在坐标纸上描述位置,分数乘法包括分数于整数相乘,分数与分数相乘再有圆的周长,面积
到飞翔教学资源网就能看到完整的……
⑵ 小学六年级数学课本上册
百分数的应用
1光明村今年每百户拥有彩电121台,比去年专增加66台,去年每百台拥有彩电多少台?今属年比去年增长了百分之几?
2街心公园的总面积为24000平方米,其中建筑、道路等占公园总面积的百分之二十五,其余为绿地。街心公园的绿地面积有多少平方米?
3参加田径比赛的人数油4人,比参加球类比赛的人数少百分之二十五。参加球类比赛的有多少人?
4光明小学围00名学生投保“平安保险”,保险金额每人5000元,保险期掀一年。按年保险费率白分之0.4计算,全校共应付保险费多少元?
⑶ 小学六年级数学上册复习资料
数 学 十 一 册 知 识 点
分数乘法
意义:求一个数的几分之几是多少?例如×表示求的是多少?
计算方法:分子乘分子作分子,分母乘分母作分母,结果要化成最简分数。
倒数:乘积是1的两个数互为倒数。1的倒数是1,0没有倒数。
分数除法
意义:①已知两个因数的积,及其中一个因数,求另一个因数的运算。例如÷表示已知两个因数的积是,其中一个因数是,求另一个因数是多少?
②已知一个数的几分之几是多少,求这个数?例如÷表示已知一个数的是,求这个数是多少?
计算方法:一个数除以分数(整数)等于乘这个分数的(整数)的倒数。
比
意义:两个数相除又叫做两个数的比。例如2÷3=2:3=
比值:比的前项除以后项所得的商叫做比值。比值可以用分数表示也可以用小数或整数表示
比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
圆
圆心o:决定圆的位置。
半径r:决定圆的大小。连接圆心和圆上任意一点的线段叫做半径。r=
直径d:通过圆心并且两端都在圆上的线段叫做直径。d=2r
圆周率∏:任意一个圆的周长与直径的比值叫做圆周率。∏是一个无限不循环小数,一般取值∏=3.14
圆的周长(C)公式:C=∏d或C=2∏r
圆的面积(S)公式:S=∏
圆环的面积公式:=∏(-)
百分数
意义:百分数表示一个数是另一个数的百分之几。百分数也叫做百分率或百分比。百分数只表示两个数的关系,它不是一个具体的数,所以它的后面不能写单位名称。另外百分数的分子还可以是小数。
折扣:商店有时降价出售商品,叫做打折扣销售,通称“打折”。几折就表示十分之几,也就是百分之几十。例如八折==80﹪,六折五=0.65=65﹪
纳税:缴纳的税款叫做应纳税额。应纳税额与各种收入的比率叫做税率。
利率:存入银行的钱叫做本金。取款时银行多支付的钱叫做利息。利息与本金的比值叫做利率。
利息的计算公式:利息=本金×利率×时间
统计
常用统计图:条形统计图、折线统计图、扇形统计图。
条形统计图:可以清楚的看出各种数量的多少。
折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化。
扇形统计图:可以清楚的看出各部分数量同总数之间的关系。
分数、百分数应用题的一般解题步骤:
1.审题,理解题意,判断找出谁是单位“1”;
2.初步判定:若单位“1”已知,则本题用乘法计算;若单位“1”未知,则本题用除法计算;
3.找出或求出已知量或所求量所对应的分率(分数或百分数)。
已知量是指:题目中已经出现的,后面加单位的数量。
未知量是指:题目中的问题所要求出来的数量。
参考公式如下:单位“1”(已知量)×所求量对应的分率=所求量
已知量÷已知量所对应的分率=单位“1”(所求量)
熟记常用知识点
分数与小数互化常数
