㈠ 求四年级奥数植树问题、差倍问题、和倍问题、和差问题、盈亏问题、行程问题、相遇问题、追及问题各五道
植树问题:
1、有一只蜗牛从一个深30厘米的井底往上爬,每爬5厘米要3分钟,然后休息1分钟,那么它爬出井口至少需要多少分钟?
2、张大伯在承包的正方形池塘四周种上树,池塘边长为60米,每隔5米种一课,四个角上各种一棵,张大伯买了50棵树苗够吗?
3、一个挂钟,1点敲1下,3点敲3下,12点敲12下,当这个挂钟三点时敲3下总共用了4秒钟。当12点敲12下要多少秒?
4、现有60个小朋友围城一个正方形做游戏,那么每边要站几个学生?如果围城五边形呢?六边形呢?
5、一个小朋友以相同的速度在路上行走,从第一棵树走到第十七棵树需要16分钟。如果这个小朋友走了30分钟,应走到第几棵树?
差倍问题:
1.小明到市场去买水果,他买的苹果个数是梨的3倍,苹果比梨多18个。小明买了苹果和梨各多少个?
2.学校合唱组的女同学人数是男同学的4倍,女同学人数比男同学多42人。合唱组有女同学和男同学各多少人?
3.一件皮衣价钱是一件羽绒衣价钱的5倍,已知一件皮衣比一件羽绒衣贵960元。皮衣和羽绒衣各多少元?
4.甲筐苹果是乙筐苹果的3倍,如果从甲筐取出60千克放入乙筐,那么两筐苹果重量就相等,两筐原来各有多少千克?
5.一车间原有男工人数比女工多55人,如果调走男工5人,那么男工人数正好是女工的3倍,原有男工多少人?
和倍问题:
1.学校有科技书和故事书共480本科技书的本数是故事书的3倍,两种书各多少本?
2.一个养鸡场有675只鸡,其中母鸡是公鸡的4倍,这个养鸡场有公鸡、母鸡各多少只?
3.学校将360本图书分给二、三年级,已知三年级所得的本书比二年级的2倍还多60本,二、三年级各得图书多少本?
4.爸爸要把140张邮票分给弟弟和妹妹,已知弟弟分得的邮票张数比妹妹的4倍少10张,弟弟和妹妹各分得邮票多少张?
5.甲、乙、丙、丁四个人一共做了370个零件,如果把甲做的个数加2,乙做的个数减3,丙做的个数乘2,丁做的个数除以2,四个人做的零件个数正好相等,问四个人各做多少个零件?
和差问题:
1.期中考试中,小明和小红语文成绩的总和是188分,小明比小红多4分。两人各考了多少分?
2.两筐水果共重124千克,第一筐比第二筐多8千克,两筐水果各重多少千克?
3.小明和小红身高总和是264厘米,又已知小明比小红矮8厘米。两人身高分别是多少厘米?
4.三年级两个班的学生共124人,如果从二班调入2人到一班,两班人数就同样多。三年级两个班原来各有多少个学生?
5.有大、小两个水池,大水池里已有水300立方米,小水池里已有水70立方米.现在往两个水池里注入同样多的水后,大水池水量是小水池水量的3倍.问:每个水池注入了多少立方米的水?
盈亏问题:
1.学雷锋小组为学校搬砖。如果每人搬18块,还剩2块;如果每人搬20块,就有一个同学没有砖搬,问共有多少块砖?
2.有两堆煤,若一次运一堆,则每车装10袋,空闲5辆车;若一次运两堆,则每车装12袋,还多余20袋。一共有多少辆车?每堆煤有多少袋?
3.合唱队的同学到会议室开会。如果每条凳子上坐3人,则有9人没有座位,如果每条凳子上坐4人,则多出3个座位。合唱队有多少人?
4.学校给住校生安排宿舍,每个房间住5人,则缺27人,若每个房间住7人,则空出7个房间。求住校生的人数和房间数?
