❶ 小学五年级奥数怎么提高
新五年级的学生已经正式成为小升初的预备军。俗话说“好钢用在刀刃上”,“知己知彼,方能百战百胜”,到了五年级,我们面对着怎么样的奥数学习形式?我们如何学习奥数最有效呢?学而思李海君老师在和家长互动时表达了自己的观点,并给新五年级的学生们提出了几点建议。
学习内容的变化: 范围扩大,难度加深,竞赛成绩意义重大
总结近年来的小升初,五年级的成绩,尤其是五升六的成绩,对孩子的小升初是有一定影响的,因为从五年级开始,奥数的学习的重点知识和难点逐渐和孩子们见面,这些知识点不仅是历年来小升初数学考察的重点,更是孩子展现实力的最好证明。较之四年级,五年级的专题增加了数论,几何问题,比例解行程问题等,这些知识点使得我们的孩子开始对奥数学习力不从心,拿不出学习该有的节奏。另外,在难度上的加深,梯度也十分明显,孩子一定要在学习上花更多的工夫。
在竞赛上,五年级,尤其是五年级的下学期,各类竞赛接踵而至,证书的公信力也逐渐提升——学而思杯、华杯赛、希望杯、走美,等等。应该在这方面予以重视。
学习方法的变化:善于总结,稳扎稳打,力争突破
进入五年级,一定要明确这是孩子学习的关键,因为六年级我们的学习任务就是小升初复习,因此五年级时如果基础知识不够扎实的话,那我们到小升初时也会力不从心。
在五年级上学期,这是一个完全接纳新知识的阶段,数论,分数百分数,比例问题等重点,难点内容的增加,对我们这个阶段的要求就是总结知识点,而不是传统的“听课,完成作业”。面对有一定学习难度的内容,我们留下的问题会很多很多,题目的变化也会多种多样,我们要总结老师讲的知识点,总结做过的题型,在总结的过程中找到知识点的联系,在总结的过程中找出不同,总结越多,思考越多,超越也就会越多。
五年级上的建议:有自己的归纳整理本,坚持每日做一题,懂一题,将错题滚动练习,将知识点网状化,不懂就问,举一反三。
❷ 适合五年级孩子看得数论书
这是不是有些操之过急了?等他到初中如果悟性好的话适合看数论
❸ 求小学五年级下学期数学教材中第二章第一节因数与倍数的教材分析
(二)教材说明和教学建议
教材说明
通过四年多的数学学习,学生已经掌握了大量的整数知识(包括整数的认识、整数四则运算),本单元让学生在前面所学的整数知识基础上,进一步探索整数的性质。本单元涉及到的因数、倍数、质数、合数以及第四单元中的最大公因数、最小公倍数都属于初等数论的基本内容。数论是一个历史悠久的数学分支,它是研究整数的性质的一门学问,以严格、简洁、抽象著称。数学一直被认为是“科学的皇后”,而数论则更被誉为“数学的皇后”,可见数论在数学中的地位。本单元的知识作为数论知识的初步,一直是小学数学教材中的重要内容。通过这部分内容的学习,可以使学生获得一些有关整数的知识,另一方面,有助于发展他们的抽象思维。
在数论中,数的整除性理论又是最为基本的理论,本单元的所有概念都是建立在数的整除性的基础之上。对于任意整数a、b,都存在整数n、r,使b=na+r(其中r<a),当r=0时,我们就说b能被a整除(或a能整除b),此时,b=na。其他的一些概念,如因数、倍数等,都是以此为基础的。
在以往的数学教材中,也一直把“数的整除”概念编排在这一单元的起始位置,再把因数(以往的教材中称为约数),倍数,2、5、3的倍数的特征(以往的教材称为能被2、5、3整除的数的特征),质数,合数,分解质因数,最大公因数(以往的教材中称为最大公约数),最小公倍数等内容共同编排在后面,合为一个单元。这样编排,虽然突显了以上这些概念的紧密逻辑关系,但也形成了同一单元内概念多而集中、抽象程度过高的现象,学生在学习时经常出现概念混淆、理解困难的问题。因此,与以往教材相比,本套实验教材在编写时,对这部分内容进行了以下几方面的调整。
1. 我们在本单元研究的都是整除现象,因此,可以说整除概念是贯穿这部分教材的一条主线。但“整除”这一词汇是否必须出现呢?让学生大量叙述“×能被×整除”“×能整除×”是否必要?签于学生在前面已经具备了大量的区分整除与有余数除法的知识基础,对整除的含义已经有了比较清楚的认识,不出现整除的定义并不会对学生理解其他概念产生任何影响。因此,本套教材中删去了“整除”的数学化定义,而是借助整除的模式na=b直接引出因数和倍数的概念。
