A. 小学生一年级数学小报
不难,如果要求是手绘自制,那么让孩子自己画,家长可以帮忙设计下版式和内容,内容结专合孩子属近期数学课所学内容,加入一些日常生活实践,比如孩子跟着妈妈去超市购物、去早市买菜,有什么发现,比如孩子看日历的小发现,比如记录家中植物的生长进程等等,内容就像一篇数学小日记就行,配以简单的插图。小朋友的作品就要有小朋友自己的风格,不要担心孩子画得不好看或者是乱,孩子在制作过程中也在学习和成长呢。简单的插图既可以是一个大大的卡通问号,也可以是一个简笔画小学生,或者是结合具体内容,写了什么就画个什么。如果老师要求是彩色打印,那么恐怕多半是要家长来制作了,在电脑上用PPT或者word制作一张图文并茂的小报再去彩打就是了。
B. 小学一年级数学手抄报怎么做
可以先画几幅画,然后再在整张纸分隔成几个小块,在画上花边,最后在里面写上关于数学的内容,就OK了。
C. 小学生数学报一年级试卷哪里有电子版
以答案圈为例,查询电子版试卷的方法如下:
1、手机浏览器网络搜索答案圈,直接点击图示的链接。
D. 小学一年级数学报上有一道题是这样的,
15种车票。你可以试想一下:在火车站买票,你要坐的火车的首站是南京,末站是上海专。这列车从南京到上属海中间有四站,假如,你在南京,你可以买的票是从南京到镇江的,从南京到常州的,从南京到无锡的,从南京到苏州的,从南京到上海的,一共五种,假如你在镇江,你可以买由镇江到常州的,由镇江到无锡的,由镇江到苏州的,由镇江到上海的,一共四种,假如你在常州呢则有三种,在无锡有两种,在苏州有一种。所以这列车共有的车票数是五加四加三加二加一共十五种车票。
这题其实对小学生而言算难得了。
E. 小学生数学报答案
1在微信搜索小学生数学报2点左下角阅读者服务就可以查询答案了
F. 小学生一年级数学手抄报怎么写
手抄报是中学生开展课外活动的形式之一。学生直接参与编辑、撰写、制作等的全过程,深受学生的喜爱。每当重大的节日我们都会以各种各样的形式来表达,或祝愿或庆祝或歌功,比如迎元旦、迎“五四”、庆“七一”、庆国庆等。最近由中央教科所教育信息研究中心和中国教育情报研究会共同举办的“2003年首届全国中小学生手抄报大赛” ,许多学生积极参与,取得了一定的成绩。 在这里,我与大家谈谈怎样进行手抄报的设计与制作,大体上可以从这三个方面来阐述: 一、美化与设计的步骤; 二、报头、插图与尾花的表现; 三、编辑抄写描绘制作过程。 一、美化与设计 手抄报的美化与设计涉及的范围主要有:版面设计与报头、题花、插图、尾花和花边设计等。 1、版面设计 版面设计是出好手抄报的重要环节。 要设计好版面,须注意以下几点: (1)明确本期手抄报的主要内容是什么,选用有一定意义的报头(即报名)。一般报头应设计在最醒目的位置; (2)通读所编辑或撰写的文章并计算其字数,根据文章内容及篇幅的长短进行编辑(即排版)。一般重要文章放在显要位置(即头版); (3)要注意长短文章穿插和横排竖排相结合,使版面既工整又生动活泼; (4)排版还须注意:字的排列以横为主以竖为辅,行距要大于字距,篇与篇之间要有空隙,篇与边之间要有空隙,且与纸的四周要有3CM左右的空边。另外,报面始终要保持干净、整洁。 2、报头 报头起着开门见山的作用,必须紧密配合主题内容,形象生动地反映手抄报的主要思想。报名要取得有积极、健康、富有意义的名字。 报头一般由主题图形,报头文字和几何形体色块或花边而定,或严肃或活泼、或方形或圆形、或素雅或重彩。 报头设计应注意: (1)构图要稳定,画面结构要紧凑,报头在设计与表现手法上力求简炼,要反映手抄报的主题,起“一目了然”之效; (2)其字要大,字体或行或楷,或彩色或黑白; (3)其位置有几种设计方案:一是排版设计为两个版面的,应放在右上部;二是排版设计为整版的,则可或正中或左上或右上。一般均设计在版面的上部,不宜放在其下端。 3、题头 题头(即题花)一般在文章前端或与文章题图结合在一起。设计题头要注意以题目文字为主,字略大。