⑴ 小学六年级奥数竞赛热点
数字谜肯定考的,呵呵!
知识点难度不一样,还是要知识点吧!
小学奥数理论知识速查手册
1.和差倍问题
和差问题
和倍问题
差倍问题
已知条件
几个数的和与差
几个数的和与倍数
几个数的差与倍数
公式适用范围
已知两个数的和,差,倍数关系
公式
①(和-差)÷2=较小数
较小数+差=较大数
和-较小数=较大数
②(和+差)÷2=较大数
较大数-差=较小数
和-较大数=较小数
和÷(倍数+1)=小数
小数×倍数=大数
和-小数=大数
差÷(倍数-1)=小数
小数×倍数=大数
小数+差=大数
关键问题
求出同一条件下的
和与差
和与倍数
差与倍数
2.年龄问题的三个基本特征:(五点名校命题必考知识点,小学各种竞赛中的命题热点)
①两个人的年龄差是不变的;
②两个人的年龄是同时增加或者同时减少的;
③两个人的年龄的倍数是发生变化的;
3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;
4.植树问题(五点名校命题必考知识点,小学各种竞赛中的命题热点)
基本类型
在直线或者不封闭的曲线上植树,两端都植树
在直线或者不封闭的曲线上植树,两端都不植树
在直线或者不封闭的曲线上植树,只有一端植树
封闭曲线上植树
基本公式
棵数=段数+1
棵距×段数=总长
棵数=段数-1
棵距×段数=总长
棵数=段数
棵距×段数=总长
关键问题
确定所属类型,从而确定棵数与段数的关系
5.鸡兔同笼问题
基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;
基本思路:
①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):
②假设后,发生了和题目条件不同的差,找出这个差是多少;
③每个事物造成的差是固定的,从而找出出现这个差的原因;
④再根据这两个差作适当的调整,消去出现的差。
基本公式:
①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)
②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)
关键问题:找出总量的差与单位量的差。雪帆提示:鸡兔同笼的公式千万不要死记硬背,因为它的变形更多!
6.盈亏问题
基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.
基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.
基本题型:
①一次有余数,另一次不足;
基本公式:总份数=(余数+不足数)÷两次每份数的差
②当两次都有余数;
基本公式:总份数=(较大余数一较小余数)÷两次每份数的差
③当两次都不足;
基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差
基本特点:对象总量和总的组数是不变的。
关键问题:确定对象总量和总的组数。
7.牛吃草问题
基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。
基本特点:原草量和新草生长速度是不变的;
关键问题:确定两个不变的量。
基本公式:
生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);
总草量=较长时间×长时间牛头数-较长时间×生长量;
8.周期循环与数表规律
周期现象:事物在运动变化的过程中,某些特征有规律循环出现。
周期:我们把连续两次出现所经过的时间叫周期。
关键问题:确定循环周期。
闰 年:一年有366天;
①年份能被4整除;②如果年份能被100整除,则年份必须能被400整除;
平 年:一年有365天。
①年份不能被4整除;②如果年份能被100整除,但不能被400整除;
9.平均数
基本公式:①平均数=总数量÷总份数
总数量=平均数×总份数
总份数=总数量÷平均数
②平均数=基准数+每一个数与基准数差的和÷总份数
基本算法:
①求出总数量以及总份数,利用基本公式①进行计算.
②基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式②。
10.抽屉原理(五点名校命题必考知识点,小学各种竞赛中的命题热点)
抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。
例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:
①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1
观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。
抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:
①k=[n/m ]+1个物体:当n不能被m整除时。
②k=n/m个物体:当n能被m整除时。
理解知识点:[X]表示不超过X的最大整数。
例[4.351]=4;[0.321]=0;[2.9999]=2;
关键问题:构造物体和抽屉。也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。
⑵ 归一问题,六年级数学牛吃草问题
把一来片草原本的草量设成源1,设草每天张a,每头牛每天吃b
那么可以根据条件列出方程,36(3b-a)=1 20(5b-a)=1
解得b=1/90,a=1/180
所以八头牛每天消耗1/12
所以要12天
有疑问请追问
望采纳
⑶ 小学六年级数学每人每天归一问题的应用题
完成的工作量÷参加工作的人数÷工作的天数=每人每天完成的工作量
⑷ 小学奥数 归一问题
工作总量是
9×20=180
现在有工人
9+6=15(人)
完成需要
180÷15=12(天)
⑸ 小学6年级奥数题目和答案(答案只要算式) 60题
. 一条绳子,折成相等的3段后,再折成相等的两折,然后从中间剪开,一共可以剪成____段.
3. 甲、乙、丙三数的和是188,甲数除以乙数,或丙数除以甲数,结果都是商6余2,乙数是______.
