×100=200(只)这时兔的脚数为0,鸡脚比兔脚多200只,而实际上鸡脚比兔脚多80只.因此,鸡脚与兔脚的差数比已知多了(200-80)=120(只),这是因为把其中的兔换成了鸡.每把一只兔换成鸡,鸡的脚数将增加2只,兔的脚数减少4只.那么,鸡脚与兔脚的差数增加(2+4)=6(只),所以换成鸡的兔子有120÷6=20(只).有鸡(100-20)=80(只)。
解:(2×100-80)÷(2+4)=20(只)。
100-20=80(只)。
答:鸡与兔分别有80只和20只。
例3 红英小学三年级有3个班共135人,二班比一班多5人,三班比二班少7人,三个班各有多少人?
[分析1] 我们设想,如果条件中三个班人数同样多,那么,要求每班有多少人就很容易了.由此得到启示,是否可以通过假设三个班人数同样多来分析求解。
结合下图可以想,假设二班、三班人数和一班人数相同,以一班为标准,则二班人数要比实际人数少5人.三班人数要比实际人数多7-5=2(人).那么,请你算一算,假设二班、三班人数和一班人数同样多,三个班总人数应该是多少?
解法1:
一班:[135-5+(7-5)]÷3=132÷3
=44(人)
二班:44+5=49(人)
三班:49-7=42(人)
答:三年级一班、 二班、三班分别有44人、 49人和 42人。
[分析2] 假设一、三班人数和二班人数同样多,那么,一班人数比实际要多5人,而三班要比实际人数多7人.这时的总人数又该是多少?
解法2:(135+ 5+ 7)÷3 = 147÷3 = 49(人)
49-5=44(人),49-7=42(人)
答:三年级一班、二班、三班分别有44人、49人和42人。
例4 刘老师带了41名同学去北海公园划船,共租了10条船.每条大船坐6人,每条小船坐4人,问大船、小船各租几条?
[分析] 我们分步来考虑:
①假设租的 10条船都是大船,那么船上应该坐 6×10= 60(人)。
②假设后的总人数比实际人数多了 60-(41+1)=18(人),多的原因是把小船坐的4人都假设成坐6人。
③一条小船当成大船多出2人,多出的18人是把18÷2=9(条)小船当成大船。
解:[6×10-(41+1)÷(6-4)
= 18÷2=9(条) 10-9=1(条)
答:有9条小船,1条大船。
㈤ 小学五年级奥数题,及答案
1、某班有40名学生,其中有15人参加数学小组,18人参加航模小组,有10人两个小组都参加。那么有多少人两个小组都不参加?
2、某班45个学生参加期末考试,成绩公布后,数学得满分的有10人,数学及语文成绩均得满分的有3人,这两科都没有得满分的有29人。那么语文成绩得满分的有多少人?
3、50名同学面向老师站成一行。老师先让大家从左至右按1,2,3,……,49,50依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转。问:现在面向老师的同学还有多少名?
4、在游艺会上,有100名同学抽到了标签分别为1至100的奖券。按奖券标签号发放奖品的规则如下:(1)标签号为2的倍数,奖2支铅笔;(2)标签号为3的倍数,奖3支铅笔;(3)标签号既是2的倍数,又是3的倍数可重复领奖;(4)其他标签号均奖1支铅笔。那么游艺会为该项活动准备的奖品铅笔共有多少支?
5、有一根长为180厘米的绳子,从一端开始每隔3厘米作一记号,每隔4厘米也作一记号,然后将标有记号的地方剪断。问绳子共被剪成了多少段?
五年级试题三答案
1,因为10人2组都参加,所以只参加数学的5人,只参加航模的8人,加上那10人就是23人,40-23=17,2个小组都不参加的17人
2,同理,数学满分10人,2科都满分的3人,于是只是数学满分的7人,45-7-29=9,这个就是语文满分的人(如果说只是语文满分的则需要减去3)
3,50÷4取整12,50÷6取整8,但是要注意,报4倍数的同时可能是6的倍数,所以还要算出4和6的公倍数,有50÷12(4和6的最小公倍数)=4(取整),所以,应该是50-12-8+4=34
4,100÷2=50,100÷3=33(取整),还是算出2和3的公倍数100÷6=16(取整),然后找出即没不被2整除,也不被3整除的数的个数100-50-33+16=28,所以,准备铅笔为50X2+33X3+28=227
5,180÷3=60,180÷4=45,但是可能2个划线划在一起,也就是要算出他们的公倍数,180÷3÷4=15,所以应该为60+45-15=90
㈥ 20道简单的五年级奥数题及答案
有奖励
20道简单的五年级奥数题及答案
急急急!!!
我来答有奖励
138******49
LV.1
聊聊关注成为第1位粉丝
1.有一些糖,每人分5块多10块;如果现有的人数增加到原人数的1.5倍,那么每人4块就少2块.问这些糖共有多少块?
【分析与解】 方法一:设开始共有x人,两种分法的糖总数不变,有5x+10=4×1.5x-2,解得x=12,所以这些糖共有12×5+10=70块.
方法二:人数增加1.5倍后,每人分4块,相当于原来的人数,每人分1.5×4=6块.
有这些糖,每人分5块多10块,每人分6块少2块,所以开始总人数为(10+2)÷(6-5)=12人,那么共有糖12×5+10=70块.
2.甲、乙两个小朋友各有一袋糖,每袋糖不到20粒.如果甲给乙一定数量的糖后,甲的糖就是乙的糖粒数的2倍;如果乙给甲同样数量的糖后,甲的糖就是乙的糖粒数的3倍.那么,甲、乙两个小朋友共有糖多少粒?
【分析与解】 由题意知糖的总数应该是3的倍数,还是4的倍数.即为12的倍数,因为两袋糖每袋都不超过20粒,所以总数不超过40粒.于是糖的总数只可能为12、24或36粒.
如果糖的总数为12的奇数倍,那么“乙给甲同样数量的糖后”,甲的糖为12÷(3+1)×3=9的奇数倍.那么在甲给乙两倍“同样的数量糖”后,甲的糖为12÷(2+1)×2=8的奇数倍.
也就是说一个奇数加上一个偶数等于偶数,显然不可能.所以糖的总数不能为12的奇数倍.
那么甲、乙两个小朋友共有的糖只能为12的偶数倍,即为24粒.
3.甲班有42名学生,乙班有48名学生.已知在某次数学考试中按百分制评卷,评卷结果各班的数学总成绩相同,各班的平均成绩都是整数,并且平均成绩都高于80分.那么甲班的平均成绩比乙班高多少分?
【分析与解】 方法一:因为每班的平均成绩都是整数,且两班的总成绩相等,所以总成绩既是42的倍数,又是48的倍数,所以为[42,48]=336的倍数.
因为乙班的平均成绩高于80分,所以总成绩应高于48×80=3840分.
又因为是按百分制评卷,所以甲班的平均成绩不会超过100分,那么总成绩应不高于42×100=4200分.