装饰图形须根据文章内容及版面的需要而定。文章标题字要书写得小于报题的文字,要大于正文的文字。总之,要注意主次分明。 4、插图与尾花 插图是根据内容及版面装饰的需要进行设计,好的插图既可以美化版面又可以帮助读者理解文章内容。插图及尾花占的位置不宜太大,易显得空且乱。尾花大都是出于版面美化的需要而设计的,多以花草或几何形图案为主。插图和尾花并不是所有的文章都需要的,并非多多益善,应得“画龙点睛”之效。 5、花边 花边是手抄报中不可少的。有的报头、题头设计可用花边;重要文章用花边作外框;文章之间也可用花边分隔;有的整个版面上下或左右也可用花边隔开。在花边的运用中常用的多是直线或波状线等。 二、报头画、插图与尾花的表现手法 报头画、插图与尾花的表现手法大致可分为线描画法和色块画法两种。 1、线描画法 要求形象简炼、概括,用线准确,主次分明。作画时要注意一定的步骤: (1)一般扼要画出主线----确定角度、方向和大小; (2)再画出与图相关的比例、结构及透视; (3)刻画细部,结合形体结构、构图、色调画出线条的节奏变化; (4)最后进行整理,使画面完整统一。
G. 小学生一年级的数学手抄报怎么出
上网搜大体版块,内容简单些就行
H. 小学一年级数学报制作
我在创办数学小报之前,我思考了很多方面的问题。首先,我深入学习课标,并根据数学来源于生活,又服务于生活;生活中处处有数学等理念为指导来引导学生创办数学小报。
我从一年级就引导学生创办数学小报,针对学生在不同学段的知识需求、实践能力和不同年龄阶段学生的年龄特点,制定了计划。一年级的时候针对低年级的学生喜欢美丽的图案,鲜艳的色彩但又动手能力差的特点,选择由教师引导、家长帮助的方式剪贴生活中与数学有关的图片,由家长帮助粘贴在8开的卡纸上。二年级的时候可以慢慢让学生尝试自己从生活中去查找图片,自己动手剪贴在卡纸上,也可以自己试着或在家长的帮助下将搜集到的资料写在小报的相应栏目中,并试着自己设计花边,涂上颜色。三年级的时候可以让学生自己动手设计版面、边框、栏目、内容,可以让学生自己动手查阅书籍。四年级的时候由于学生已经具备了前面三个年段的能力,内容除了查阅书籍以外,学生还可以利用现代化手段,上网查找等方式来搜集有关数学方面的资料。
在内容上,我要求学生小报的范围可以广一些,内容可以丰富一些,可以包括一些数学家的故事、数学定理的发现、一些有趣的数学现象、趣味数学知识、具有挑战性的数学问题、奥赛平台等等。把在学习中觉得自己做的好的地方写出来、画出来。比如做题时的巧妙解法,对于某一问题的深入思考等等。
在形式上我主张可以多种多样,但要既规范,又有个性。既然是报纸,我们就要做出报纸的样子。我计划让学生通过对《大庆晚报》、《大庆教育报》等多家报纸的观察分析,了解报纸的一般编排形式。但规范不等于千篇一律,我更主张学生的报纸要有自己的个性。首先要起一个个性鲜明,响亮好记的报名。学生开动脑筋,发挥想象力,取出了很多精彩的好名字。我为学生提供了几个名字,比如起“数学大世界”、“奇妙的数学”、“数学天地”、 “数学乐园”、“数学智力快车”、“数学春晓”、“数学放大镜”“数学真奇妙”等等。此外,在具体编排上,我也计划让学生也做出自己的个性和风采,可以自己设计制作花边,进行涂色,会电脑的同学也可以自己插入一些漂亮的图案,让小报不仅有内容好,而且外观美,做到第一眼就“一见钟情”。
当学生创办完数学小报之后,更重要的是在于读报。我计划学生每月月初的时候设计构思自己的小报,在学生报纸办好之后,每月一次大约月末的时候在班级设计一节交流课,把较好的作品一一展示,但是由于班额比较大,班级空间有限,我设计了“数学墙报区”,把这些小报贴在了班级的墙上,让他们互相做读者,读一读别人的报纸是怎样的,取长补短。
I. 小学一年级生活数学手抄报要怎么做急急急。。。
阿拉伯数字
在生活中,我们经常会用到0、、2、3、4、5、6、7、8、9这些数字。那么你知道这些数字是谁发明的吗?
