1. 小学六年级数学案例分析
哪方面的案例解析呢?工宗浩 儿童学习天地 问他们
2. 六年级数学案例分析
[课例名称]
苏教版小学数学教材第十一册第112页实践活动“算出它们的普及率”。
[活动目标]
1、使学生能应用百分数的知识计算出本班同学家庭的电话、电脑的普及率,并能进行简单的比较、分析和估计发展趋势,培养学生比较、分析等思维能力和实践能力。
2、使学生体会和感受数学与生活的联系,逐步培养学生应用数学知识的意识和能力。
3、使学生认识到改革开放后我国人民生活水平迅速提高,增强热爱社会主义祖国的思想感情。
情景一:
师:同学们,老师昨晚想通知大家今天带计算器,可以用什么方法呢?
生1:可以打我们家的电话,或打爸爸、妈妈的手机。
生2:发电子邮件。我的E-mail是……
生3:您只要通知我一个人,然后我去通知5个人,被通知的同学再分别通知5个同学,这样又快又好。
师:我班同学家里有电话的很多,有电脑的也不少。今天,我们来调查一下,我班谁家已安装了电话,谁家购买了电脑。
生1:老师,不用调查了。我这儿有全班同学家的电话。我班100%同学家里有电话。
生2:我们可以调查哪些同学家里有手机或小灵通这些移动电话,这样方便联系。
师:(生1)李××,你真是一个有心人。100%同学家里有电话,可以说成电话的普及率是100%。在我们的生活里,经常要计算和使用“普及率”。这节课,我们就来计算一些普及率。如家庭移动电话普及率、电脑普及率等。
[评析]在这一环节中,能及时改变原来的教学预设,给了学生一次展示的机会,其意义将是深远的。
情景二:
学生分组统计后汇报统计和计算的百分率结果。
师:我班同学家庭移动电话的普及率是多少?你是怎样计算的?
生1:移动电话的普及率是96.6%,就是求出已有移动电话的56个家庭数占全班58个家庭数的百分之几。
生2:老师,我觉得应说“大约是96.6%”。
生3:我班同学家庭有电脑的是39户,普及率大约是67.2%。
师:你能根据计算的结果推算出本地区电话和电脑的普及率大约是多少吗?
生1:我认为我们南通市居民的固定电话普及率接近100%,移动电话的普及率大概是95%,电脑的普及率低一些,可能有60%。
生2:我不完全同意你的观点。不能认为我班同学家庭电话普及率是100%,就认为南通市居民的固定电话普及率接近100%,你要考虑到南通市还有比较贫困的地方。应该说,学田地区的电话普及率接近100%。
生3:我同意刚才同学的观点。因为我班同学大部分住在学田新村,如果要调查南通市居民的固定电话普及率,还应该到其他学校或新村去调查。
师:你想得真周到,你认为应怎样调查呢?
生3:我想在南通市的东西南北中各确定一个学校或新村去调查统计才准确。
师:也就是说,推算和估计普及率要考虑我班同学家庭的经济状况在南通地区处于什么水平。
[评析]在这个过程中,让学生尽情地展示自己最为真实的思想,不必考虑教师希望他说什么,而在意“我”自己的观点,是否准确,是否独特,是否有自己的个性。教师的鼓励与反馈“有利于创造活动的一般条件------心理的安全和心理的自由”。学生在心理安全的环境中,才能大胆猜想,质疑问难,发表不同意见。
情景三:
师:通过这一次实践活动,你有哪些体会?
生1:我懂得了通过调查统计后,能求出某种东西的普及率。
生2:我知道电脑的普及率比电话的普及率低,我们可以把调查的结果反馈给电脑商,让他们加强宣传的力度,多搞促销活动。
生3:我知道了我们学习的统计和百分数的知识很有用。
生4:我觉得生活水平提高了,因为我奶奶说,以前人憧憬“楼上楼下,电灯电话”这样的好日子,现在我们不但有了电灯电话,还有了电脑,有人家还有了私家车呢!
生5:……
师:我们还可以进行哪些有意义的调查活动?