在3840~4200之间且是336的倍数的数只有4032.所以两个班的总分均为4032分.
那么甲班的平均分为4032÷42=96分,乙班的平均分为4032÷48=84分.
所以甲班的平均分比乙班的平均分高96-84=12分.
方法二:甲班平均分×42=乙班平均分×48,即甲班平均分×7=乙班平均分×8,因为7、8互质,所以甲班的平均分为某数的8倍,乙班的平均分为某数的7倍,又因为两个班的平均分均超过80分,不高于100分,所以这个数只能为12.
所以甲班的平均分比乙班的平均分高12×(8-7)=12分.
4.某乡水电站按户收取电费,具体规定是:如果每月用电不超过24度,就按每度9分钱收费;如果超过24度,超出的部分按每度2角钱收费.已知在某月中,甲家比乙家多交了电费9角6分钱(用电按整度计算),问甲、乙两家各交了多少电费?
【分析与解】 如果甲、乙两家用电均超过24度,那么他们两家的电费差应是2角钱的整数倍;
如果甲、乙两家用电均不超过24度,那么他们两家的电费差应是9分钱的整数倍.
现在9角6分既不是2角钱的整数倍,又不是9分钱的整数倍,所以甲家的用电超过了24度,乙家的用电不超过24度.
设甲家用了24+x度电,乙家用了24-y度电,有20x+9y=96,得x=3,y=4.
即甲家用了27度电,乙家用了20度电,那么乙家应交电费20×9=180分=1元8角,则甲家交了180+96=276分=2元7角6分.
即甲、乙两家各交电费2元7角6分,1元8角.
5.一小、二小两校春游的人数都是10的整数倍,出行时两校人员不合乘一辆车,且每辆车尽量坐满.现在知道,若两校都租用有14个座位的旅游车,则两校共需租用这种车72辆;若两校都租用19个座位的旅游车,则二小要比一小多租用这种车7辆.问两校参加这次春游的人数各是多少?
【分析与解】 设二小春游人数为m,一小春游人数为n.由已知乘19座面包车二小比一小多租用7辆.所以 19×6+1≤m-n≤19×8-1,即115≤m-n≤151.
又已知两校共需租用14座面包车72辆,所以 70×14+2≤m+n≤72×14,即982≤m+n≤1008.
同时已知m与n都是10的倍数,于是有
, 解得 , 另外四组因为解得m、n不是10的倍数.
经检验只有 满足.
所以,一小参加春游430人,二小参加春游570人.
6.某游客在10时15分由码头划出一条小船,他欲在不迟于13时回到码头.河水的流速为每小时1.4千米,小船在静水中的速度为每小时3千米,他每划30分钟就休息15分钟,中途不改变方向,并在某次休息后往回划.那么他最多能划离码头多远?
【分析与解】 从10时15分出发,不迟于13时必须返回,所以最多可划行2小时45分,即165分钟.165=4×30+3×15,最多可划4个30分钟,休息3个15分钟.
顺流速度为3+1.4=4.4千米/4,时;所以顺流半小时划行路程为4.4×0.5=2.2千米;
逆流速度为3-1.4=1.6千米/4,时;所以逆流半小时划行路程为1.6×0.5=0.8千米.
休息15分钟,则船顺流漂行的路程为1.4×0.25=0.35千米.
第一种情况:当开始顺流时,至少划行半小时,行驶2.2千米,而在休息的3个时问内船又顺流漂行0.35×3=1.05千米的路程,所以逆流返回时需划行2.2+1.05=3.25千米.
3.25÷1.6=2.03125小时=121.875分钟.即最少需30+15×3+121.875=196.875分钟>165分钟,来不及按时还船.不满足.
第二种情况:当开始逆流时,每逆流半小时,则行驶0.8千米,则3次逆流后,行驶了0.8×3=2.4千米,船在游客休息时顺流漂行了1.05千米,所以回划时只用划行2.4-1.05=1.35千米的路程,需1.35÷4.4≈0.3068小时≈18.41分钟.共需3×30+3×15+18.41=153.41分钟<165分钟,满足.
于是,只有第二种情况满足,此时最远的路程为休息了2次后第3次逆流所至的地点,为0.8×3-0.35×2=1.7千米.
所以,他最多能划离码头1.7千米.
7. 机械厂计划生产一批机床,原计划每天生产40台,可在预定的时间内完成任务,实际每天生产48台,结果提前4天完成任务,求这批机床有多少台?
48×[40×4÷(48-40)]=960(台)
8. 某印刷厂计划用24天装订一批书,每天装订12000本,实际提前4天完成了任务,实际比原计划每天多装订多少本?
【分析与解】12000×24÷(24-4)-12000=2400(本)
9. 甲、乙两砖厂,甲厂原存砖87500块,乙厂比甲厂多存砖4500块,某日甲厂卖出25000块,乙厂比甲厂少卖出3000块,这时哪厂存砖多?多多少块?
【分析与解】甲厂存砖:87500-25000=62500(块)
乙厂存砖:(87500+4500)-(25000-3000)=70000(块)
∴ 乙厂存砖多,多 70000-62500=7500(块)
10. 一筐苹果连筐共重45千克,卖出一半后,剩下的苹果连筐共重24千克,求原来有苹果多少千克?
【分析与解】(45-24)×2=42(千克)
11.小明上午8时骑自行车以每小时12千米的速度从A地到B地,小强上午8时40分骑自行车以每小时16千米的速度从B地到A地,两人在A、B两地的中点处相遇,A、B两地间的路程是多少千米?
【分析与解】这是一个相向而行相遇求路程的问题。但两人不是同时出发,如果能转换成同时出发,并且求出行多少小时相遇,就可以用数学课学的方法解答。
两人在两地间的路程的中点相遇,但小明比小强多行了40分钟,如果两人同时出发,相遇时,小明行的路程就比小强少12÷60×40=8(千米),就是当小强出发时,小明已经行了8千米,从8时40分起两人到两人相遇,由于小明每小时比小强少行16-12=4(千米),说明两人相遇时间是8÷4=2(小时),那么,A、B两地间的路程是8+(12+16)×2=64(千米)。
答:A、B两地间的路程是64千米。
12:甲、乙两村相距3550米,小伟从甲村步行往乙村,出发5分钟后,小强骑自行车从乙村前往甲村,经过10分钟遇见小伟。小强骑车每分钟行的比小伟步行每分钟多160米,小伟每分钟走多少米?
【分析与解】如果小强每分钟少行160米,他行的速度就和小伟步行的速度相同,这样小强10分钟就少行了160×10=1600(米),小伟(5+10)分钟和小强10分钟一共行走的路程是3550-1600=1950(米),那么小伟每分钟走的路是1950÷(5+10+10)=78(米)。
答:小伟每分钟走78米。
13:客车从东城和货车从西城同时开出,相向而行,客车每小时行44千米,货车每小时行36千米,客车到西城比货车到东城早2小时。两车开出后多少小时在途中相遇?