这些数字符号原来是古代印度人发明的,后来传到阿拉伯,又从阿拉伯传到欧洲,欧洲人误以为是阿拉伯人发明的,就把它们叫做"阿拉伯数字",因为流传了许多年,人们叫得顺口,所以至今人们仍然将错就错,把这些古代印度人发明的数字符号叫做阿拉伯数字。
现在,阿拉伯数字已成了全世界通用的数字符
九九歌
九九歌就是我们现在使用的乘法口诀。
远在公元前的春秋战国时代,九九歌就已经被人们广泛使用。在当时的许多著作中,都有关于九九歌的记载。最初的九九歌是从"九九八十一"起到"二二如四"止,共36句。因为是从"九九八十一"开始,所以取名九九歌。大约在公元五至十世纪间,九九歌才扩充到"一一如一"。大约在公元十三、十四世纪,九九歌的顺序才变成和现在所用的一样,从"一一如一"起到"九九八十一"止。
现在我国使用的乘法口诀有两种,一种是45句的,通常称为"小九九";还有一种是81句的,通常称为"大九九"。
数学符号的起源
数学除了记数以外,还需要一套数学符号来表示数和数、数和形的相互关系。数学符号的发明和使用比数字晚,但是数量多得多。现在常用的有200多个,初中数学书里就不下20多种。它们都有一段有趣的经历。
例如加号曾经有好几种,现在通用"+"号。
"+"号是由拉丁文"et"("和"的意思)演变而来的。十六世纪,意大利科学家塔塔里亚用意大利文"più"(加的意思)的第一个字母表示加,草为"μ"最后都变成了"+"号。
"-"号是从拉丁文"minus"("减"的意思)演变来的,简写m,再省略掉字母,就成了"-"了。
到了十五世纪,德国数学家魏德美正式确定:"+"用作加号,"-"用作减号。
乘号曾经用过十几种,现在通用两种。一个是"×",最早是英国数学家奥屈特1631年提出的;一个是"· ",最早是英国数学家赫锐奥特首创的。德国数学家莱布尼茨认为:"×"号象拉丁字母"X",加以反对,而赞成用"· "号。他自己还提出用"п"表示相乘。可是这个符号现在应用到集合论中去了。
到了十八世纪,美国数学家欧德莱确定,把"×"作为乘号。他认为"×"是"+"斜起来写,是另一种表示增加的符号。
"÷"最初作为减号,在欧洲大陆长期流行。直到1631年英国数学家奥屈特用":"表示除或比,另外有人用"-"(除线)表示除。后来瑞士数学家拉哈在他所著的《代数学》里,才根据群众创造,正式将"÷"作为除号。
十六世纪法国数学家维叶特用"="表示两个量的差别。可是英国牛津大学数学、修辞学教授列考尔德觉得:用两条平行而又相等的直线来表示两数相等是最合适不过的了,于是等于符号"="就从1540年开始使用起来。
1591年,法国数学家韦达在菱中大量使用这个符号,才逐渐为人们接受。十七世纪德国莱布尼茨广泛使用了"="号,他还在几何学中用"∽"表示相似,用"≌"表示全等。
大于号"〉"和小于号"〈",是1631年英国著名代数学家赫锐奥特创用。至于≯""≮"、"≠"这三个符号的出现,是很晚很晚的事了。大括号"{ }"和中括号"[ ]"是代数创始人之一魏治德创造的。
奇妙的圆形
圆形,是一个看来简单,实际上是很奇妙的圆形。
古代人最早是从太阳,从阴历十五的月亮得到圆的概念的。一万八千年前的山顶洞人曾经在兽牙、砾石和石珠上钻孔,那些孔有的就很圆。
以后到了陶器时代,许多陶器都是圆的。圆的陶器是将泥土放在一个转盘上制成的。
当人们开始纺线,又制出了圆形的石纺缍或陶纺缍。
古代人还发现圆的木头滚着走比较省劲。后来他们在搬运重物的时候,就把几段圆木垫在大树、大石头下面滚着走,这样当然比扛着走省劲得多。
大约在6000年前,美索不达米亚人,做出了世界上第一个轮子--圆的木盘。大约在4000多年前,人们将圆的木盘固定在木架下,这就成了最初的车子。