5.学校买来一批铅笔,奖给三好学生。如果每人奖5支,则差2支,如果每人奖7支,则差98支。三好学生有多少人?学校买来铅笔多少支?
行程问题:
1.小华和爸爸一起乘汽车去武汉天河机场共行驶了420千米,用了5小时,途中一部分公路是普通公路,另一部分是高速公路。已知他们坐的车在高速公路上每小时行驶100千米,在普通公路是每小时行驶60千米,那么行驶过的高速公路长多少千米?
2.五(3)班音乐小组的同学星期六从学校去少年宫参加器乐表演,他们以每分钟80米的速度步行到少年宫,出发走了一段路程,发现如果以这样的速度走下去一定会迟到,他们马上决定改为以每分钟160米的速度跑步前进,最后共用25分钟到少年宫,已知从学校到少年宫的路程为2560米,问他们是从离少年宫多远的地方开始跑步前进的?
3.A、B两村相距2800米,小兵从A村出发步行5分钟后,小军骑车从B村出发,又经过10分钟两人相遇,已知小军骑车比小兵步行每分钟多行160米,小兵每分钟步行多少米?
4.甲、乙两车同时从A、B两个城市相对开出,在距A城56千米处相遇。它们各自到达对方车站后立即沿原路返回,途中又在距B城40千米处相遇。求A、B两城的距离。
5.新洲、麻城两地相距98千米,甲骑车从新洲的出发速度为30千米/小时,乙骑车从麻城的出发速度为40千米/小时,那么两人第三次迎面相距离新洲多远?
相遇问题:
1.A 、B两地相距380千米。甲乙两辆汽车同时从两地相向开粗,原计划甲每小时行36千米,乙每小时行40千米,但开车时,甲改变了速度,也以每小时40千米的速度行驶。这样相遇时乙车比原计划少走了多少千米?
2.小张从甲地到乙地,每小时步行5千米,小王从乙地到甲地,骑自行车每小时行11千米,两人同时出发,然后在离甲、乙两地中点9千米的地方相遇。求甲乙两地的距离是多少千米。
3.小斌骑自行车每小时行15千米,小明步行每小时行5千米。两人同时在某地沿同一条线路到30千米外的学校去上课。小斌到校后发现忘了带钥匙,就沿原路回家去拿,在途中与小明相遇。问相遇时小明共行了多少千米。
4.一辆客车从甲城开往乙城,8小时到达;一辆货车从乙城开往甲城,10小时到达。辆车同时由两城相向开出,6小时后他们相距112千米。甲乙两城间的公路长是多少千米?
5.在400米的环形跑道上,甲乙两人同时从起跑线出发,反向而跑,甲每秒跑4米,乙每秒跑6米,当他们第一次相遇在起跑点时,他们在途中相遇了几次?
追及问题:
1.小明以每分钟50米的速度从学校步行回家。12分钟后小强从学校出发骑自行车去追小明,结果距学校1000米追上小明。小强骑自行车每分钟行多少米?
2.在300米长的环形跑道上,甲乙二人同时同地同向跑步,甲每秒跑5米,乙每秒跑4.4米,两人起跑后的第一次相遇点在起跑线的前多少米?
3.猎人带猎狗追野兔,野兔先跑出80步,猎狗跑2步的时间等于野兔跑3步的时间,猎狗跑4步的距离等于野兔跑7步的距离,问猎狗需要多少步可以追上野兔?
4.一艘快艇和一艘轮船分别从A、B两地同向出发到C地去,快艇在后,每小时行42千米,轮船每小时行34千米,2.5小时后同时C地,A、B两地相距多少千米?甲厂有原料120吨,乙厂有原料96吨。甲厂每天用15吨,乙厂每天用9吨,多少天后两厂剩的原料一样多?
5.从学校到家,步行要6小时,骑自行车顶3小时。已知骑自行车比步行每小时快18千米。学校到家的距离是多少千米?