【分析与解】当客车到西城时,货车离东城还有2×36=72(千米),而货车每小时行的比客车少44-36=8(千米),客车行东西城间的路程用的时间是72÷8=9(小时),因此东西城相距44×9=396(千米),两车从出发到相遇用的时间是;396÷(44+36)=4.95(小时)
答:两车开出后4.95小时在途中相遇。
14:甲、乙二人同一天从北京出发沿同一条路骑车往广州,甲每天行100千米,乙第一天行70千米,以后每天都比前一天多行3千米,直到追上甲,乙出发后第几天追上甲?
【分析与解】二人同时、同地出发同向而行,但开始时,乙比甲行得慢,当乙的速度增加到与甲相同前,两人间的距离越拉越大,当乙的速度超过甲时,两人间的距离又越来越近,直到乙追上甲。
开始时,乙一天行的比甲少100-70=30(千米),以后乙每天多行3千米,到与甲速相同要经过30÷3=10(天),即前10天,甲、乙之间的距离是逐天拉大的,第11天两人速度相同,从第12天起,乙的速度开始比甲快,与甲的距离逐天拉近,所以,乙追上甲用的时间是:10×2+1=21(天)。
答:乙出发后第21天追上甲。
15:甲、乙两地相距10千米,快、慢两车都从甲地开往乙地,快车开出时,慢车已行了1.5千米,当快车到达乙地时,慢车距乙地还有1千米,那么快车在距乙地多少千米处追上慢车?
【分析与解】慢车行了1.5千米,快车才开出,而快车到达乙地时,慢车距乙地还有1千米,就是在快车行10千米的时间里,比慢车多行的路程为1.5+1=2.5(千米)。快车每行1千米比慢车多2.5÷10=0.25(千米)。
16. 有7个数,它们的平均数是18。去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下的5个数的平均数是20。求去掉的两个数的乘积。
【分析与解】7*18-6*19=126-114=12
6*19-5*20=114-100=14
去掉的两个数是12和14它们的乘积是12*14=168
17. 有七个排成一列的数,它们的平均数是 30,前三个数的平均数是28,后五个数的平均数是33。求第三个数。
【分析与解】28×3+33×5-30×7=39。
18. 有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8。问:第二组有多少个数?
【分析与解】设第二组有x个数,则63+11x=8×(9+x),解得x=3。
19.小明参加了六次测验,第三、第四次的平均分比前两次的平均分多2分,比后两次的平均分少2分。如果后三次平均分比前三次平均分多3分,那么第四次比第三次多得几分?
【分析与解】第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分。因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1(分)。
20. 妈妈每4天要去一次副食商店,每 5天要去一次百货商店。妈妈平均每星期去这两个商店几次?(用小数表示)
【分析与解】每20天去9次,9÷20×7=3.15(次)。
编辑于 2020-02-13
查看全部8个回答
数学考试题,数学题目大全,0元试听,总结高效提分方法。
值得一看的数学相关信息推荐
数学考试题,掌门1对1拥有10000+教研人员,1对1针对性教学,查缺补漏,快速提升!数学考试题,初高中在线1对1辅导,好老师1对1辅导教出好成绩。
上海掌小门教育科技..广告
掌门优课在线高二数学题目及答案辅导_一线名师在线教学
名师高二数学题目及答案辅导,全程视频互动,结合地域差异,个性化教学,2节精品小班课免费领!
上海掌小门教育科技..广告
相关问题全部
广告数学题五年级_数学冲刺高分的秘籍_名师来告诉你
数学题五年级_作业帮,紧扣当地教材,快速吃透教材重难点,短时冲刺高分必备。学完就测评孩子成绩提升看得见!
572020-06-03
20道五年级下学期奥数题(简单一点的)不要答案
第六届小学“希望杯”全国数学邀请赛一、填空题(每小题5分,共60分)1、(1 +2 +8 )÷(1 +2 +8 )= 2、奥运吉祥物中的5个“福娃”取“北京欢迎您”的谐音:贝贝、京京、欢欢、迎迎、妮妮。如果在盒子中从左向右放5个不同的“福娃”,那么,有 种不同的放法。3、有一列数:1,1,3,8,22,60,164,448……其中的前三个数是1,1,3,从第四个数起,每个数都是这个数前面两个数之和的2倍。那么,这列数中的第10个数是 4、有一排椅子有27个座位,为了使后去的人随意坐在哪个位置都有人与他相邻,则至少要先坐 人。5、一个拧紧瓶盖的瓶子里装着一些水(如图1),由图中的数据可推知瓶子的容积是 立方厘米;( 取3.14)6、某小区有一块如图2所示的梯形空地,根据图中的数据计算,空地的面积是 平方米。 7、如图3,棱长分别为1厘米,2厘米,3厘米,5厘米的四个正方体紧贴在一起,则所得到的多面体的表面积是 平方厘米。8、五年级一班共有36人,每人参加一个兴趣小组,共有A,B,C,D,E五个小组,若参加A组的有15人,参加B组的仅次于A组,参加C组、D组的人数相同。参加E组的人数最少,只有4人,那么,参加B组的有 人。 9、菜地里的西红柿获得丰收,摘了全部的 时,装满了3筐还多16千克。摘完其余部分后,又装满6筐,则共收得西红柿 千克。10、工程队修一条公路,原计划每天修720米,实际每天比原计划多修80米。因而提前3天完成任务。这条路全长 千米。11、王叔叔开车从北京到上海,从开始出发,车速即比原计划的速度提高了 ,结果提前一个半小时到达;返回时,按原计划的速度行驶280千米后,将车速提高 ,于是提前1小时40分到达北京。北京、上海两市间的路程是 千米。12、两个完全相同长方体的长、宽、高分别是5厘米、4厘米、3厘米,把它们拼在一起可组成一个新长方体,在这些长方体中,表面积最小的是 平方厘米。二、解答题(本大题共4小题,每小题15分,共60分)要求:写出推算过程13、著名的哥德巴赫猜想:“任意一个大于4的偶数都可以表示为两个质数的和”。如6=3+3,12=5+7,等。那么自然数100可以写成多少种两个不同质数和的形式?请分别写出来(100=3+97和100=97+3算作同一种形式)14、如图4(a),ABCD是一个长方形,其中阴影部分是由一副面积为100平方厘米的七巧板(图4(b))拼成。那么,长方形ABCD的面积是多少平方厘米? 15、号码分别为2005、2006、2007、2008的4名运动员进行乒乓球赛,规定每2人比赛的场数是他们号码的和被4除所得的余数。那么2008号运动员比赛了多少场?16、有一个蓄水池装了9根相同的水管,其中一根是进水管,其余8根是出水管。