2. 在以往的教材中,由于求最大公因数、最小公倍数时,采用的方法是唯一的、固定的,也就是用短除法分解质因数的方法。因此,作为求最大公因数、最小公倍数的必要基础,“分解质因数”一直作为必学内容编排。而在本册教材中,由于允许学生采用多样的方法求最大公因数和最小公倍数,分解质因数也失去了其不可或缺的作用,同时,也是为了减少这一单元的理论概念,教材不再把它作为正式教学内容,而是作为一个补充知识,安排在“你知道吗?”中进行介绍。
3. 公因数、最大公因数和公倍数、最小公倍数概念的建立是以因数、倍数的概念为基础的,也是为后面学习约分(需要尽快找出分子、分母的公因数)、通分(需要尽快找出两个分数分母的公倍数)做准备的,在整个知识链中起着承上启下的作用。这两个内容可以集中编排在本单元,也可以分散编排在约分、通分的前面。考虑到本单元概念较多,抽象程度高,本套教材把这两部分内容分散编排在第四单元,也更加突出了它们的应用性。
教学建议
1. 由于这部分内容较为抽象,很难结合生活实例或具体情境来进行教学,学生理解起来有一定的难度。在过去的教学中,一些教师往往忽视概念的本质,而是让学生死记硬背相关概念或结论,学生无法理清各概念间的前后承接关系,达不到融会贯通的程度。再加上有些教师在考核时使用一些偏题、难题,导致学生在学习这部分知识时觉得枯燥乏味,体会不到初等数论的抽象性、严密性和逻辑性,感受不到数学的魅力。为了克服以上教学中出现的问题,应注意以下两点。
(1)加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。本单元中因数和倍数是最基本的两个概念,理解了因数和倍数的含义,对于一个数的因数的个数是有限的、倍数的个数是无限的等结论自然也就掌握了,对于后面的公因数、公倍数等概念的理解也是水到渠成。要引导学生用联系的观点去掌握这些知识,而不是机械地记忆一堆支离破碎、毫无关联的概念和结论。
(2)由于本单元知识特有的抽象性,教学时要注意培养学生的抽象思维能力。虽然我们强调从生活的角度引出数学知识,但数论本身就是研究整数性质的一门学科,有时不太容易与具体情境结合起来,如质数、合数等概念,很难从生活实际中引入。而学生到了五年级,抽象能力已经有了进一步发展,有意识地培养他们的抽象概括能力也是很有必要的,如让学生通过几个特殊的例子,自行总结出任何一个数的倍数个数都是无限的,逐步形成从特殊到一般的归纳推理能力,等等。
2. 这部分内容可以用6课时进行教学。
❹ 数论几年级开始学
小学五年级。学奥数能学到。最多涉及到8讲。
❺ 五年级数论。
题目有问题,等号右边是3的N次方*A吧。总之N、A不应是一样的数。
就是求这个连版乘积里因数权3共有多少个。
含有至少1个因数3的数有 20\3 = 6 个
含有至少2个因数3的数有 20\9 = 2 个
含3个及3个以上的无。
则因数3共有 6+2 = 8个。
N最大为8。
❻ 小学五年级奥数教些什么内容啊
高思学校竞赛数学导引·五年
http://proct.dangdang.com/proct.aspx?proct_id=21019222
第1讲 分数计算与比较大小(计算问题第9讲)
第2讲 整除(数论问题第1讲)
第3讲 质数与合数(数论问题第2讲)
第4讲 包含与排除(计数问题第6讲)
第5讲 行程问题四(应用题第16讲)
第6讲 几何计数(计数问题第7讲)
第7讲 约数与倍数(数论问题第3讲)
第8讲 分数与循环小数(计算问题第10讲)
第9讲 比较与估算(计算问题第11讲)
第10讲 数字谜综合一(数字谜问题第9讲)
第11讲 和羞倍分问题(应用题第17讲)
第12讲 应用题拓展(应用题第18讲)
第13讲 计算综合一(计算问题第12讲)
第14讲 直线形计算二(几何问题第6讲)
第15讲 圆与扇形(几何问题第7讲)
第16讲 余数(数论问题第4讲)
第17讲 工程问题(应用题第19讲)
第18讲 牛吃草问题与钟表问题(应用题第20讲)
第19讲 直线形计算三(几何问题第8讲)
第20讲 行程问题五(应用题第21讲)
第21讲 数字问题(数字谜问题第10讲)
第22讲 计数综合二(计数问题第8讲)
第23讲 构造论证一(组合问题第7讲)
第24讲 抽屉原理二(组合问题第8讲)
❼ 五年级的数学手抄报内容
1画些关于科技的图
2有一位老人,他有三个儿子和十七匹马。他在临终前对他的儿子们说:“ 已经写好了遗嘱, 把马留给你们,你们一定要按 的要求去分。”
老人去世后,三兄弟看到了遗嘱。遗嘱上写着:“ 把十七匹马全都留给 的三个儿子。长子得一半,次子得三分之一,给幼子九分之一。不许流血,不许杀马。你们必须遵从父亲的遗愿!”