㈡ 要较难的数奥题
小学奥数应用题专题汇总 1.(归一问题)工程队计划用60人5天修好一条长4800米的公路,实际上增加了20人,每人每天比计划多修了4米,实际修完这条路少用了几天? 2.(相遇问题)甲、乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。两车距中点40千米处相遇。东西两地相距多少千米? 3.(追及问题)大客车和小轿车同地、同方向开出,大客车每小时行60千米,小轿车每小时行84千米,大客车出发2小时后小轿车才出发,几小时后小轿车追上大客车? 4.(过桥问题)列车通过一座长2700米的大桥,从车头上桥到车尾离桥共用了3分钟。已知列车的速度是每分钟1000米,列车车身长多少米? 5.(错车问题)一列客车车长280米,一列货车车长200米,在平行的轨道上相向而行,从两个车头相遇到车尾相离经过20秒。如果两车同向而行,货车在前,客车在后,从客车头遇到货车尾再到客车尾离开货车头经过120秒。客车的速度和货车的速度分别是多少? 6.(行船问题)客轮和货轮从甲、乙两港同时相向开出,6小时后客轮与货轮相遇,但离两港中点还有6千米。已知客轮在静水中的速度是每小时30千米,货轮在静水中的速度是每小时24千米。求水流速度是多少? 7.(和倍问题)小李有邮票30枚,小刘有邮票15枚,小刘把邮票给小李多少枚后,小李的邮票枚数是小刘的8倍? 8.(差倍问题)同学们为希望工程捐款,六年级捐款数是二年级的3倍,如果从六年级捐款钱数中取出160元放入二年级,那么六年级的捐款钱数比二年级多40元,两个年级分别捐款多少元? 9.(和差问题)一只两层书架共放书72本,若从上层中拿出9本给下层,上层还比下层多4本,上下层各放书多少本? 10.(周期问题)2006年7月1日是星期六,求10月1日是星期几? 11.(鸡兔同笼问题)小丽买回0.8元一本和0.4元一本的练习本共50本,付出人民币32元。0.8元一本的练习本有多少本? 12.(年龄问题)5年前父亲的年龄是儿子的7倍。15年后父亲的年龄是儿子的二倍,父亲和儿子今年各是多少岁? 13.(盈亏问题)王老师发笔记本给学生们,每人6本则剩下41本,每人8本则差29本。求有多少个学生?有多少个笔记本? 14.(还原问题)便民水果店卖芒果,第一次卖掉总数的一半多2个,第二次卖掉剩下的一半多1个,第三次卖掉第二次卖后剩下的一半少1个,这时只剩下11个芒果。求水果店里原来一共有多少个芒果? 15.(置换问题)学校买回6张桌子和6把椅子共用去192元。已知3张桌子的价钱和5把椅子的价钱相等,每张桌子和每把椅子各是多少元? 16.(最佳安排)烤面包的架子上一次最多只能烤两个面包,烤一个面包每面需要2分钟,那么烤三个面包最少需要多少分钟? 17.(油和桶问题)一桶油连桶共重18千克,用去油的一半后,连桶还重9.75千克,原有油多少千克?桶重多少千克? ⒙(和倍)青青农场一共养鸡、鸭、鹅共12100只,鸭的只数是鸡的2倍,鹅的只数是鸭的4倍,问鸡、鸭、鹅各有多少只? 19. (鸡兔同笼)实验小学举行数学竞赛,每做对一题得9分,做错一题倒扣3分,共有12道题,小旺得了84分,小旺做错了几道题? 20. (相遇问题)甲、乙两人同时从相距2000米的两地相向而行,甲每分钟行55米,乙每分钟行45米,如果一只狗与甲同时同向而行,每分钟行120米,遇到乙后,立即回头向甲跑去,遇到甲再向乙跑去。这样不断来回,直到甲和乙相遇为止,狗共行了多少米?