开始时,进水管以均匀的速度不同地向蓄水池注水。后来,想打开出水管,使池内的水全部排光。如果同时打开8根出水管,则3小时可排尽池内的水;如果仅打开5根出水管,则需6小时才能排尽池内的水。若要在4.5小时内排尽池内的水,那么应当同时打开多少根出水管第二届华博士小学数学奥林匹克网上竞赛试题及答案选择正确的答案: (1)在下列算式中加一对括号后,算式的最大值是( )。7 × 9 + 12 ÷ 3 - 2 A 75 B 147 C 89 D 90(2)已知三角形的内角和是180度.一个五边形的内角和应是( )度.A 500 B 540 C 360 D 480(3)甲乙两个数的和是15.95,甲数的小数点向右移动一位就等于乙数,那么 甲数是( ). A 1.75 B 1.47 C 1.45 D 1.95(4)一个顾客买了6瓶酒,每瓶付1.3元,退空瓶时,售货员说,每只空瓶钱比酒钱 少1.1元,顾客应退回的瓶钱是( )元.A 0.8 B 0.4 C 0.6 D 1.2(5)两数相除得3余10,被除数,除数,商与余数之和是143,这两个数分别是( ) 和( ). A 30和100 B 110和30 C 100和34 D 95和40(6) 今年爸爸和女儿的年龄和是44岁,10年后,爸爸的年龄是女儿的3倍,今年女儿是多少岁? A16 B11 C9 D10 (7)一个两位数除250,余数是37,这样的两位数是( ).A 17 B38 C 71 D 91(8)把一条细绳先对折,再把它所折成相等的三折,接着再对折,然后用剪刀在折过三次的绳中间剪一刀,那么这条绳被剪成( )段.A 13 B 12 C 14 D 15(9) 把两个表面积都是6平方厘米的正方体拼成一个长方体,这个长方体的表面积( ). A 12 B 18 C10 D11(10)一昼夜钟面上的时针和分针重叠( )次.A 23 B 12 C 20 D13(11)某车间四月份实际生产机器76台,其中原计划生产的台数比超产台数多60台, 求四月份比原计划超产多少台机器?A 16 B 8 C 10 D 12(12)一块红砖长25厘米,宽15厘米,用这样的红砖拼成一个正方形最少需要多少块? A 15 B 12 C 75 D 8 E(13)图中ABCD是长方形,已知AB=4厘米,BC=6厘米,三角形EFD的面积比三角形ABF的面积大6平方厘米,求ED=?厘米A 9 B 7 C 8 D 6 F DA BC (14)一天,甲乙丙三人去郊外钓鱼已知甲比乙多钓6条,丙钓的是甲的2 倍,比乙多钓22条,问他们三人一共钓了多少条?A 48 B 50 C 52 D 58(15)张师傅以1元钱4个苹果的价格买进苹果若干个,又以2元钱5个苹果有价格把这些苹果卖出,如果他要赚得15元钱的利润,那么他必须卖出苹果多少个?A 10 B 100 C 20 D 1602006年“希望杯”全国数学大赛(时间:90分钟 满分:120分)题 号一二其中:总 分13141516得 分 得分评卷人 一、填空题。(每题6分,共72分。) 1.计算:1+++++++++…+++…++…++=____________。2.8+88+888+…+88…8的和的个位上的数字是____________。3.有四个连续奇数的和是2008,则其中最小的一个奇数是____________。4.张阿姨把相同数量的苹果和橘子分给若干名小朋友,每名小朋友分得1个苹果和3个橘子。最后橘子分完了,苹果还剩下12个。那么一共分给了____________名小朋友。5.有这样一种算式:三个不同的自然数相乘,积是100。这样的算式有____________种。(交换因数位置的算同一种。)6.在右边的数阵中,如果按照从上往下,从左往右的顺序数数,可以知道第1个数是1,第3个数是2,第6个数是3,……那么第99个数是____________。7.一天,小慧和刘老师一起谈心。小慧问:“老师,您今年有多少岁?”刘老师回答说:“你猜猜,当我像你这么大时,你才1岁;当你到我这么大时,我就34岁了。”刘老师今年的年龄是____________岁。8.小华同学为了在“希望杯”数学大赛中取得好成绩,自己做了四份训练题(每份训练题满分为120分)。他第一份训练题得了90分,第二份训练题得了100分,那么第三份训练题至少要得____________分才能使四份训练题的平均成绩达到105分。9.某小学五年级有9名同学进入了“希望杯”数学大赛的决赛。已知他们在初赛中前3名同学的平均分比前6名同学的平均分多3分,后6名同学的平均分比后3名同学的平均分多3分。那么前3名同学的总分比后3名同学的总分多____________分。10.在右图中,已知正方形ABCD的面积是正方形EFGH面积的4倍,正方形AMEN的周长是4厘米,那么正方形ABCD的周长是____________厘米。11.一个自然数各个数位上的数字之和是15。如果它 的各个数位上的数字都不相同,那么符合条件的最大数是____________,最小数是____________。12.对自然数作如下操作:如果是偶数就除以2,如果是奇数就减去1,如此操作直到结果变成0为止。那么经过6次操作后使结果变成0的数有______个,分别是_____________________________________。得分评卷人 二、解答题。(每题12分,共48分。) 13.五名裁判员给一名体操运动员评分,去掉一个最高分和一个最低分后平均得分是9.38分。若去掉一个最高分平均得分为9.26分;若去掉一个最低分平均得分为9.46分。这名体操运动员的最高分和最低分分别是多少分?14.小狗给动物王国编一本童话故事书。 我编这本书一共用了666个数字。小狗编的这本书一共有多少页?15.学校合唱团全部是来自甲、乙、丙三个班的同学,其中来自甲、乙两班的同学共有60人。合唱团中不是甲班的同学有100人,不是乙班的同学有90人。问:(1)合唱团中来自甲、乙两班的同学各有多少人?(2)合唱团的同学一共有多少人?16.下面是一些“神秘等式”。式中的“+”、“-”、“×”、“÷”等运算符号的意义都与普通的用法相同,但0、1、2、3、……、9等数字所代表的意义则与普通的不同。① 1×5=1 ② 7×2=96 ③ 99-5=3④ 83÷4=4 ⑤ 5×5…×5=6 ⑥ 9+(7×8)=97(1)请你破解出这些“神秘等式”中的秘密,找出其中每个数字所代表的普通意义。(2)普通意义的2006用“神秘等式”中数字所代表的意义来表示,怎样表示?(3)如果采用“神秘等式”中数字所代表的意义,那么,60+06等于多少?
1 浏览560
求,,,20道小学五年级的奥数题及答案!