4. 某种商品,以减去定价的5%卖出,可得5250元的利润;以减去定价的2成5卖出,就会亏损1750元.这个物品的购入价是______元.
5. 一长方体长、宽、高分别为3、2、1厘米,一只小虫从一顶点出发,沿棱爬行,如果要求不走重复路线,小虫回到出发顶点所走最长路径是____厘米.
6. 如图,四边形 和四边形 都是矩形, 的长是4厘米, 的长是3厘米,那么图中阴影部分的面积是_____平方厘米.
7. 把自然数1,2,3,…99分成三组,如果每一组的平均数恰好都相等,那么这三个平均数的乘积是_____.
8. 用1~6六个数字任意写出一个真分数,已知参加写的人中总有4个人写出的真分数一样大.那么,至少有_____人参加写.
9. 以[ ]表示不大于 的最大整数,那么,满足[1.9 ]+[8.8 ]=36的自然数 的值共有_____组.
10. 小明在计算器上从1开始,按自然数的顺序做连加练习.当他加到某一数时,结果是1991,后来发现中间漏加了一个数,那么,漏加的那个数是_____.
二、解答题
11. 太郎和次郎各有钱若干元.先是太郎把他的钱的一半给次郎,然后次郎把他当时所有钱的 给太郎.以后太郎又把他当时所有钱的 给了次郎,这时太郎就有675元,次郎就有1325元.问最初两人各有多少钱?
12. 在 中, =3:1, 是 的中点,且 =7:1.求 等于多少?
13. 甲、乙两人沿铁路边相对而行,速度一样.一列火车开来,整个列车从甲身边驶过用8秒钟.再过5分钟后又用7钞钟从乙身边驶过.问还要经过多少时间,甲、乙两人才相遇?
14. 如下面图1那样,在用塑料制的三棱柱形的筒里装着水,这个筒的展开图如下面图2.
现在,如图1那样,把这个筒的 面作为底面,放在水平的桌面上,水面高度是2 .按上面讲的条件回答下列问题:
(1)把 面作为底面,放在水平的桌面上,水面高多少厘米?
(2)把 面(直角三角形的面)作为底面,放在水平的桌面上,水面高又是多少厘米?
答 案:
1. .
原式=1-
.
2. 7.
将绳折成3段再对折,相当于折成6段,一刀与这6段有6个交叉点,将绳分成7段.
3. 4.
设乙数为 ,则甲数为 ,丙数为 .
故有 ,解得 .
4. 28000.
商品的定价为 (5250+1750)÷[(1-50%)-(1-25%)]=35000(元).
商品的购入价为 35000×(1-5%)-5250=28000(元).
5. 18.
如图,长方形的顶点都是奇点,要将它们都变成偶点才能从一个顶点出发,回到原顶点且路线不重复,这就需要去掉4条棱.但显然不可能都去掉长度为1的或去掉3条长度为1的.
故去掉 , , , ,后,可沿 走.共长3+1+3+2+3+1+3+2=18(厘米).
6. 6.
上面4个三角形面积之和等于长方形 面积的一半,下面3个三角形面积之和等于长方形 面积的一半.
故阴影部分面积是长方形 的一半,为4×3÷2=6(平方厘米).
7. 125000.
设每一组的平均数为 ,则 ,
即 ,从而 .
故三个平均数之积为503=125000.
8. 34.
用1~6中的数字写的真分数有1+2+3+4+5=15个,其中 , ,
.故值不相等的有15-4=11个.
因参写的人中总有4人写的真分数一样大,由抽屉原理知,至少有11×3+1=34(人)参加.
9. 3.
显然 (否则等式左边>36),当 时,有 ;当 时, ;当 时, 不存在;当 时, .
10. 25.
因1+2+…+62= ;又1+2+…+63=2016. 1953<1991<2016.
故他计算的是后一算式,漏加之数为2016-1991=25.
11. 用逆推法,列表如下:
太 郎 次 郎
太郎送 给次郎后
675元 1235元
次郎送 给太郎后
900元 1100元
太郎送 给次郎后
350元 1650元
最 初 700元 1300元
12. 设 的面积为 ,因 的面积: 的面积=7:1.故 的面积为 .
连结 , 的面积: 的面积= .故 的面积为 ,从而 面积为8 .
所以, 的面积: 的面积=3:4.
13. 设车速为每秒 米,人速为每秒 米,车长 米,则有:
,故 .
火车5分钟(300秒)的路程为 ,故甲乙相遇时间为:
(秒).
14. 在图中标上字母如右图所示,
因 是 的中点,故 也是 的中点,
都是直角三角形.利用勾股
定理,可求出 ,水的体积为
(1.5+3)×2÷2×12=54 .当 与
垂直,交 于 时, ,
.