㈢ 二年级的奥数,和差问题能用方程算吗
尽量不用方程。
方程是为了列式方便,
假设你会方程的话
把最原始的数用脱式计算的方式表达出来(不要简略),
就是最终的未知数x的表达式
㈣ 几岁的孩子适宜学奥数
如果目标私立小学,幼儿园中班下开始肯定要学了,提早进入思维训练。如果希望孩子快乐童年,建议小学二年级要开始学奥数了。
㈤ 小学奥数包括哪些内容
概述
一、 计算
1. 四则混合运算繁分数
⑴ 运算顺序
⑵ 分数、小数混合运算技巧
一般而言:
① 加减运算中,能化成有限小数的统一以小数形式;
② 乘除运算中,统一以分数形式。
⑶带分数与假分数的互化
⑷繁分数的化简
2. 简便计算
⑴凑整思想
⑵基准数思想
⑶裂项与拆分
⑷提取公因数
⑸商不变性质
⑹改变运算顺序
① 运算定律的综合运用
② 连减的性质
③ 连除的性质
④ 同级运算移项的性质
⑤ 增减括号的性质
⑥ 变式提取公因数
形如:
3. 估算
求某式的整数部分:扩缩法
4. 比较大小
① 通分
a. 通分母
b. 通分子
② 跟“中介”比
③ 利用倒数性质
若 ,则c>b>a.。形如: ,则 。
5. 定义新运算
6. 特殊数列求和
运用相关公式:
①1+2+3+4…(n-1)+n+(n-1)+…4+3+2+1=n
二、 数论
1. 奇偶性问题
奇 奇=偶 奇×奇=奇
奇 偶=奇 奇×偶=偶
偶 偶=偶 偶×偶=偶
2. 位值原则
形如: =100a+10b+c
3. 数的整除特征:
整除数 特 征
2 末尾是0、2、4、6、8
3 各数位上数字的和是3的倍数
5 末尾是0或5
9 各数位上数字的和是9的倍数
11 奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数
4和25 末两位数是4(或25)的倍数
8和125 末三位数是8(或125)的倍数
7、11、13 末三位数与前几位数的差是7(或11或13)的倍数
4. 整除性质
① 如果c|a、c|b,那么c|(a b)。
② 如果bc|a,那么b|a,c|a。
③ 如果b|a,c|a,且(b,c)=1,那么bc|a。
④ 如果c|b,b|a,那么c|a.
⑤ a个连续自然数中必恰有一个数能被a整除。
5. 带余除法
一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r<b,使得a=b×q+r
当r=0时,我们称a能被b整除。
当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的不完全商(亦简称为商)。用带余数除式又可以表示为a÷b=q……r, 0≤r<b a=b×q+r
6. 唯一分解定理
任何一个大于1的自然数n都可以写成质数的连乘积,即
n= p1 × p2 ×...×pk
7. 约数个数与约数和定理
设自然数n的质因子分解式如n= p1 × p2 ×...×pk 那么:
n的约数个数:d(n)=(a1+1)(a2+1)....(ak+1)
n的所有约数和:(1+P1+P1 +…p1 )(1+P2+P2 +…p2 )…(1+Pk+Pk +…pk )
8. 同余定理
① 同余定义:若两个整数a,b被自然数m除有相同的余数,那么称a,b对于模m同余,用式子表示为a≡b(mod m)
②若两个数a,b除以同一个数c得到的余数相同,则a,b的差一定能被c整除。
③两数的和除以m的余数等于这两个数分别除以m的余数和。
④两数的差除以m的余数等于这两个数分别除以m的余数差。