生1:我班同学戴眼镜的很多,可以调查我班的近视率,或全校的近视率,引起大家的重视。
生2:我经常看到有同学在校外的小摊买零食。我想调查一下我班同学每月零花钱的用法,到底有多少钱买学习用品,多少钱买零食。
生3:我想调查有多少人还知道张思德,现在许多同学知道“小燕子”赵薇,不知道英雄张思德了。
生4:我想调查南通市有多少贫困家庭。
生5:……
[评析]学生是课堂的主体,给学生提供参与的机会,凡是学生能操作的,能颔悟到的,教师绝不包办代替。不刻意要求学生与教师思维一致;不刻意要求个别学生给出的答案对全班具有代表性。数学教学应当培养学生的发现、提问、分析和解决问题的能力。
数学课程标准的基本理念之一是“学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。”这堂实践活动课是在学生初步学习了百分数的意义和应用后安排的。活动内容来源于生活,能使学生感受到数学就在身边,让学生感受到数学与生活是密不可分的。小学生的思维正逐渐从具体形象思维向抽象思维过渡,但这并不意味着学生就不需要具体形象思维。数学来源于生活,但高于生活,具有一定的抽象性和逻辑性。著名数学家华罗庚说:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。
对学生来说,如果始终是被动地接受,像成人一样地学习,他们就会觉得学习数学是索然无味的,他们的主动性、积极性、创造性会渐渐地沉睡起来,他们会渐渐地疏远数学。实践活动使学生从被动型向主动型转变,重复性向创新性过渡,有利于学生个性的发展,有利于学生创新意识和实践能力的培养。生动有趣的实践感受使学生觉得数学并不枯燥。让儿童在自己的世界里用自己喜爱的方式探究数学,在探究中体验数学、享受数学。当数学与儿童的现实生活密切结合时,数学才是活的,富有生命力的。
提倡学生用自己的话说收获,而不是仅仅重复教师的讲授,面对着具有鲜活生命和灵动个性的学生,教师更多地关注学生在数学活动中表现出来的情感与态度,应当给予积极的评价,为学生提供自由表达自己思想、表述自己观点、实现自己思维飞跃的舞台,帮助他们认识自我,建立学习自信心,教师成为学生学习过程中的欣赏者、支持者和引领者。
如何正确认识数学实践活动,如何上好数学实践活动课,数学实践活动课以怎样的模式呈现,是我们迫切需要解决的问题。我感觉到这是极其新鲜而富有挑战性的。在探索中,我了解到实践活动是“做数学”的具体表现,它是以解决某一实际的数学问题为目标,以引起学生的数学思维为核心的一种新型的课程形态,让学生在解决具体问题的过程中,对数学本身的探索中理解、掌握和应用数学。实践活动是一种研究性学习,学生应经历一个收集信息、处理信息和得出结论的完整过程。这节课给我留下的启迪是:当你真正将新课程的理念落实到具体的教学行为时,学生会还你一个惊喜!
3. 小学数学教学案例
《比例的基本性质》第一课时
教学内容
教科书第43~44页的例4以及相应的“试一试”,完成随后的“练一练”和练习十的第1~4题。
教学目标:
1. 使学生认识比例的内项和外项,探索并掌握比例的基本性质。
2. 使学生在探索比例的基本性质的过程中,进一步体会数学知识的内在联系,养成爱动脑、爱思考的的好习惯。
教学过程:
一.复习旧知。
什么叫做比例?什么样的两个比才能组成比例?
二.新授课。
1.出示例4 :把左边的三角形按比例缩小得到右边的三角形。
4㎝
2㎝
6㎝ 3㎝
你能根据图中数据,写出尽可能多的比例吗?
各小组讨论,然后汇报。教师根据学生回答,写出几组不同的比例。
2. 介绍比例中各部分的名称。
教师介绍比例的“项”以及“前项”“后项”的含义。
3 : 6 = 2 : 4
外项
内项
提问:你能说出其它及各比例的内项和外项各是多少吗?
3. 探索比例的基本性质。
引导学生认真观察所写出的不同的比例,放手让学生在观察中发现、思考。体会到组成比例的四个数中,6和2(或3和4)可以同时做内项也可以同时做外项;体会到两个内项的积与两个外项的积相等。
提问:通过观察,你发现这些比例有什么规律?