会作圆,但不一定就懂得圆的性质。古代埃及人就认为:圆,是神赐给人的神圣图形。一直到两千多年前我国的墨子(约公元前468-前376年)才给圆下了一个定义:"一中同长也"。意思是说:圆有一个圆心,圆心到圆周的长都相等。这个定义比希腊数学家欧几里得(约公元前330-前275年)给圆下定义要早100年。
圆周率,也就是圆周与直径的比值,是一个非常奇特的数。
《周髀算经》上说"径一周三",把圆周率看成3,这只是一个近似值。美索不达来亚人在作第一个轮子的时候,也只知道圆周率是3。
魏晋时期的刘徽于公元263年给《九章算术》作注。他发现"径一周三"只是圆内接正六边形周长和直径的比值。他创立了割圆术,认为圆内接正多连形边数无限增加时,周长就越逼近圆周长。他算到圆内接正3072边形的圆周率,π= 3927/1250。刘徽已经把极限的概念运用于解决实际的数学问题之中,这在世界数学史上也是一项重大的成就。
祖冲之(公元429-500年)在前人的计算基础上继续推算,求出圆周率在3.1415926与3.1415927之间,是世界上最早的七位小数精确值,他还用两个分数值来表示圆周率:22/7称为约率,355/113称为密率。
在欧洲,直到1000年后的十六世纪,德国人鄂图(公元1573年)和安托尼兹才得到这个数值。
现在有了电子计算机,圆周率已经算到了小数点后一千万以上了。
从一加到一百
七岁时高斯进了 St. Catherine小学。大约在十岁时,老师在算数课上出了一道难题:"把 1到 100的整数写下来,然後把它们加起来!"每当有考试时他们有如下的习惯:第一个做完的就把石板﹝当时通行,写字用﹞面朝下地放在老师的桌子上,第二个做完的就把石板摆在第一张石板上,就这样一个一个落起来。这个难题当然难不倒学过算数级数的人,但这些孩子才刚开始学算数呢!老师心想他可以休息一下了。但他错了,因为还不到几秒钟,高斯已经把石板放在讲桌上了,同时说道:「答案在这儿!」其他的学生把数字一个个加起来,额头都出了汗水,但高斯却静静坐着,对老师投来的,轻蔑的、怀疑的眼光毫不在意。考完後,老师一张张地检查着石板。大部分都做错了,学生就吃了一顿鞭打。最後,高斯的石板被翻了过来,只见上面只有一个数字:5050(用不着说,这是正确的答案。)老师吃了一惊,高斯就解释他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50对和为 101的数目,所以答案是 50×101=5050。由此可见高斯找到了算术级数的对称性,然後就像求得一般算术级数合的过程一样,把数目一对对地凑在一起。
勾股定理
勾股定理:在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方。
这个定理在中国又称为"商高定理",在外国称为"毕达哥拉斯定理"。为什么一个定理有这么多名称呢?商高是公元前十一世纪的中国人。当时中国的朝代是西周,是奴隶社会时期。在中国古代大约是战国时期西汉的数学著作《周髀算经》中记录着商高同周公的一段对话。商高说:"…故折矩,勾广三,股修四,经隅五。"什么是"勾、股"呢?在中国古代,人们把弯曲成直角的手臂的上半部分称为"勾",下半部分称为"股"。商高那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事实说成"勾三股四弦五"。由于勾股定理的内容最早见于商高的话中,所以人们就把这个定理叫作"商高定理"。 毕达哥拉斯(Pythagoras)是古希腊数学家,他是公元前五世纪的人,比商高晚出生五百多年。希腊另一位数学家欧几里德(Euclid,是公元前三百年左右的人)在编著《几何原本》时,认为这个定理是毕达哥达斯最早发现的,所以他就把这个定理称为"毕达哥拉斯定理",以后就流传开了。