=0.5=50﹪ =0.25=25﹪ =0.75=75﹪ =0.2=20﹪ =0.4=40﹪ =0.6=60﹪=0.8=80﹪ =0.125=12.5﹪ =0.375=37.5﹪ =0.625=62.5﹪ =0.875=87.5﹪=0.1=10﹪ =0.3=30﹪ =0.7=70﹪ =0.9=90﹪ =0.05=5﹪ =0.15=15﹪ =0.35=35﹪ =0.45=45﹪ =0.55=55﹪
=0.65=65﹪ =0.85=85﹪ =0.95=95﹪ =0.04=4﹪ =0.08=8﹪ =0.12=12﹪ =0.16=16﹪ =0.0625=6.25﹪
∏取值∏=3.14时常用计算结果
1∏=3.14 2∏=6.28 3∏=9.42 4∏=12.56 5∏=15.7 6∏=18.84 7∏=21.98 8∏=25.12 9∏=28.26 16∏=50.24 25∏=78.5 36∏=113.04
常用平方数结果
=121 =144 =169 =196 =225 =256 =289 =324 =361
乘法运算定律
乘法交换律:a×b=b×d
乘法结合律:a×b×c=a×(b×c)
乘法分配律:a×(b+c)=ab+ac或a×(b-c)=ab-ac
⑷ 小学六年级数学上册最难题
1
、一根绳长
4/5
米
,
先用去
1/4,
又用去
1/4
米
,
一共用去多少米
?
2
、山羊
50
只
,
绵羊比山羊的
4/5
多
3
只
,
绵羊有多少只
?
3
、看一本
120
页的书
,
已看全书的
1/3,
再看多少页正好是全书的
5/6?
4
、一瓶油
4/5
千克
,
已用去
3/10
千克
,
再用去多少千克正好是这桶油的
1/2?
5
、一袋大米
120
千克
,
第一天吃去
1/4,
第二天吃去余下的
1/3,
第二天吃去多少千克
?
6
、一批货物,汽车每次可运走它的
1/8
,
4
次可运走它的几分之几?如果这批货物重
116
吨,已经
运走了多少吨?
7
、某厂九月份用水
28
吨,十月份计划比九月份节约
1/7
,十月份计划比九月份节约多少吨?
8
、一块平行四边形地底边长
24
米,高是底的
3/4
,它的面积是多少平方米?
9
、人体的血液占体重的
1/13
,血液里约
2/3
是水,爸爸的体重是
78
千克,他的血液大约含水多少
千克?
10
、
六年级学生参加植树劳动,
男生植了
160
棵,
女生植的比男生的
3/4
多
5
棵。
女生植树多少棵?
11
、
新光小学
四年级人数是
五年级
的
4/5
,三年级人数是四年级的
2/3
,如果
五年级
是
120
人,那么
三年级是多少人?
12
、甲、乙两车同时从相距
420
千米的
A
、
B
两地相对开出,
5
小时后甲车行了全程的
3/4
,乙车行
了全程的
2/3
,这时两车相距多少千米?
13
、
五年级
植树
120
棵,六年级植树的棵数是五年级的
7/5
,五、六年级一共植树多少棵?
14
、修一条
12/5
千米的路,第一周修了
2/3
千米,第二周修了全长的
1/3
,两周共修了多少千米?
15
、一条公路长
7/8
千米,第一天修了
1/8
千米,再修多少千米就正好是
1/2
全长的
?
16
、小华看一本
96
页的故事书,第一天看了
1/4
,第二天看了
1/8
。两天共看了多少页?
17
、一本书有
150
页,小王第一天看了总数的
1/10
,第二天看了总数的
1/15
,第三天应从第几页看
起?
18
、学校运来
2/5
吨水泥,运来的黄沙是水泥的
5/8
还多
1/8
吨,运来黄沙多少吨?
19
、小伟和
小英
给希望工程捐款钱数的比是
2 :5
。
小英
捐了
35
元,小伟捐了多少元?
20
、电视机厂今年计划比去年增产
2/5
。去年生产电视机
1/5
万台,今年计划增产多少万台?