⑤两数的积除以m的余数等于这两个数分别除以m的余数积。
9.完全平方数性质
①平方差: A -B =(A+B)(A-B),其中我们还得注意A+B, A-B同奇偶性。
②约数:约数个数为奇数个的是完全平方数。
约数个数为3的是质数的平方。
③质因数分解:把数字分解,使他满足积是平方数。
④平方和。
10.孙子定理(中国剩余定理)
11.辗转相除法
12.数论解题的常用方法:
枚举、归纳、反证、构造、配对、估计
三、 几何图形
1. 平面图形
⑴多边形的内角和
N边形的内角和=(N-2)×180°
⑵等积变形(位移、割补)
① 三角形内等底等高的三角形
② 平行线内等底等高的三角形
③ 公共部分的传递性
④ 极值原理(变与不变)
⑶三角形面积与底的正比关系
S1∶S2 =a∶b ; S1∶S2=S4∶S3 或者S1×S3=S2×S4
⑷相似三角形性质(份数、比例)
① ; S1∶S2=a2∶A2
②S1∶S3∶S2∶S4= a2∶b2∶ab∶ab ; S=(a+b)2
⑸燕尾定理
S△ABG:S△AGC=S△BGE:S△GEC=BE:EC;
S△BGA:S△BGC=S△AGF:S△GFC=AF:FC;
S△AGC:S△BCG=S△ADG:S△DGB=AD:DB;
⑹差不变原理
知5-2=3,则圆点比方点多3。
⑺隐含条件的等价代换
例如弦图中长短边长的关系。
⑻组合图形的思考方法
① 化整为零
② 先补后去
③ 正反结合
2. 立体图形
⑴规则立体图形的表面积和体积公式
⑵不规则立体图形的表面积
整体观照法
⑶体积的等积变形
①水中浸放物体:V升水=V物
②测啤酒瓶容积:V=V空气+V水
⑷三视图与展开图
最短线路与展开图形状问题
⑸染色问题
几面染色的块数与“芯”、棱长、顶点、面数的关系。
四、 典型应用题
1. 植树问题
①开放型与封闭型
②间隔与株数的关系
2. 方阵问题
外层边长数-2=内层边长数
(外层边长数-1)×4=外周长数
外层边长数2-中空边长数2=实面积数
3. 列车过桥问题
①车长+桥长=速度×时间
②车长甲+车长乙=速度和×相遇时间
③车长甲+车长乙=速度差×追及时间
列车与人或骑车人或另一列车上的司机的相遇及追及问题
车长=速度和×相遇时间
车长=速度差×追及时间
4. 年龄问题
差不变原理
5. 鸡兔同笼
假设法的解题思想
6. 牛吃草问题
原有草量=(牛吃速度-草长速度)×时间
7. 平均数问题
8. 盈亏问题
分析差量关系
9. 和差问题
10. 和倍问题
11. 差倍问题
12. 逆推问题
还原法,从结果入手
13. 代换问题
列表消元法
等价条件代换
五、 行程问题
1. 相遇问题
路程和=速度和×相遇时间
2. 追及问题
路程差=速度差×追及时间
3. 流水行船
顺水速度=船速+水速
逆水速度=船速-水速
船速=(顺水速度+逆水速度)÷2
水速=(顺水速度-逆水速度)÷2
4. 多次相遇
线型路程: 甲乙共行全程数=相遇次数×2-1
环型路程: 甲乙共行全程数=相遇次数
其中甲共行路程=单在单个全程所行路程×共行全程数
5. 环形跑道
6. 行程问题中正反比例关系的应用
路程一定,速度和时间成反比。
速度一定,路程和时间成正比。
时间一定,路程和速度成正比。
7. 钟面上的追及问题。
① 时针和分针成直线;
② 时针和分针成直角。
8. 结合分数、工程、和差问题的一些类型。
9. 行程问题时常运用“时光倒流”和“假定看成”的思考方法。
六、 计数问题
1. 加法原理:分类枚举
2. 乘法原理:排列组合
3. 容斥原理:
① 总数量=A+B+C-(AB+AC+BC)+ABC