是不是所有的比例有这样的规律呢?请同学们再写出一些比例,验证一下发现的规律是不是在这些比例中也同样存在。
引导学生用字母表示发现的这一规律。
如果用字母表示比例的四个项,即a:b=c:d那么这个规律可以表示成
。
出示比例的基本性质,并让学生说一说。
【在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。】
如果把比例写成分数形式(板书: =),请说一说外项和内项。
提问:在这个比例里交叉相乘的积有是什么关系?
为什么交叉相乘的积相等。(根据比例基本性质)
4.教学“试一试”。
先让学生假设这两个比能组成比例,并说出所组成的比例的外项和内项分别是几,再分别计算外项的积和内项的积,根据比例的基本性质判断是否正确。
三.巩固练习。
做“练一练”。
先让学生尝试解答,再通过讨论进一步明确,判断四个数能否成比例的方法可以用这四个数写成两个比,根据比值是否相等作出相应的判断;也可以把者四个数分成两组,根据每组数中两个数的乘积是否相等作出判断。要引导学生通过交流发现,运用比例的基本性质进行判断比较简便。
四.达标检测:
(1)应用比例的基本性质,判断下面没组的两个比能否组成比例,能组成比例的写出比例式。
6:9=9:12 0.6:0.2= :
: =6:4 0.6:0.2= :
(2)、下面各组的四个数能组成比例吗?把组成的比例写下来。
2、3、4、5 、 、 、
五.全课小结。
这节课你学会了什么?有那些收获和体会呢?
六.布置作业。
练习十第2、3、4题。
第二课时
教学内容:
教科书第45页的例5以及相应的“试一试”,完成随后的“练一练”,练习十的5~8题。和思考题。
教学目标:
1.使学生学会应用比例的基本性质解比例。
2.使学生在解比例的过程中,理解比例与方程的联系和区别,体会数学知识之间的内在联系。
教学过程
一. 复习旧知
1. 提问:什么叫比例的基本性质?
2. 根据比例的基本性质把下面的比例改写成积相等的式子。(口答)
4﹕3=2﹕1.5 =X﹕4=1﹕2
提问:根据积相等的式子,你能求出最后一题里的x 吗?
3. 引入新课。
今天我们将继续学习比例的基本性质。
二. 教学新课。
1. 出示例5.李明在电脑上把下面的照片按比例放大,放大后照片的长是13.5厘米,宽是多少厘米?
提问:题中“按比例放大”是什么意思?
使学生明白了所谓的把照片“按比例放大”,就是把原图形中的各部分线段都按相同的比例放大。也就是说,放大前后相关线段的厘米数是可以组成不同比例的。
请同学们试试看,可以组成哪些比例?
放大后的宽不知道,我们可以用什么表示?
请同学们列出含有未知数的比例式。
你能运用比例的基本性质求出比例中的未知项吗?
让学生尝试解答,提醒列比例前要先写设语。
解:设放大后照片的宽是X厘米。
13.5:6=X:4
6X=13.5×4 第一步计算依据是什么?
6X=54
X=
答:放大后照片的宽是厘米。
解答后教师说明:【像上面这样求比例中的未知项,叫做解比例。】
2教学“试一试”。
要求学生独立完成。完成后,追问学生解题时的思考过程。
三. 巩固练习。
1. 做“练一练”
要求学生独立完成。完成后适当的追问学生思考过程,突出比例基本性质在解比例过程中的作用。
2. 做“思考题”
先让学生读题,理解题意,然后重点引导学生弄清楚“两个外项正好互为倒数”的含义,使学生明白:所谓“两个外项正好互为倒数”,就是说“两个外项的乘积是1”。而根据比例的基本性质,可以推知“两个内项的积也是1”。所以另一个内项应该是的倒数.
四.达标检测:
(1)填空
1)( )叫做解比例。
2)已知比例中的任何三项,根据比例的( )可求出另一个未知项。
3)一个比例的两个内项分别是1.8和0.6,这个比例两个外项的积是( )
4)把、0.5、20%、再配上一个数组成比例,这个数是()。
(2)、解比例
五.全课小结
这节课学习的内容是什么?应用比例的基本性质怎样解比例?
六. 布置作业。
课本练习十第6、7、8三题。