21
、某村要挖一条长
2700
米的水渠,已经挖了
1050
米,再挖多少米正好挖完这条水渠的
2/3
?
22
、某校少先队员采集树种,四年级采集了
1/2
千克,五年级比四年级多采集
1/3
千克,六年级采集
的是五年级的
6/5
。六年级采集树种多少千克?
23
、仓库运来大米
240
吨,运来的大豆是大米吨数的
5/6
,大豆的吨数又是面粉的
3/4
。运来面粉多
少吨?
24
、甲筐苹果
9/10
千克
,
把甲的
1/9
给乙筐
,
甲乙相等
,
求乙筐苹果多少千克
?
25
、一桶油倒出
2/3
,刚好倒出
36
千克,这桶油原来有多少千克?
26
、甲、乙两个工程队共修路
360
米,甲乙两队长度比是
5 : 4
,甲队比乙队多修了多少米?
27
、服装厂第一车间有工人
150
人,第二车间的工人数是第一车间的
2/5
,两个车间的人数正好是全
厂工人总数的
5/6
,全厂有工人多少人?
28
、一批水果
120
吨,其中梨占总数的
2/5
,又是苹果的
4/5
,苹果有多少千克?
29
、甲乙两数的和是
120
,把甲的
1/3
给乙,甲、乙的比是
2:3
,求原来的甲是多少?
30
、
小红
采集标本
24
件,送给小芳
4
件后,
小红
恰好是小芳的
4/5
,小芳原有多少件?
⑸ 人教版小学六年级数学上册概念都是有哪些
人教版小学六年级数学上册概念如下:
第一单元位置:
1、找位置:先列后行。格式为:(列,行)。例如:(a,b)。
2、位置的表示方法:两边小括号,中间是逗号,先写列,再写行。
3、平移方法:左右平移,列变行不变;上下平移,行变列不变。
第二单元分数乘法:
1、分数乘整数的意义和整数乘法的意义相同:就是求几个相同加数的和的简便运算。
2、分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
3、整数乘分数:分数乘以整数,可以看作是求几个分数相加的和是多少。整数乘以分数,可以看作是求整数的几分之几是多少。
4、分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
5、乘积是1的两个数叫互为倒数。
6、求一个数(0除外)的倒数的方法:把这个分数的分子、分母调换位置。1的倒数是1。0没有倒数。真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
7、一个数(0除外)乘以一个真分数,所得的积小于它本身。
8、一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
9、一个数(0除外)乘以一个带分数,所得的积大于它本身。
第三单元分数除法:
1、分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
2、分数除以整数(0除外),等于分数乘这个整数的倒数。
3、整数除以分数等于整数乘以这个分数的倒数。
4、分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
5、两个数相除又叫做两个数的比。
6、“:”是比号,读做“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
7、比同除法比较:比的前项相当于被除数,后项相当于除数,比值相当于商。
8、根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。
9、比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。
10、在工农业生产中和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。
11、一个数(0除外)除以一个真分数,所得的商大于它本身。
12、一个数(0除外)除以一个假分数,所得的商小于或等于它本身。
13、一个数(0除外)除以一个带分数,所得的商小于它本身。
第四单元圆
1、圆的定义:平面上的一种曲线图形。
2、将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。圆心一般用字母O表示。它到圆上任意一点的距离都相等。
3、半径:连接圆心到圆上任意一点的线段叫做半径。半径一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。
4、圆心确定圆的位置,半径确定圆的大小。
5、直径:通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d表示。
6、在同一个圆内,所有的半径都相等,所有的直径都相等。
7、在同一个圆内,有无数条半径,有无数条直径。