这三个兄弟迷惑不解。尽管他们在学校里学习成绩都不错,可是他们还是不会用17除以2、用17除以3、用17除以9,又不让马流血。于是他们就去请教当地一位公认的智者。这位智者看了遗嘱以后说:“ 借给你们一匹马,去按你们父亲的遗愿分吧!”
0,可以说是人类最早接触的数了。 们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。 们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此, 们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”
“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来 才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。
“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示……
爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来, 始终认为是荒唐的。” 想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生, 的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“ 的新大陆”。
3写些经典例题
4外加些数学家的故事
例如
数学家高斯的故事
高斯(gauss 1777~1855)生于brunswick,位于现在德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。
高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的「从一加到一百」,终于发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教bartels变得很熟,而bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。
老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。经过这次的访问,高斯免除了每天晚上织布的工作,每天和bartels讨论数学,但不久之后,bartels也没有什么东西可以教高斯了。
1788年高斯不顾父亲的反对进了高等学校。数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。
1791年高斯终于找到了资助人--布伦斯维克公爵费迪南(braunschweig),答应尽一切可能帮助他,高斯的父亲再也没有反对的理由。隔年,高斯进入braunschweig学院。这年,高斯十五岁。在那里,高斯开始对高等数学作研究。并且独立发现了二项式定理的一般形式、数论上的「二次互逆定理」(law of quadratic reciprocity)、质数分布定理(prime numer theorem)、及算术几何平均(arithmetic-geometric mean)。
1795年高斯进入哥廷根(g?ttingen)大学,因为他在语言和数学上都极有天分,为了将来是要专攻古典语文或数学苦恼了一阵子。到了1796年,十七岁的高斯得到了一个数学史上极重要的结果。最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与方法。
希腊时代的数学家已经知道如何用尺规作出正 2m×3n×5p 边形,其中 m 是正整数,而 n 和 p 只能是0或1。但是对于正七、九、十一边形的尺规作图法,两千年来都没有人知道。而高斯证明了:
一个正 n 边形可以尺规作图若且唯若 n 是以下两种形式之一:
1、n = 2k,k = 2, 3,…
2、n = 2k × (几个不同「费马质数」的乘积),k = 0,1,2,…
费马质数是形如 fk = 22k 的质数。像 f0 = 3,f1 = 5,f2 = 17,f3 = 257, f4 = 65537,都是质数。高斯用代数的方法解决二千多年来的几何难题,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。
1799年高斯提出了他的博士论文,这论文证明了代数一个重要的定理:
任一多项式都有(复数)根。这结果称为「代数学基本定理」(fundamental theorem of algebra)。
事实上在高斯之前有许多数学家认为已给出了这个结果的证明,可是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。
在1801年,高斯二十四岁时出版了《算学研究》(disquesitiones arithmeticae),这本书以拉丁文写成,原来有八章,由于钱不够,只好印七章
美国的着名数学家贝尔(e.t.bell),在他着的《数学工作者》(men of mathematics) 一书里曾经这样批评高斯:
在高斯死后,人们才知道他早就预见一些十九世的数学,而且在1800年之前已经期待它们的出现。如果他能把他所知道的一些东西泄漏,很可能现在数学早比目前还要先进半个世纪或更多的时间。阿贝尔(abel)和雅可比(jacobi)可以从高斯所停留的地方开始工作,而不是把他们最好的努力花在发现高斯早在他们出生时就知道的东西。而那些非欧几何学的创造者,可以把他们的天才用到其他力面去。
在1855年二月23日清晨,高斯在他的睡梦中安详的去世了。 添加评论
.评论读取中...请登录后再发表评论!