1.甲乙丙三人同时从同一地点出发沿同一路线追赶前面的小明;他们三人分别用9分,15分,20分追上小明,已知甲每小时行24千米,以每小时行20千米,求丙每小时行多少千米? 甲9分追上时行走了24*9/60=3.6,乙9分时行走了20*9/60=3,说明在9分时,乙和小明距离为0.6,15分时乙追上,用了6分追了0.6千米,说明乙比小明每分多走0.1千米,乙速度为20,则小明为14千米每小时,则设丙速度为x 9/60*x+11/60*(x-14)=3.6 x=18.5(千米每小时) 2.甲乙两人同时从山脚开始爬山,到达山顶后就立即下山,甲乙两人下山的速度都是各自上山速度的二倍,嫁到山顶是一句山顶还有500米,甲回到山脚是乙刚好下到半山腰,求从山脚到山顶的路程。 甲乙两人下山的速度都是各自上山速度的二倍,甲到山顶时乙距山顶还有500米,甲到山脚时乙距离山脚距离为500*(1+2)=1500米。 甲回到山脚是乙刚好下到半山腰,所以,从山脚到山顶的路程为3000米 3.甲一分钟能洗3个盘子或9个碗,乙一分钟能洗2个盘子或7个碗,甲乙两人合作,20分钟洗了134个盘子和碗,问洗了几个盘子几个碗? 设甲乙各用x、y分钟洗盘子,则 3x+9(20-x)+2y+7(20-y)=134 6x+5y=186 x<=20,y<=20 x=16, y=18 所以,盘子=16*3+18*2=84个,碗=4*9+2*7=50个 4.全班有30名学生,其中17人会骑自行车,16人会游泳,11人会滑冰,
㈦ 小学五年级奥数题库及答案
(1)两个数的和应是47.9,小明计算是不小心把一个加数的小数点向右移动了一位,这样加得的和是212.6。这两个数原来各是多少?
已解决问题 收藏 小学五年级数学题标签:小学,小学 五年,数学题 两个数的和应是47.9,小明计算是不小心把一个加数的小数点向右移动了一位,这样加得的和是212.6。这两个数原来各是多少?
要分析和算式
匿名 回答:5 人气:6 解决时间:2009-08-12 11:47 检举 小数点向右移动一位,原来的数就扩大10倍,比原来多了9倍.
(212.6-47.9)÷ 9
=164.7÷ 9
=18.3
47.9-18.3=29.6
答:数原来各是18.3、29.6。
(2)某商品编号是一个三位数.现有五个三位数:873\765\123\364\925.其中每一个数与商品编号恰好在同一个数位上有一个相同数字,这个商品的编号是多少?
(3)一次考试满分100分,5位同学的平均分是90分,且各人得分是不相同的整数,已知得分最少的人得了75分.那么,第三名同学至少得了多少分?
90× 5=450
450-75=375
375-100-99=176
176-87=89
答:第三名同学至少得了89分.(第一名同学得了100分,第二名同学得了99分,第四名同学得了87分第五名同学得了75分)
㈧ 五年级下册奥数题及答案
小学五年级奥数题——速算与巧算
在日常生活和解答数学问题时,经常要进行计算,在数学课里我们学习了一些简便计算的方法,但如果善于观察、勤于思考,计算中还能找到更多的巧妙的计算方法,不仅使你能算得好、算得快,还可以让你变得聪明和机敏。
例1:计算:9.996+29.98+169.9+3999.5
解:算式中的加法看来无法用数学课中学过的简算方法计算,但是,这几个数每个数只要增加一点,就成为某个整十、整百或整千数,把这几个数“凑整”以后,就容易计算了。当然要记住,“凑整”时增加了多少要减回去。
9.996+29.98+169.9+3999.5
=10+30+170+4000-(0.004+0.02+0.1+0.5)
=4210-0.624
=4209.376
例2:计算:1+0.99-0.98-0.97+0.96+0.95-0.94-0.93+…+0.04+0.03-0.02-0.01
解:式子的数是从1开始,依次减少0.01,直到最后一个数是0.01,因此,式中共有100个数而式子中的运算都是两个数相加接着减两个数,再加两个数,再减两个数……这样的顺序排列的。
由于数的排列、运算的排列都很有规律,按照规律可以考虑每4个数为一组添上括号,每组数的运算结果是否也有一定的规律?可以看到把每组数中第1个数减第3个数,第2个数减第4个数,各得0.02,合起来是0.04,那么,每组数(即每个括号)运算的结果都是0.04,整个算式100个数正好分成25组,它的结果就是25个0.04的和。
1+0.99-0.98-0.97+0.96+0.95-0.94-0.93+…+0.04+0.03-0.02-0.01
=(1+0.99-0.98-0.97)+(0.96+0.95-0.94-0.93)+…+(0.04+0.03-0.02-0.01)
=0.04×25
=1
如果能够灵活地运用数的交换的规律,也可以按下面的方法分组添上括号计算:
1+0.99-0.98-0.97+0.96+0.95-0.94-0.93+…+0.04+0.03-0.02-0.01
=1+(0.99-0.98-0.97+0.96)+(0.95-0.94-0.93+0.92)+…+(0.03-0.02-0.01)
=1
例3:计算:0.1+0.2+0.3+…+0.8+0.9+0.10+0.11+0.12+…+0.19+0.20
解:这个算式的数的排列像一个等差数列,但仔细观察,它实际上由两个等差数列组成,0.1+0.2+0.3+…+0.8+0.9是第一个等差数列,后面每一个数都比前一个数多0.1,而0.10+0.11+0.12+…+0.19+0.20是第二个等差数列,后面每一个数都比前一个数多0.01,所以,应分为两段按等差数列求和的方法来计算。
0.1+0.2+0.3+…+0.8+0.9+0.10+0.11+0.12+…+0.19+0.20
=(0.1+0.9)×9÷2+(0.10+0.20)×11÷2
=4.5+1.65
=6.15
例4:计算:9.9×9.9+1.99
解:算式中的9.9×9.9两个因数中一个因数扩大10倍,另一个因数缩小10倍,积不变,即这个乘法可变为99×0.99;1.99可以分成0.99+1的和,这样变化以后,计算比较简便。
9.9×9.9+1.99
=99×0.99+0.99+1
=(99+1)×0.99+1
=100
例5:计算:2.437×36.54+243.7×0.6346
解:虽然算式中的两个乘法计算没有相同的因数,但前一个乘法的2.437和后一个乘法的243.7两个数的数字相同,只是小数点的位置不同,如果把其中一个乘法的两个因数的小数点按相反方向移动同样多位,使这两个数变成相同的,就可以运用乘法分配律进行简算了。
2.437×36.54+243.7×0.6346
=2.437×36.54+2.437×63.46
=2.437×(36.54+63.46)
=243.7
*例6:计算:1.1×1.2×1.3×1.4×1.5
解:算式中的几个数虽然是一个等差数列,但算式不是求和,不能用等差数列求和的方法来计算这个算式的结果。
平时注意积累计算经验的同学也许会注意到7、11和13这三个数连乘的积是1001,而一个三位数乘1001,只要把这个三位数连续写两遍就是它们的积,例如578×1001=578578,这一题参照这个方法计算,能巧妙地算出正确的得数。
1.1×1.2×1.3×1.4×1.5
=1.1×1.3×0.7×2×1.2×1.5
=1.001×3.6
=3.6036
计算下列各题并写出简算过程:
1.5.467+3.814+7.533+4.186
2.6.25×1.25×6.4
3.3.997+19.96+1.9998+199.7
4.0.1+0.3+…+0.9+0.11+0.13+0.15+…+0.97+0.99
5.199.9×19.98-199.8×19.97
6.23.75×3.987+6.013×92.07+6.832×39.87
*7.20042005×20052004-20042004×20052005
*8.(1+0.12+0.23)×(0.12+0.23+0.34)-(1+0.12+0.23+0.34)×(0.12+0.23)
计算下列各题并写出简算过程:
1.6.734-1.536+3.266-4.464
2.0.8÷0.125
3.89.1+90.3+88.6+92.1+88.9+90.8
4.4.83×0.59+0.41×1.59-0.324×5.9
5.37.5×21.5×0.112+35.5×12.5×0.112
五年级下册数奥试题
姓名 班级 得分
用简便方法计算下面各题。
20.36-7.98-5.02-4.36 117.8÷2.3-4.88÷023
9.56×4.18-7.34×4.18-0.26×4.18
1、有123名小朋友,把他们分成12人一组或7人一组,恰好分完,而无剩余。又知总的组数在15组左右。那么,12人的多少组?7人的有多少组?