8、在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。
9、圆的周长:围成圆的曲线的长度叫做圆的周长,用“C”表示。
10、圆的周长总是直径的3倍多一些,这个比值是一个固定的数。我们把圆的周长和直径的比值叫做圆周率,用字母“π”表示。圆周率是一个无限不循环小数。在计算时,取π≈3.14。
11、圆的周长公式:C=πd或C=2πr
12、圆的面积:圆所占面积的大小叫圆的面积。
13、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
14、在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。
15、一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=πR²-πr²或S=π(R²-r²)。
16、环形的周长=外圆周长+内圆周长。
17、半圆的周长等于圆的周长的一半加直径。半圆的周长公式:C=πd÷2+d或C=πr+2r
18、在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小以上倍数的平方倍。
19、两个圆的半径比等于直径比等于周长比,而面积比等于以上比的平方。
20、当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;
21、当一个圆的直径增加a厘米时,它的周长就增加πa厘米。
22、在同一圆中,圆心角占圆周角的几分之几,它所在扇形面积就占圆面积的几分之几;所对的弧就占圆周长的几分之几。
23、当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小。
24、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。
25、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
26、只有2条对称轴的图形是:长方形。
27、只有3条对称轴的图形是:等边三角形。
28、只有4条对称轴的图形是:正方形。
29、有无数条对称轴的图形是:圆、圆环。
30、直径所在的直线是圆的对称轴。
第五单元百分数
1、百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
2、百分数的意义:表示一个数是另一个数的百分之几。百分数表示两个数之间的比率关系,不表示具体的数量,无单位名称。
3、百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。分子部分可为小数、整数,可以大于100,小于100或等于100。
4、小数与百分数互化的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,只要把百分号去掉,同时把数点向左移动两位。
5、百分数与分数互化的方法:把分数化成百分数,通常先把分数化成小数(除不尽的保留三位小数),再把小数化成百分数。
6、百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
7、百分率公式:
合格率=合格人数÷总人数100%发芽率=发芽数量÷总数量100%
出勤率=出勤人数÷总人数100%
8、应纳税额:缴纳的税款叫应纳税额。
9、应纳税额的计算:应纳税额=各种收入×税率。
10、本金:存入银行的钱叫做本金。
11、利息:取款时银行多支付的钱叫做利息。
12、利率:利息与本金的比值叫做利率。
13、国债利息的计算公式:利息=本金×利率×时间。
13、本息:本金与利息的总和叫做本息。
单位换算:
1、长度单位换算
1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米
2、面积单位换算
1平方千米=100公顷1公顷10000平方米1平方米=100平方分米
1平方分米=100平方厘米
3、体(容)积单位换算
1立方米=1000立方分米1立方分米=1升1立方分米=1000立方厘米
1立方厘米=1毫升
4、重量单位换算:1吨=1000千克1千克=1000克
运算定律:
1、加法交换律:两数相加交换加数的位置,和不变。a+b=b+a
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。如:a+b+c=a+c+b=a+(b+c)
3、乘法交换律:两数相乘,交换因数的位置,积不变。ab=ba
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。如:a×b×c=a×c×b=a×(b×c)
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(ab)×c=acbc