取消
.sky7733 | 2009-06-21 10:28:33
有0人认为这个回答不错 | 有0人认为这个回答没有帮助
写些经典例题
外加些数学家的故事
例如:
数学家高斯的故事
高斯(Gauss 1777~1855)生于Brunswick,位于现在德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。
高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的「从一加到一百」,终于发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。
老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什么东西可以教高斯了。
1788年高斯不顾父亲的反对进了高等学校。数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。
1791年高斯终于找到了资助人--布伦斯维克公爵费迪南(Braunschweig),答应尽一切可能帮助他,高斯的父亲再也没有反对的理由。隔年,高斯进入Braunschweig学院。这年,高斯十五岁。在那里,高斯开始对高等数学作研究。并且独立发现了二项式定理的一般形式、数论上的「二次互逆定理」(Law of Quadratic Reciprocity)、质数分布定理(prime numer theorem)、及算术几何平均(arithmetic-geometric mean)。
1795年高斯进入哥廷根(G?ttingen)大学,因为他在语言和数学上都极有天分,为了将来是要专攻古典语文或数学苦恼了一阵子。到了1796年,十七岁的高斯得到了一个数学史上极重要的结果。最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与方法。
希腊时代的数学家已经知道如何用尺规作出正 2m×3n×5p 边形,其中 m 是正整数,而 n 和 p 只能是0或1。但是对于正七、九、十一边形的尺规作图法,两千年来都没有人知道。而高斯证明了:
一个正 n 边形可以尺规作图若且唯若 n 是以下两种形式之一:
1、n = 2k,k = 2, 3,…
2、n = 2k × (几个不同「费马质数」的乘积),k = 0,1,2,…
费马质数是形如 Fk = 22k 的质数。像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是质数。高斯用代数的方法解决二千多年来的几何难题,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。
1799年高斯提出了他的博士论文,这论文证明了代数一个重要的定理:
任一多项式都有(复数)根。这结果称为「代数学基本定理」(Fundamental Theorem of Algebra)。
事实上在高斯之前有许多数学家认为已给出了这个结果的证明,可是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。
在1801年,高斯二十四岁时出版了《算学研究》(Disquesitiones Arithmeticae),这本书以拉丁文写成,原来有八章,由于钱不够,只好印七章。
这本书除了第七章介绍代数基本定理外,其余都是数论,可以说是数论第一本有系统的着作,高斯第一次介绍「同余」(Congruent)的概念。「二次互逆定理」也在其中。
二十四岁开始,高斯放弃在纯数学的研究,作了几年天文学的研究。
当时的天文界正在为火星和木星间庞大的间隙烦恼不已,认为火星和木星间应该还有行星未被发现。在1801年,意大利的天文学家Piazzi,发现在火星和木星间有一颗新星。它被命名为「谷神星」(Cere)。现在我们知道它是火星和木星的小行星带中的一个,但当时天文学界争论不休,有人说这是行星,有人说这是彗星。必须继续观察才能判决,但是Piazzi只能观察到它9度的轨道,再来,它便隐身到太阳后面去了。因此无法知道它的轨道,也无法判定它是行星或彗星。
高斯这时对这个问是产生兴趣,他决定解决这个捉摸不到的星体轨迹的问题。高斯自己独创了只要三次观察,就可以来计算星球轨道的方法。他可以极准确地预测行星的位置。果然,谷神星准确无误的在高斯预测的地方出现。这个方法--虽然他当时没有公布--就是「最小平方法」 (Method of Least Square)。
1802年,他又准确预测了小行星二号--智神星(Pallas)的位置,这时他的声名远播,荣誉滚滚而来,俄国圣彼得堡科学院选他为会员,发现Pallas的天文学家Olbers请他当哥廷根天文台主任,他没有立刻答应,到了1807年才前往哥廷根就任。