关于勾股定理的发现,《周髀算经》上说:"故禹之所以治天下者,此数之所由生也。""此数"指的是"勾三股四弦五",这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的。
勾股定理的应用非常广泛。我国战国时期另一部古籍《路史后记十二注》中就有这样的记载:"禹治洪水决流江河,望山川之形,定高下之势,除滔天之灾,使注东海,无漫溺之患,此勾股之所系生也。"这段话的意思是说:大禹为了治理洪水,使不决流江河,根据地势高低,决定水流走向,因势利导,使洪水注入海中,不再有大水漫溺的灾害,是应用勾股定理的结果。
无声胜有声
在数学上也不乏无声胜有声这种意境。1903年,在纽约的一次数学报告会上,数学家科乐上了讲台,他没有说一句话,只是用粉笔在黑板上写了两数的演算结果,一个是2的67次方-1,另一个是193707721×761838257287,两个算式的结果完全相同,这时,全场爆发出经久不息的掌声。这是为什么呢?
因为科乐解决了两百年来一直没弄清的问题,即2是67次方-1是不是质数?现在既然它等于两个数的乘积,可以分解成两个因数,因此证明了2是67次方-1不是质数,而是合数。
科尔只做了一个简短的无声的报告,可这是他花了3年中全部星期天的时间,才得出的结论。在这简单算式中所蕴含的勇气,毅力和努力,比洋洋洒洒的万言报告更具魅力。
为什么时间和角度的单位用六十进位制 时间的单位是小时,角度的单位是度,从表面上看,它们完全没有关系。可是,为什么它们都分成分、秒等名称相同的小单位呢?为什么又都用六十进位制呢? 我们仔细研究一下,就知道这两种量是紧密联系着的。原来,古代人由于生产劳动的需要,要研究天文和历法,就牵涉到时间和角度了。譬如研究昼夜的变化,就要观察地球的自转,这里自转的角度和时间是紧密地联系在一起的。因为历法需要的精确度较高,时间的单位"小时"、角度的单位"度"都嫌太大,必须进一步研究它们的小数。时间和角度都要求它们的小数单位具有这样的性质:使1/2、1/3、1/4、1/5、1/6等都能成为它的整数倍。以1/60作为单位,就正好具有这个性质。譬如:1/2等于30个1/60,1/3等于20个1/60,1/4等于15个1/60…… 数学上习惯把这个1/60的单位叫做"分",用符号"′"来表示;把1分的1/60的单位叫做"秒",用符号"″"来表示。时间和角度都用分、秒作小数单位。 这个小数的进位制在表示有些数字时很方便。例如常遇到的1/3,在十进位制里要变成无限小数,但在这种进位制中就是一个整数。 这种六十进位制(严格地说是六十退位制)的小数记数法,在天文历法方面已长久地为全世界的科学家们所习惯,所以也就一直沿用到今天。
哥德巴赫猜想 哥德巴赫(Goldbach C.,1690.3.18~1764.11.20)是德国数学家; 在1742年6月7日给欧拉的信中,哥德巴赫提出了一个命题:任何大于5的奇数都是三个素数之和。 但这怎样证明呢?虽然做过的每一次试验都得到了上述结果,但是不可能把所有的奇数都拿来检验,需要的是一般的证明,而不是个别的检验。" 欧拉回信又提出了另一个命题:任何一个大于2的偶数都是两个素数之和。但是这个命题他也没能给予证明。现在通常把这两个命题统称为哥德巴赫猜想 二百多年来,尽管许许多多的数学家为解决这个猜想付出了艰辛的劳动,迄今为止它仍然是一个既没有得到正面证明也没有被推翻的命题。
够了吧,自己选择吧