6、加、减法性质:一个数连续减去几个数,可以改写成减去这几个数的和。如:a-b-c=a-(b+c)
7、乘、除法性质:一个数连续除以几个数,可以改写成乘以这几个数的积。a÷b÷c=a÷(b×c)
(5)教科版小学六年级数学上册扩展阅读:
小学六年级数学学习方法
1、抓住课堂
平日学习最重要的是课堂学习,听课要认真,思维要跟着老师,总结老师所讲的数学思想、数学方法。
2、高质量完成作业
不仅要高速度,还要高正确率。写作业时,如果同一类型的题重复练习,就要多注意速度和准确率,并且在每做完一次要对此类题目进行思考总结,进一步提升自己,解题的规律、技巧等。
3、勤思考,多提问
对于老师给出的规律、定理,不仅要知其然还要知其所以然,对于老师的讲解,课本的内容,有疑问应尽管提出,清除学习隐患。
4、总结比较,理清思绪
要进行知识点总结比较。每学完一个章节都应要本章内容在脑中过一遍,对于相似易混淆的知识点应分项归纳比较,将其区分开来。
要对题目进行比较。平时作业或者考试的错题,选择性地记下来,并用在一旁记下注意事项,经常翻看,这对数学学习有极大的帮助。
5、有选择地做课外练习
课余时间并不充足,因此在做课外练习时要少而精,多反思
⑹ 教科版六年级上册数学期末测试卷
额,干本没有,我倒是有模拟的,希望对你有帮助
一、你能填得又快又准吗?(20×2分 = 40分)
1.如果向东运动5m记作+5m,那么向西运动3m应记作 m。
2.既不是正数,也不是负数的数是 。
3.―(―3)的相反数是 ;―1的倒数是 。
4.如果a<0,则 |a|= 。
5.单项式- 的系数是 ,次数是 。
6.若|a+3|+(b-2)2 = 0,则a-b = 。
7.如图1:AB<AC+BC,其理由是 。
8.69°30′的余角等于 。
9.0.02079保留三个有效数字约为 。
10.单项式- x2my与 x6yn的和是一个单项式,则m = ,n = 。
11.把多项式a4+4a3b-6ab2+4ab3按b的降幂排列为 。
12.把一根木条钉在墙上,至少要钉 个钉子,根据 。
13.按科学记数法,把15800000写成 。
14.如图2:∠1=∠2,则 ‖ ,∠BAD+ =180°。
二、你一定能选对!(3分×8 = 24分)
15.关于有理数,下面的说法正确的是 ( )
(A)有最大的数 (B)有绝对值最小的数
(C)有最小的数 (D)有绝对值最大的数
16.已知a、b、c均为有理数,则a + b + c的相反数是 ( )
(A) b + a - c (B)- b - a - c (C)-b –a +c (D)b –a + c
17.平面上有任意三点,过其中两点能画出直线条数 ( )
(A)1 (B) 3 (C) 1或3 (D)无数条。
18. a、b互为倒数,x、y互为相反数,则(a+b)(x +y)-ab的值为 ( )
(A)0 (B) 1 (C) -1 (D)无法确定
19.下列各组数中,大小关系判断正确一组是 ( )
(A)(-2)3>-23 (B)(-2)2< 22
(C) - >- (D)(-2)3>(-2)2
20.若某两位数的个位数字为a,十位数字为b,则此两位数可表示为 ( )
(A)a + b (B) ba (C)10b + a (D)10a + b
21.如图所示的立方体,如果把它展开,可以是下列图形中的 ( )
(A) (B) (C) (D)
22.在图中,∠1与∠2是同位角的有 ( )
(A)①、② (B)①、③ (C)②、③ (D)②、④
① ② ③ ④
三、你来算一算!千万别出错哟!!!
23.计算:(每题3分,共12分)
(1) (2)-14+50÷22×(― )
(3) (4)0÷(-5)- 53- 5
四、识图来计算:一定要看准了!!!(每题3分,共6分)
24、如图、已知:线段AB = 10㎝,C为AB的中点,求:AC的长;
25、如图、已知:AD//BC, 1 = C, B = 60o,求: C的度数;
五、说明题:(共4分)
26、已知:B、A、E在一条直线上, 1 = B。问: C与 2相等吗 ?为什么 ?
六、探索题:看准了、别被迷惑哟!!!(27题4分、28、29题5分、共14分)
27、观察图形,回答问题:若使AD//BC,需添加什么条件?
(要求:至少找出5个条件)
答: ① ②
③ ④
⑤
28、有这样一道题:“计算(2x - 3x y - 2xy )-(x - 2xy + y )+(- x
+ 3x y - y )的值,其中x = ,y = - 1。”甲同学把“x = ”错抄成
“x = - ” ,但他计算的结果也是正确的。试说明理由?并求出这个结果?
29、我国万里长城全长为a千米,一块砖的长为b米,秦始皇修长城一层共需多少块砖?如果长城全长为4500千米,砖长为15厘米,则一层共需多少块砖?
(是不是吓你一跳?注意单位换算)