2、张妮5次考试的平均成绩是88.5分,每次考试的满分是100分,为了使平均成绩尽快达到92分以上,那么张妮要再考多少次满分?
3、父亲与三个儿子年龄和是108岁,若再过6年,父亲的年龄正好等于三个儿子年龄的和。问父亲现年多少岁?
4、加工一批零件,原计划每天加工80个,正好按期完成任务。由于改进了生产技术,实际每天加工了100个,这样,不仅提前4天完成加工任务,而且还多加工了100个。他们实际加工零件多少个?
5、一个水池能装8吨水,水池里装有一个进水管和一个出水管,两管齐开,20分钟能把一池水放完。已知进水管每分钟往池里进水0.8吨,求出水管每分钟放水多少吨?
6、将一根电线截成15段。一部分每段长8米,另一部分每段长5米。长8米的总长度比长5米的总长度多3米。这根铁丝全长多少米?
7、把一条大鱼分成鱼头、鱼身、鱼尾三部分,鱼尾重4千克,鱼头的重量等于鱼尾的重量加鱼身一半的重量,而鱼身的重量等于鱼头的重量加上鱼尾的重量。这条大鱼重多少千克?
8、体育室买回5个足球和4个篮球需要付287元,买2个足球和3个篮球需要付154元。那么买一个足球、一个篮球各付多少元?
9、有5元的和10元的人民币共14张,共100元。问5元币和10元币各多少张?
10、某人从A村翻过山顶到B村,共行30.5千米,用了7小时,他上山每小时行4千米,下山每小时行5千米。如果上下山速度不变,从B村沿原路返回A村,要用多少时间?
11、甲、乙两人同时从A、B两地相向而行,甲骑车每小时行16千米,乙骑摩托车每小时行65千米。甲离出发点62.4千米处与乙相遇。AB两地相距多少千米?
12、乌龟与兔子赛跑,兔子每分钟跑35千米,乌龟每分钟爬10米,途中兔子睡了一觉,醒来时发现乌龟已经在自己前50米。问兔子还需要多少长时间才能追上乌龟?
13、在一个600米长的环形跑道上,兄妹两人同时在同一起点都按顺时针方向跑步,每隔12分钟相遇一次。若两人速度不变,还是在原出发点同时出发,哥哥改为按逆时针方向跑,则每隔4分钟相遇一次。两人跑一圈各要几分钟?
14、静水中,甲乙两船的速度分别是每小时20千米和16千米,两船先后自某港顺水开出,乙比甲早出发2小时,若水速是每小时行4千米,甲开出后几小时追上乙?
15、一列火车通过440米的桥需要40秒,以同样的速度穿过310米的遂道需要30秒,这列火车的速度和本身长各是多少?
16、一个书架分上、下两层,上层的书的本数是下层的4倍。从下层拿5本放入上层后,上层的本数正好是下层的5倍。原来下层有几本书?
17、有1800千克的货物,分装在甲、乙、丙三辆车上。已知甲车装的千克数正好是乙车的2倍,乙车比丙车多装200千克。甲、乙、丙三辆车各
包含与排除
1、某班有40名学生,其中有15人参加数学小组,18人参加航模小组,有10人两个小组都参加。那么有多少人两个小组都不参加?
解:两个小组共有(15+18)-10=23(人),
都不参加的有40-23=17(人)
答:有17人两个小组都不参加。
--
2、某班45个学生参加期末考试,成绩公布后,数学得满分的有10人,数学及语文成绩均得满分的有3人,这两科都没有得满分的有29人。那么语文成绩得满分的有多少人?
解:45-29-10+3=9(人)
答:语文成绩得满分的有9人。
3、50名同学面向老师站成一行。老师先让大家从左至右按1,2,3,……,49,50依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转。问:现在面向老师的同学还有多少名?
解:4的倍数有50/4商12个,6的倍数有50/6商8个,既是4又是6的倍数有50/12商4个。
4的倍数向后转人数=12,6的倍数向后转共8人,其中4人向后,4人从后转回。
面向老师的人数=50-12=38(人)
答:现在面向老师的同学还有38名。
4、在游艺会上,有100名同学抽到了标签分别为1至100的奖券。按奖券标签号发放奖品的规则如下:(1)标签号为2的倍数,奖2支铅笔;(2)标签号为3的倍数,奖3支铅笔;(3)标签号既是2的倍数,又是3的倍数可重复领奖;(4)其他标签号均奖1支铅笔。那么游艺会为该项活动准备的奖品铅笔共有多少支?
解:2的倍数有100/2商50个,3的倍数有100/3商33个,2和3人倍数有100/6商16个。
领2支的共准备(50—16)*2=68,领3支的共准备(33—16)*3=51,重复领的共准备16*(2+3)=80,其余准备100-(50+33-16)*1=33
共需要68+51+80+33=232(支)
答:游艺会为该项活动准备的奖品铅笔共有232支。
5、有一根长为180厘米的绳子,从一端开始每隔3厘米作一记号,每隔4厘米也作一记号,然后将标有记号的地方剪断。问绳子共被剪成了多少段?
解:3厘米的记号:180/3=60,最后到头了不划,60-1=59个
4厘米记号:180/4=45,45-1=44个,重复的记号:180/12=15,15-1=14个,所以绳子中间实际有记号59+44-14=89个。
剪89次,变成89+1=90段
答:绳子共被剪成了90段。
6、东河小学画展上展出了许多幅画,其中有16幅画不是六年级的,有15幅画不是五年级的。现知道五、六年级共有25幅画,那么其他年级的画共有多少幅?