1809年他写了《天体运动理论》二册,第一册包含了微分方程、圆椎截痕和椭圆轨道,第二册他展示了如何估计行星的轨道。高斯在天文学上的贡献大多在1817年以前,但他仍一直做着观察的工作到他七十岁为止。虽然做着天文台的工作,他仍抽空做其他研究。为了用积分解天体运动的微分力程,他考虑无穷级数,并研究级数的收敛问题,在1812年,他研究了超几何级数(Hypergeometric Series),并且把研究结果写成专题论文,呈给哥廷根皇家科学院。
1820到1830年间,高斯为了测绘汗诺华(Hanover)公国(高斯住的地方)的地图,开始做测地的工作,他写了关于测地学的书,由于测地上的需要,他发明了日观测仪(Heliotrope)。为了要对地球表面作研究,他开始对一些曲面的几何性质作研究。
1827年他发表了《曲面的一般研究》 (Disquisitiones generales circa superficies curva),涵盖一部分现在大学念的「微分几何」。
在1830到1840年间,高斯和一个比他小廿七岁的年轻物理学家-韦伯(Withelm Weber)一起从事磁的研究,他们的合作是很理想的:韦伯作实验,高斯研究理论,韦伯引起高斯对物理问题的兴趣,而高斯用数学工具处理物理问题,影响韦伯的思考工作方法。
1833年高斯从他的天文台拉了一条长八千尺的电线,跨过许多人家的屋顶,一直到韦伯的实验室,以伏特电池为电源,构造了世界第一个电报机。
1835年高斯在天文台里设立磁观测站,并且组织「磁协会」发表研究结果,引起世界广大地区对地磁作研究和测量。
高斯已经得到了地磁的准确理,他为了要获得实验数据的证明,他的书《地磁的一般理论》拖到1839年才发表。
1840年他和韦伯画出了世界第一张地球磁场图,而且定出了地球磁南极和磁北极的位置。 1841年美国科学家证实了高斯的理论,找到了磁南极和磁北极的确实位置。
高斯对自己的工作态度是精益求精,非常严格地要求自己的研究成果。他自己曾说:「宁可发表少,但发表的东西是成熟的成果。」许多当代的数学家要求他,不要太认真,把结果写出来发表,这对数学的发展是很有帮助的。 其中一个有名的例子是关于非欧几何的发展。非欧几何的的开山祖师有三人,高斯、 Lobatchevsky(罗巴切乌斯基,1793~1856), Bolyai(波埃伊,1802~1860)。其中Bolyai的父亲是高斯大学的同学,他曾想试着证明平行公理,虽然父亲反对他继续从事这种看起来毫无希望的研究,小Bolyai还是沉溺于平行公理。最后发展出了非欧几何,并且在1832~1833年发表了研究结果,老Bolyai把儿子的成果寄给老同学高斯,想不到高斯却回信道:
to praise it would mean to praise myself.我无法夸赞他,因为夸赞他就等于夸奖我自己。
早在几十年前,高斯就已经得到了相同的结果,只是怕不能为世人所接受而没有公布而已。
美国的着名数学家贝尔(E.T.Bell),在他着的《数学工作者》(Men of Mathematics) 一书里曾经这样批评高斯:
在高斯死后,人们才知道他早就预见一些十九世的数学,而且在1800年之前已经期待它们的出现。如果他能把他所知道的一些东西泄漏,很可能现在数学早比目前还要先进半个世纪或更多的时间。阿贝尔(Abel)和雅可比(Jacobi)可以从高斯所停留的地方开始工作,而不是把他们最好的努力花在发现高斯早在他们出生时就知道的东西。而那些非欧几何学的创造者,可以把他们的天才用到其他力面去。
在1855年二月23日清晨,高斯在他的睡梦中安详的去世了
❽ 我家孩子五年级了,奥数几何和数论还不是太好,想找个针对性强的班补一下或是一对一老师。急!
致远思新有开几何和数论的专题班,报的人挺多的。我的一个朋友的孩子在致专远学习属奥数。给我说的,正好我们也要补一下,是牛老师教,如果好的话,春季也转到致远思新。
这是网址 可以看一下。
http://www.zyschool.com
❾ 五年级奥数.数论.中国剩余定理及弃九法(B级).学生版及答案
这是什么书🤷♂️🤷♂️🤷♂️
❿ 小学五年级奥数(数论)很简单的,重赏!
(1)根据个位数字与十位数字都是质数,可得这个两位质数的个位数内字和十位数字只能是:容2、3、5、7.
【解析】
因为N是质数,且其个位数字和十位数字都是质数,那么十位数字和个位数字只能是:2、3、5、7,
所以符合题意的两位数质数有:23,37,53,73,有4个;
答:这样的自然数有4个.
故
答案为:4.
1、自然数
N
是一个两位数,它是一个质数,而且N
的个位数字与十位数字都是质数,这样的自然数有(4)个。
2、2若A
、1A¯¯¯¯、2A¯¯¯¯
都是质数,则A=3、9(1A¯¯¯¯是指十位数字为1,个位数字为A
的两位数)3、3用
0~9
这10
个数字组成若干个合数,每个数字都恰好用一次,那么这些合数之和的最小值是99.
补充:A,B,C
为
3
个小于20的质数,A+B+C=30,求这三个质数中最大的一个是(17)