『壹』 小学六年级奥数题(附答案)
10名运抄动员进行乒乓球比赛,每名运动员都要和其他运动员赛一场,每场比赛7局4胜制,比分按双方各自的胜局数计算,如一方胜4局,另一方胜1局,比分为4:1
,那么至少有(
)场比赛的比分相同。
某校举行入学考试,确定了录取分数线,报考的同学中,只有1/4被录取,录取者的平均分比录取分数线高10分,没有录取的同学平均分比录取分数线低26分。所有考生平均成绩是27分,录取分数线是(
)分。
一项工作,一个人单独完成所用时间是:甲用5天,乙用6天,丙用8天,现在从丙开始,按丙、甲、乙的顺序每天一人轮流先做,这项工作要经过(
)天才能完成。
李老师购买了一套教师住宅,采取分期付款的方式。一种付款方式是开始第一年先付7万元,以后每年付款1万元;另一种付款方式是前一半时间生年付款2万元,后一半时间,每年付款1万5千无。两种付款方式的付款钱数和付款时间相同。假如一次付款,可少付房款1万6千元。现在王老师一次付清房款,要付房款多少万元?
『贰』 小学六年级奥数测试题
(1)因为第一小组和第二小组人数的比是5:3,设第一小组有5x 人,则第二小组有3x 人
调动后第一小组有5x-14 人,第二小组有3x+14
此时第一小组和第二小组的人数比变成了1:2
所以(5x-14)/(3x+14 )=1/2
所以2(5x-14)=3x+14
解得x=6
所以第一小组原来有30人,第二小组原来有18人
(2)设工程总量为单位“1”,则甲每天完成的工程为1/20,乙每天完成的工程为1/24,丙每天完成的工程为1/30.设甲工作了x天后撤出,则得方程
(1/20+1/24+1/30)x+(1/24+1/30)(12-x)=1
解得x=2
所以甲撤出后,乙和丙又合作了10天完成了这项工程
『叁』 小学六年级比较难的奥数题
数理答疑团为您解答,希望对你有所帮助。
甲·乙两班学生到离校29千米的飞机场参观,但只有一辆汽车,一次只能乘坐一个班的学生。甲班学生的步行速度是6千米/时,乙班学生的步行速度是3千米/时,汽车速度是42千米/时。为了尽快到达飞机场,那么甲班学生需要步行多少千米?
29/{[(6+42)/(42/6 - 1)] + 6 + 42 + 3 + (42+3)/(42/3 -1) } * [(6+42)/(42/6 - 1)+6] = 6.5千米
甲班学生需要步行6.5千米
可画图理解:
线段AF上从左到右有点BCDE,过程:甲到B、车带乙到D,乙下车,车返回到C时,甲由B到C、乙由D到E;车带甲由C到F、乙由E到F。
分析:BC=6,则CD=42、DE=3,AD是AB的(42/6)倍,可求出AB= [(6+42)/(42/6 - 1)],CF是EF的(42/3)倍,可求出EF= [(42+3)/(42/3 - 1)],AC为所求,得上式。
1、 一个时钟,在中午对准标准时间,由于它走的比标准时间快,在当天下午标准时间5点整时,这个钟是5点多,且分针和时针重合,那么下一次两针重合是在标准时间的什么时刻?
下午5点多分针和时针重合是5点27又3/11分,即5小时快27又3/11分,300分钟快27又3/11分,即标准走300分钟实际走327又3/11分,实际走1分钟标准走300÷327又3/11分钟;下一次重合为6点32又8/11分,即实际走392又8/11分钟.
因此:300÷327又3/11 ×392又8/11 = 360分=6小时
所以:下一次两针重合是在标准时间的下午6点。(可知每次重合都是标准的整点数)
2、 王老师来学校门口等李铭同学,一到门口,王老师看了看手表,这时分针越过时针若干分,当李铭来时王老师又看了看手表,这时分针由时针的原位置前进了20分,而时针在分针的原位置,王老师将这一情况告诉李铭后,要他算出王老师在学校门口等候的时间,
时针走一分,分针走12分;可知开始时分针在前,令时针走x分,则x+12x=20,x=20/13
所以:20-20/13 = 240/13 = 18又6/13分钟
王老师在学校门口等候的时间:18又6/13分钟
3、一部书稿,甲打字员打完12天。乙打字员用同样的时间只能完成书稿的4/5.甲乙合打这部书稿要多少天能完成?
1/[1/12 + (4/5)/12] = 20/3
4、一项工程,甲要十天完成,乙要12天完成,如果甲乙合做4天,余下的工作由乙单独做,还要几天?
[1- (1/10 + 1/12)*4]/(1/12) = 16/5
5、一个长方形和一个正方形的周长都是16cm,长方形的宽是长的1/3 ,长方形的长宽各是多少?长方形的面积是多少?正方形的面积是多少?
长方形的长(16/2)/(1 + 1/3)=6cm, 宽6*1/3=2cm
长方形的面积是6*2=12cm²
正方形的面积是(16/4)²=16cm²
6、甲乙两个周长相等的长方形,甲长方形长与宽的比是3:2,乙长方形的长与宽的比是4:3,求甲乙面积比。
{[3/(3+2)]*[2/(3+2)]}/{[4/(4+3)]*[3/(4+3)]} = 49:50
7、一个直角梯形的周长是72cm,两底之和与两腰之和的比为13:5,其中一条腰长12cm,面积是多少?
[72*13/(13+5)]*[72*5/(13+5)-12]/2 = 208cm²
8、有一部分重叠的大、小两个圆,重叠部分占大圆面积的2/5,占小圆面积的3/4,求大、小圆面积的最简整数比。
[1/(2/5)]:[1/(3/4)] = 15:8
9、甲乙两个自然数都是两位数,如果甲数的6/17等于乙数的3倍,那么甲数与乙数的和是多少?
如果甲数的6/17等于乙数的3倍,则乙数是甲数的(6/17)/3 =2/17,
只有当乙数是10时,甲数85;满足条件;
那么甲数与乙数的和是10+85=95
10、甲乙两个班人数相等,已知甲班男生是乙班女生的1/5,乙班男生是甲班女生的1/8,甲班男生与乙班男生人数的比是多少?
甲班男生与乙班男生人数的比是[1/(1/8)-1]:{1/(1/5) -1}=7:4
11、六年级三班考试,全班平均82分,男生平均80分,女生平均90分,求男女生的比。
(90-82):(82-80) = 4:1
12、某工厂学徒中男工占4/5,师傅中男工占9/10,师徒加起来男工占41/50,师傅与徒弟的比。
1:[(9/10 - 4/5)/(41/50 - 4/5) - 1] = 1:4
师傅与徒弟的比1:4
就先这些吧,
别忘了采纳!
祝你学习进步,更上一层楼! (*^__^*)