解:1,2,3,4,5年级共有16,1,2,3,4,6年级共有15,5,6年级共有25
所以总共有(16+15+25)/2=28(幅),1,2,3,4年级共有28-25=3(幅)
答:其他年级的画共有3幅。
---
7、有若干卡片,每张卡片上写着一个数,它是3的倍数或4的倍数,其中标有3的倍数的卡片占2/3,标有4的倍数的卡片占3/4,标有12的倍数的卡片有15张。那么,这些卡片一共有多少张?
解:12的倍数有2/3+3/4-1=5/12,15/(5/12)=36(张)
答:这些卡片一共有36张。
--
--
8、在从1至1000的自然数中,既不能被5除尽,又不能被7除尽的数有多少个?
解:5的倍数有1000/5商200个,7的倍数有1000/7商142个,既是5又是7的倍数有1000/35商28个。5和7的倍数共有200+142-28=314个。
1000-314=686
答:既不能被5除尽,又不能被7除尽的数有686个。
---
9、五年级三班学生参加课外兴趣小组,每人至少参加一项。其中有25人参加自然兴趣小组,35人参加美术兴趣小组,27人参加语文兴趣小组,参加语文同时又参加美术兴趣小组的有12人,参加自然同时又参加美术兴趣小组的有8人,参加自然同时又参加语文兴趣小组的有9人,语文、美术、自然3科兴趣小组都参加的有4人。求这个班的学生人数。
解:25+35+27-(8+12+9)+4=62(人)
答:这个班的学生人数是62人。
-- --
10、如图8-1,已知甲、乙、丙3个圆的面积均为30,甲与乙、乙与丙、甲与丙重合部分的面积分别为6,8,5,而3个圆覆盖的总面积为73。求阴影部分的面积。
解:甲、乙、丙三者重合部分面积=73+(6+8+5)-3*30=2
阴影部分面积=73-(6+8+5)+2*2=58
答:阴影部分的面积是58。
________________________________________
-- 作者:abc
-- 发布时间:2004-12-12 15:45:02
--
11、四年级一班有46名学生参加3项课外活动。其中有24人参加了数学小组,20人参加了语文小组,参加文艺小组的人数是既参加数学小组又参加文艺小组人数的3.5倍,又是3项活动都参加人数的7倍,既参加文艺小组也参加语文小组的人数相当于3项都参加的人数的2倍,既参加数学小组又参加语文小组的有10人。求参加文艺小组的人数。
解:设参加文艺小组的人数是X,24+20+X-(X/305+2/7*X+10)+X/7=46,解得X=21
答:参加文艺小组的人数是21人。
________________________________________
-- 作者:abc
-- 发布时间:2004-12-12 15:45:43
--
12、图书室有100本书,借阅图书者需要在图书上签名。已知在100本书中有甲、乙、丙签名的分别有33,44和55本,其中同时有甲、乙签名的图书为29本,同时有甲、丙签名的图书有25本,同时有乙、丙签名的图书有36本。问这批图书中最少有多少本没有被甲、乙、丙中的任何一人借阅过?
解:三个人一共看过的书的本数是:甲+乙+丙-(甲乙+甲丙+乙丙)+甲乙丙=33+44+55-(29+25+36)+甲乙丙=42+甲乙丙,当甲乙丙最大时,三人看过的书最多,因为甲、丙共同看过的书只有25本,比甲乙和乙丙共同看到的都少,所以甲乙丙最多共同看过25本。
三人总共看过最多有42+25=67(本),都没看过的书最少有100-67=33(本)
答:这批图书中最少有33本没有被甲、乙、丙中的任何一人借阅过。
________________________________________
-- 作者:abc
-- 发布时间:2004-12-12 15:46:53
--
13、如图8-2,5条同样长的线段拼成了一个五角星。如果每条线段上恰有1994个点被染成红色,那么在这个五角星上红色点最少有多少个?
解:五条线上右发有5*1994=9970个红点,如果所有交叉点上都放一个红点,则红点最少,这五条线有10个交叉点,所以最少有9970-10=9960个红点
答:在这个五角星上红色点最少有9960个。
此主题相关图片如下:
________________________________________
-- 作者:abc
-- 发布时间:2004-12-12 15:47:12
--
14、甲、乙、丙同时给100盆花浇水。已知甲浇了78盆,乙浇了68盆,丙浇了58盆,那么3人都浇过的花最少有多少盆?
解:甲和乙必有78+68-100=46盆共同浇过,丙有100-58=42没浇过,所以3人都浇过的最少有46-42=4(盆)
答:3人都浇过的花最少有4盆。
________________________________________
-- 作者:abc
-- 发布时间:2004-12-12 15:52:54
--
15、甲、乙、丙都在读同一本故事书,书中有100个故事。每个人都从某一个故事开始,按顺序往后读。已知甲读了75个故事,乙读了60个故事,丙读了52个故事。那么甲、乙、丙3人共同读过的故事最少有多少个?
解:乙和丙共同读过的故事至少有60+52-100=12(个),甲无论从哪里开始都必定要读这12个故事。
答:甲、乙、丙3人共同读过的故事最少有12个。
________________________________________
-- 作者:abc
-- 发布时间:2004-12-12 15:53:43
--
15、甲、乙、丙都在读同一本故事书,书中有100个故事。每个人都从某一个故事开始,按顺序往后读。已知甲读了75个故事,乙读了60个故事,丙读了52个故事。那么甲、乙、丙3人共同读过的故事最少有多少个?
解:乙和丙共同读过的故事至少有60+52-100=12(个),甲无论从哪里开始都必定要读这12个故事。
答:甲、乙、丙3人共同读过的故事最少有12个。
________________________________________
-- 作者:cxcbz
-- 发布时间:2004-12-13 21:53:23
--
以下是引用abc在2004-12-12 15:42:17的发言:
8、在从1至1000的自然数中,既不能被5除尽,又不能被7除尽的数有多少个?
解:5的倍数有1000/5商200个,7的倍数有1000/7商142个,既是5又是7的倍数有1000/35商28个。5和7的倍数共有200+142-28=314个。
1000-314=686
答:既不能被5除尽,又不能被7除尽的数有686个。
题中的除尽应该是整除吧.
________________________________________
-- 作者:cxcbz
-- 发布时间:2004-12-13 21:56:00
--
以下是引用abc在2004-12-12 15:45:02的发言:
11、四年级一班有46名学生参加3项课外活动。其中有24人参加了数学小组,20人参加了语文小组,参加文艺小组的人数是既参加数学小组又参加文艺小组人数的3.5倍,又是3项活动都参加人数的7倍,既参加文艺小组也参加语文小组的人数相当于3项都参加的人数的2倍,既参加数学小组又参加语文小组的有10人。求参加文艺小组的人数。
解:设参加文艺小组的人数是X,24+20+X-(X/305+2/7*X+10)+X/7=46,解得X=21
答:参加文艺小组的人数是21人。
1. 四年级三班订阅《少年文摘》的有19人,订阅《学与玩》的有24人,两种都订的有13人。问订阅《
少年文摘》或《学与玩》的有多少人?