故三角形 与三角形 完全一样.
(1)当 作底面时,侧面 如右图所示,
因为 与 完全一样.故水深 .
(2)因高=体积÷底面积, 面积=
3×4÷2=6 .故高为54÷6=9 .
⑹ 求小学奥数标准教案一份(做公开课)
一、 复习:
小胖每顿饭吃5个包子,一天三顿能吃多少个?
一只蜗牛1分钟爬2分米,10分爬多少米?
二、 导入:已知几个量,一个量变化,另外量也随着发生同样的变化,这样的问题是归一问题。
三、 新课:
例1.小白兔6天挖90根萝卜,照这样计算,小白兔18天能挖多少根萝卜?
#——6天——90根 归一法:90÷6×18=270(根)
#——18天——?根 倍比法:18÷6×90=270(根)
练习:一只蜗牛6分钟爬12分米,照这样的速度,1小时爬多少米?
练习:小乌龟3分钟能走10米,照这样计算,它1小时能走多少米?
练习:一台碾米机2小时碾米1000千克,照这样的效率,再碾米5小时,一共可以碾米多少千克?
小结:先求单一量,再求几个单一量是多少。正归一。
例2.王大伯4天编了24个竹篮,照这样计算,编120个竹篮一共需要多少天?
#——4天——24个 归一法:120÷(24÷4)=20(天)
#——?天——120个 倍比法:120÷24×4=20(天)
练习:一台织布机8分钟可织布24米,求这台织布机织234米布要用多少分钟?
一台织布机8分钟可织布23米,求这台织布机织253米布要用多少分钟?
一台织布机8分钟可织布24米,求这台织布机织15米布要用多少分钟?
小结:先求单一量,再求包含多少个单一量。反归一。
例3.王师傅2小时加工62个零件,照这样计算,8小时可以加工多少个零件?如果要加工372个零件要多少小时?
#——2小时——62个 62÷2×8=248(个)
#——8小时——?个 倍比法:8÷2×62=248(个)
#——2小时——62个 372÷(62÷2)=12(小时)
#——?小时——372个 372÷62×2=12(小时)
练习:改题 3小时加工42个,8小时多少个?加工210个零件要几小时?
例4.一个修路队要修一个长750米的公路,前5天修了250米,照这样计算修完还要几天?
#——5天——250米 (750-250)÷(250÷5)=10(天)
#——?天——(750-250)米 (750-250)÷250×5=10(天)
750÷(250÷5)-5=10(天)
750÷250×5-5=10(天)
练习:改成600米
练习:一个粮食加工厂要加工6000千克大米,前2小时加工了1200千克,照这样计算加工完剩下的大米还要几小时? (8小时)
例5.5只小猴一顿吃掉20个桃,现在有60个桃,要增加几只小猴来吃?
60÷(20÷5)-5=10(只)
(60-20)÷(20÷5)=10(只)
(60-20)÷20×5=10(只)
60÷20×5-5=10(只)
练习:5箱蜜蜂一年可以酿75千克蜂蜜,照这样计算,酿300千克蜂蜜要增加几箱蜜蜂?
铺垫:一个台机器一天生产15个零件,求5台机器3小时能生产多少个零件?4台机器6小时?
例6. 4台机器2小时能生产144个零件,照这样计算,5台机器4小时能生产多少个零件?
疑问:现在的一份量是什么?
小结: 二次归一问题
练习:织布厂一车间用3台织布机5小时织布450米,照这样计算,5台、8小时可织布多少米?
#——3台——5小时——450米 450÷3÷5×5×8=1200(米)
#——5台——8小时——?米
拓展:改增加5台 450÷3÷5×(3+5)×8=1920(米)
例7.3台车床4小时可以加工零件180个,照这样计算,6 台5小时可加工多少个?5台要加工600个要几小时?3小时加工630个要几台?
#——3台——4小时——180个 正归一 180÷3÷4×6×5=450(个)
#——6台——5小时——?个
#——3台——4小时——180个 反归一 600÷(180÷3÷4×5)=8小时
#——5台——?小时——600个 630÷(180÷3÷4×3)=14(台)
#——?台——3小时——630个
练习:7辆车5小时运货700吨,照这样计算,3辆汽车几小时能运540吨的货物?
例7.工程队计划60人5天修好一条长4800米的公路,照这样计算,增加15人实际几天修完?
#——60人——5天——4800米 4800÷[4800÷60÷5×(60+15)]
#——(60+20)人——?天——4800米 =4800÷4800×60×5÷75
练习:改6000米 =4(天)
例8.7辆卡车6趟运走336吨沙土。现有沙土560吨,要求5趟运完,需要同样的卡车多少辆?