② 常用:总数量=A+B-AB
4. 抽屉原理:
至多至少问题
5. 握手问题
在图形计数中应用广泛
① 角、线段、三角形,
② 长方形、梯形、平行四边形
③ 正方形
七、 分数问题
1. 量率对应
2. 以不变量为“1”
3. 利润问题
4. 浓度问题
倒三角原理
例:
5. 工程问题
① 合作问题
② 水池进出水问题
6. 按比例分配
八、 方程解题
1. 等量关系
① 相关联量的表示法
例: 甲 + 乙 =100 甲÷乙=3
x 100-x 3x x
②解方程技巧
恒等变形
2. 二元一次方程组的求解
代入法、消元法
3. 不定方程的分析求解
以系数大者为试值角度
4. 不等方程的分析求解
九、 找规律
⑴周期性问题
① 年月日、星期几问题
② 余数的应用
⑵数列问题
① 等差数列
通项公式 an=a1+(n-1)d
求项数: n=
求和: S=
② 等比数列
求和: S=
③ 裴波那契数列
⑶策略问题
① 抢报30
② 放硬币
⑷最值问题
① 最短线路
a.一个字符阵组的分线读法
b.在格子路线上的最短走法数
② 最优化问题
a.统筹方法
b.烙饼问题
十、 算式谜
1. 填充型
2. 替代型
3. 填运算符号
4. 横式变竖式
5. 结合数论知识点
十一、 数阵问题
1. 相等和值问题
2. 数列分组
⑴知行列数,求某数
⑵知某数,求行列数
3. 幻方
⑴奇阶幻方问题:
杨辉法 罗伯法
⑵偶阶幻方问题:
双偶阶:对称交换法
单偶阶:同心方阵法
十二、 二进制
1. 二进制计数法
① 二进制位值原则
② 二进制数与十进制数的互相转化
③ 二进制的运算
2. 其它进制(十六进制)
十三、 一笔画
1. 一笔画定理:
⑴一笔画图形中只能有0个或两个奇点;
⑵两个奇点进必须从一个奇点进,另一个奇点出;
2. 哈密尔顿圈与哈密尔顿链
3. 多笔画定理
笔画数=
十四、 逻辑推理
1. 等价条件的转换
2. 列表法
3. 对阵图
竞赛问题,涉及体育比赛常识
十五、 火柴棒问题
1. 移动火柴棒改变图形个数
2. 移动火柴棒改变算式,使之成立
十六、 智力问题
1. 突破思维定势
2. 某些特殊情境问题
十七、 解题方法
(结合杂题的处理)
1. 代换法
2. 消元法
3. 倒推法
4. 假设法
5. 反证法
6. 极值法
7. 设数法
8. 整体法
9. 画图法
10. 列表法
11. 排除法
12. 染色法
13. 构造法
14. 配对法
15. 列方程
⑴方程
⑵不定方程
⑶不等方程
㈥ 孩子现在小学二年级,学奥数会不会太早杭州有好的奥数辅导班推荐吗最好有联系方式!
不会太早。奥数可以提前学,对于小升初会有帮助。孩子在2、3年级的时候学习奥数,主要是为内了培养兴趣和容奥数的一种思维,对于在校的学习也会有一定的帮助。不必学的太深,把基础的奥数专题适合现在学的学扎实,像什么年龄问题、和倍、和差问题学好,到4、5年级再来接触更深的数论、几何,类似于同余、排列组合还有几何的模型、定理再接触也不迟,那样理解吸收会好一些。6年级就是整个的复习总结、查漏补缺,多做真题,多参加考试,到那个时候题海战术就是非常行之有效的了。
因为本人在成都,所以对于杭州那边不太熟悉,不过建议可以到各种培训机构询问下,或者找几个论坛、群之类的,也能得到许多不错的信息,对于小升初就会更加了解。
㈦ 两个数和是40,差是16,这两个数是多少求方法
二年级奥数:和差问题,(和-差)÷2=小数,(和+差)÷2=大数,所以(40+16)÷2=28,(40-16)÷2=12.
一个是28
一个是12