2. 幼儿园有58人学钢琴,43人学画画,37人既学钢琴又学画画,问只学钢琴和只学画画的分别有多少
人?
3. 1至100的自然数中:
(1)是2的倍数又是3的倍数的数有多少个?
(2)是2的倍数或是3的倍数的数有多少个?
(3)是2的倍数但不是3的倍数的数有多少个?
4. 某班数学、英语期中考试的成绩统计如下:英语得100分的有12人,数学得100分的有10人,两门功
课都得100分的有3人,两门功课都未得100分的有26人。这个班共有学生多少人?
5. 全班50人,会骑车的有32人,会滑旱冰的有21人,两样都会的有8人,求两样都不会的有多少人?
6. 一个班有学生42人,参加体育队的有30人,参加文艺队的有25人,并且每人至少参加一个队。这个
班两队都参加的有多少人?
【试题答案】
1. 四年级三班订阅《少年文摘》的有19人,订阅《学与玩》的有24人,两种都订的有13人。问订阅《少年文摘》
或《学与玩》的有多少人?
19 + 24—13 = 30(人)
答:订阅《少年文摘》或《学与玩》的有30人。
2. 幼儿园有58人学钢琴,43人学画画,37人既学钢琴又学画画,问只学钢琴和只学画画的分别有多少
人?
只学钢琴人数:58—37 = 21(人)
只学画画人数:43—37 = 6(人)
3. 1至100的自然数中:
(1)是2的倍数又是3的倍数的数有多少个?
既是3的倍数又是2的倍数,一定是6的倍数
100÷6 = 16……4
所以,既是2的倍数又是3的倍数有16个
(2)是2的倍数或是3的倍数的数有多少个?
100÷2 = 50,100÷3 = 33……1
50 + 33—16 = 67(个)
所以,是2的倍数或是3的倍数的数有67个。
(3)是2的倍数但不是3的倍数的数有多少个?
50—16 = 34(个)
答:是2的倍数但不是3的倍数的数有34个。
4. 某班数学、英语期中考试的成绩统计如下:英语得100分的有12人,数学得100分的有10人,两门功
课都得100分的有3人,两门功课都未得100分的有26人。这个班共有学生多少人?
12 + 10—3 + 26 = 45(人)
答:这个班共有学生45人。
5. 全班50人,会骑车的有32人,会滑旱冰的有21人,两样都会的有8人,求两样都不会的有多少人?
50—(30 + 21—8)= 7(人)
答:两样都不会的有7人。
6. 一个班有学生42人,参加体育队的有30人,参加文艺队的有25人,并且每人至少参加一个队。这个
班两队都参加的有多少人?
30 + 25—42 = 13(人)
答:这个班两队都参加的有13人。
某班同学参加升学考试,得满分的人数如下:数学20人,语文20人,英语20人,数学、英语两科满分者8人,数学、语文两科满分者7人,语文、英语两科满分者9人,三科都没得满分者3人.问这个班最多多少人?最少多少人?
分析与解 如图6,数学、语文、英语得满分的同学都包含在这个班中,设这个班有y人,用长方形表示.A、B、C分别表示数学、语文、英语得满分的人,由已知有A∩C=8,A∩B=7,B∩C=9.A∩B∩C=X.
由容斥原理有
Y=A+B+c-A∩B-A∩C-B∩C+A∩B∩C+3
即y=20+20+20-7-8-9+x+3=39+x。
以下我们考察如何求y的最大值与最小值。
由y=39+x可知,当x取最大值时,y也取最大值;当x取最小值时,y也取最小值x是数学、语文、英语三科都得满分的人数,因而他们中的人数一定不超过两科得满分的人数,即x≤7,x≤8且x≤9,由此我们得到x≤7.另一方面数学得满分的同学有可能语文都没得满分,也就是说没有三科都得满分的同学,故x≥0,故0≤x≤7。
当x取最大值7时,y有最大值39+7=46,当x取最小值0时,y有最小值39+0=39。
答:这个班最多有46人,最少有39人。
题1、营业员把一张5元的人民币和一张5角的人民币换成了28张票面为1元和1角的人民币,求换来的这两种人民币各多少张?
题2、有一元,二元,五元的人民币共50张,总面值为116元,已知一元的比二元的多2张,问三种面值的人民币各多少张?
题3、有3元,5元和7元的电影票400张,一共价值1920元,其中7元和5元的张数相等,三种价格的电影票各多少张?
题4、用大、小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱,现在有18车货,价值3024元,若每箱便宜2元,则这批货价值2520元,问:大、小汽车各有多少辆?
题5、一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次,平均每天运14次,这几天中有几天是雨天?
题6、运来一批西瓜,准备分两类卖,大的每千克0.4元,小的每千克0.3元,这样卖这批西瓜共值290元,如果每千克西瓜降价0.05元,这批西瓜只能卖250元,问:有多少千克大西瓜?
题7、甲、乙二人投飞镖比赛,规定每中一次记10分,脱靶每次倒扣6分,两人各投10次,共得152分,其中甲比乙多得16分,问:两人各中多少次?
题8、某次数学竞赛共有20条题目,每答对一题得5分,错了一题不仅不得分,而且还要倒扣2分,这次竞赛小明得了86分,问:他答对了几道题?
1.解:设有1元的x张,1角的(28-x)张
x+0.1(28-x)=5.5
0.9x=2.7
x=3
28-x=25
答:有一元的3张,一角的25张。
2.解:设1元的有x张,2元的(x-2)张,5元的(52-2x)
x+2(x-2)+5(52-2x)=116
x+2x-4+260-10x=116
7x=140
x=20
x-2=18
52-2x=12
答:1元的有20张,2元18张,5元12张。
3.解:设有7元和5元各x张,3元的(400-2x)张
7x+5x+3(400-2x)=1920
12x+1200-6x=1920
6x=720
x=120
400-2x=160
答:有3元的160张,7元、5元各120张。
4.解:货物总数:(3024-2520)÷2=252(箱)
设有大汽车x辆,小汽车(18-x)辆
18x+12(18-x)=252
18x+216-12x=252
6x=36
x=6
18-x=12
答:有大汽车6辆,小汽车12辆。
5.解:天数=112÷14=8天
设有x天是雨天
20(8-x)+12x=112
160-20x+12x=112
8x=48
x=6
答:有6天是雨天。
6.解:西瓜数:(290-250)÷0.05=800千克
设有大西瓜x千克
0.4x+0.3(800-x)=290
0.4x+240-0.3x=290
0.1x=50
x=500
答:有大西瓜500千克。
7.解:甲得分:(152+16)÷2=84分
乙:152-84=68分
设甲中x次
10x-6(10-x)=84
10x-60+6x=84
16x=144
x=9
设乙中y次
10y-6(10-y)=68
16y=128
y=8
答:甲中9次,乙8次。
8.解:设他答对x道题
5x-2(20-x)=86
5x-40+2x=86
7x=126
x=18
答:他答对了18题。