1辆卡车1趟运走多少吨沙土:336÷6÷7=8(吨)
①先求所需卡车1趟运走多少吨沙土:560÷5=112(吨) 112÷8=14(辆)
②先求运走560吨沙土所需多少趟: 560÷8=70(趟) 70÷5=14(辆)
③先求1辆卡车5趟运走多少吨: 8×5=40(吨) 560÷40=14(辆)
练习:5只小猫5天能抓住50只老鼠,10天抓住100只老鼠需要多少只小猫?
拓展:①5只小猫5天能抓住50只老鼠,10天抓住180只老鼠需要增加多少只小猫?
②4台机器2小时能生产144个零件,照这样计算,5台机器生产360个零件需要增加几小时?
例9.有一批零件,王师傅每天生产8个,3天可以完成,如果每天生产6个零件几天可以完成?
疑问:不变的量是什么? 小结:
练习:发电厂运进一些煤,如果每天烧6吨煤,10天烧完,如果每天烧4吨,多少天烧完?
例10.修一条马路,如果每天修5千米,24天可以修完,如果每天多修1千米,几天可以修完?
练习:有一包糖,如果平均分给8个小朋友,每人可以分到20块,如果减少3个小朋友,每人可分到多少块?(32)
拓展:有一本故事书,小强计划每天看24页,5天可以看完,如果要提前2天看完,平均每天要多看多少页?(16)
例11.加工一批零件,计划14人,每天工作6小时10天完成任务。现在增加1人要求8天完成,求每天加班几小时?(1)
例12.甲乙两个打字员4小时共打字3600个,现在二人同时工作,在相同时间内,甲打字2450个,乙打字2050个,求甲乙每小时各打字多少个?
甲乙每小时打字个数的和:3600÷4=900(个)相同时间内共打字:2450+2050=4500(个)
相同时间:4500÷900=5(小时) 甲:2450÷5=490(个) 乙:2050÷5=410(个)
四、总结:归一问题归一对应法、先求单一量。
⑺ 奥数问题+_+ 六年级的!!!~_~!!!
用最小公倍数:
【3,5,7】=105
3-2=1
5-4=1
7-6=1
则这堆APPLE最少有(105-1)=104个
题目:
1)2002×20032003-2003×20022002的值是( )。
A. -60 B. 0 C. 60 D. 80
2)一个油漆匠漆一间房间的墙壁,需要3天时间。如果用同等速度漆一间长、宽、高都比原来大一倍的房间的墙壁,那么需要多少天? ( )
A. 3 B. 12 C. 24 D. 30
3)1994×2002-1993×2003的值是( )。
A. 9 B. 19 C. 29 D. 39
4)养鱼塘里养了一批鱼,第一次捕上来200尾,做好标记后放回鱼塘,数日后再捕上100尾,发现有标记的鱼为5尾,问鱼塘里大约有多少尾鱼?( )
A. 2000 B. 4000 C. 5000 D. 6000
5)某大学某班学生总数为32人,在第一次考试中有26人及格,在第二次考试中有24人及格,若两次考试中,都及格的有22人,那么两次考试都没有及格的人数是( )。
A. 10 B. 4 C. 6 D. 8
6)用1,2,3...,9的9张数字卡片组成一个九位数,左起第一位是1的倍数,左起前两位是2的倍数,左起前三位是3的倍数,... ...左起前7位是7的倍数,左起前八位是8的倍数,当然这九位数一定是9的倍数,这个九位数最小是多少?
7)加工一批零件,甲、乙合作24天可以完成.现在由甲先做16天,然后乙再做12天,还剩下2/5没有完成。已知甲每天比乙多加工3个零件,求这批零件共多少个?
8)做一批儿童玩具.甲组单独做10天完成,乙组单独做12天完成,丙组每天可生产64件.如果让甲、乙两组合作4天,则还有256件没完成.现在决定三个组合做这批玩具,需要多少天完成?
9)我们规定(x)表示不大于x的最大偶数,并且规定x=x-(x),例如(3.2) =2,3.2=1.2。已知两个数a、b满足:a+(b)=123.4,a+b=12.34,则a是_______
10)定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和。
已知数列{an}是等和数列,且a1=2,公和为5,那么a18的值为________,这个数列的前n项和Sn的计算公式为__________。
满意了吧,做梦都能梦游了吧
⑻ 奥数 归一问题
【解答】
原来3台搅拌机8小时可以搅拌混凝土24吨,现因工期紧,又增加了两台同类型专的搅拌机,24小时可以比属原来多搅拌出多少吨混凝土?
每台每小时搅拌:24÷(3×8)=1(吨)
现在可以搅拌:1×(3+2)×24=120(吨)
比原来多搅拌:120-1×3×24=48(吨)
答:24小时可以比原来多搅拌出48吨混凝土.