❶ 四年级数学黄冈小状元鸡兔同笼1答案下册在一个大笼子里关了一些鸡和兔。共有头有36个,共有腿100条
假设全是鸡,应有脚:2×36=72条
兔有:(100-72)÷(4-2)=14只
鸡有:36-14=22只
❷ 一年级数学趣味小故事
1、小松鼠要过冬了
冬天到了,小松鼠要准备过冬的粮食了。
有一天小松鼠背着一个大袋子,来到森林里,对松树爷爷说:请吧你的松果送给我,好吗?松树爷爷很大方,说:你想要多少摘多少。小松鼠很高兴,它一边摘一边唱歌,不一会袋子装满了。松树爷爷问: 你摘了多少个?小松鼠说:哎呀, 我忘了!松树爷爷笑着说“我长了16 个松果,现在还有9个,你能算出摘了多少个,就让你背走。”小松树急了,不会算,怎么办呢?要是松树爷爷不让它背走,那冬天吃什么呢?我来帮它好了。
数学课上,老师讲过:知道总数,求部分数,就是从总数里去掉知道的一个部分数,就得另一部分数,用减法计算。我很快就算出来了,小松鼠摘了16-9=7(个)。
2、小朋友们你们可知道数学天才高斯小时候的故事吗?高斯在小学二年级时,有一次老师教完加法后想休息一下,所以便出了一道题目要求学生算算看,题目是:1+2+3+4………+96+97+98+99+100=?本以为学生们必然会安静好一阵子,正要找借口出去时,却被高斯叫住了!原来呀,高斯已经算出来了,小朋友你可知道他是怎么算的吗?高斯告诉大家他是如何算出的:将1加至100与100加至1;排成两排想加,也就是说:1+2+3+4+…………+96+97+98+99+100+100+99+98+97+96+…………+4+3+2+1=101+101+101+…………+101+101+101+101共有一百个101,但算式重复两次,所以把10100除以2便得到答案等于5050。从此以后高斯小学的学习过程早已经超过了其他的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才。
3、鸡兔同笼你听说过“鸡兔同笼”的问题吗?这个问题,是我国古代著名趣题之一。大约在1500年前,《孙子算经》就记载了这个有趣的问题。书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔?你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“双脚兔”。这样,(1)鸡和兔的脚的总数就由94只变成了47只;(2)如果笼子里有一只兔子,则脚的总数就比头的总数多1。因此,脚的总只数47与总头数35的差,就是兔子的只数,即47-35=12(只)。显然,鸡的只数就是35-12=23(只)了。这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已。这种思维方法叫化归法。化归法就是在解决问题时,先不对问题采取直接的分析,而是将题中的条件或问题进行变形,使之转化,直到最终把它归成某个已经解决的问题。
4、唐僧师徒摘桃子
一天,唐僧命徒弟悟空、八戒、沙僧三人去花果山摘些桃子。不长时间,徒弟三人摘完桃子高高兴兴回来。师父唐僧问:你们每人各摘回多少个桃子?
八戒憨笑着说:师父,我来考考你。我们每人摘的一样多,我筐里的桃子不到100个,如果3个3个地数,数到最后还剩1个。你算算,我们每人摘了多少个?
沙僧神秘地说:师父,我也来考考你。我筐里的桃子,如果4个4个地数,数到最后还剩1个。你算算,我们每人摘了多少个?
悟空笑眯眯地说:师父,我也来考考你。我筐里的桃子,如果5个5个地数,数到最后还剩1个。你算算,我们每人摘多少个?
是多少呢?
❸ 一年级数学,小兔10只小鸡20只总数还要多6只,小猪多少只
小猪有6只。因为它说小兔10只,小鸡20只,总数还要多6只,所以小猪当然有6只了!
❹ 小学鸡兔同笼问题 1.鸡兔一共20只,数数腿共44条,鸡兔各几只 小学三年级问题,不要X
设全部都是兔,一共有4×20=80只腿,比44条多36条,36除以鸡的腿与兔的差,是2,36÷2=18(只).....鸡,兔有20-18=2(只)
❺ 一年级数学:小兔10小鸡20只总数比小猪多6只,小猪多少只
10+20—6=24
❻ 一年级没学乘除鸡兔同笼问题
鸡兔同笼(小学一二年级)
已知总头数和总脚数,问鸡兔各几只公式:
兔子数=( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)
鸡数=(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)
方法一: 设全部都是鸡
总脚数将是2个总头数,多出来的实际脚数=实际脚数-2个总头数实际脚数多出来,就是因为有兔子,每多一只兔子,就多2只脚,兔子数=实际多出来的脚数有多少个2
兔子数=实际总脚数的一半-总头数
方法二:假设都是兔子,
总脚数将=4个总头数,实际脚数比都是兔子少,因为有鸡,每只鸡比兔子少2只脚
实际脚数比都是兔子少,少了多少个2,就是鸡数
鸡数=2个总头数-实际总脚数的一半
抬腿法
方法一
假如让鸡抬起一只脚,兔子抬起2只脚,还有总脚数一半(只)脚。笼子里的每只兔就比鸡的脚数多1,这时,脚与头的总头数之差=总脚数一半(只)脚-总头数=就是兔子的只数。
方法二
假如鸡与兔子都抬起两只脚,就是说鸡浮在空中没有脚,兔子只有2只脚,还剩下(总脚数-两个头数)只脚 , 这时地上只有兔子的脚,而且每只兔子有两只脚在地上,所以有兔子只数=(总脚数-两个头数)的一半=实际总脚数的一半-总头数。
方法三
我们可以先让兔子都抬起2只脚,那么就有2个总头数只脚,脚数和原来差总脚数-2个总头数只脚,这些都是每只兔子抬起2只脚,一共抬起(总脚数-2个总头数)只脚,得到兔子只数=(总脚数-2个总头数)的一半=实际总脚数的一半-总头数。
方法四
让所有兔子抬起两条前腿像鸡一样只有两条后腿着地,其实就是变成鸡一样的只有2只脚,就会有2个总数的脚,少的脚数=总脚数-2个总头数=2个兔子数
兔子数=实际总脚数的一半-总头数
方法五
假设法(通俗)
假设鸡和兔子都抬起一只脚,鸡成金鸡独立,兔子变成三脚兔,笼中站立的脚=实际总脚数-总头数(只)
然后再抬起一只脚,这时候鸡两只脚都抬起来就摔倒了,是屁股坐在地,只剩下用两只脚站立的兔子,剩下脚数=实际总脚数-2个总头数(只),兔子数=(总脚数-2个总头数)的一半=实际总脚数的一半-总头数
鸡下翅膀法
让所有鸡把翅膀放下当成脚,其实就是变成兔子一样的4只脚,就会有4个总数的脚,多出来的脚=4个总头数-总脚数=2个鸡数
鸡数=2个总头数-实际总脚数的一半
❼ 如何给一年级讲鸡兔同笼问题
我曾尝试给二年级的女儿讲过鸡兔同笼问题,希望对你有帮助。
用脚的总数专除以1只鸡的脚数(因属为1只兔的脚数是4,有可能除不尽,所以选鸡),商一定比鸡兔总数多,那么用这个商减去鸡兔总数,得到的差就是兔的个数,这样,鸡有多少也就知道了。
例如:已知有鸡兔20只,脚50个,求鸡兔各多少?
用我的方法,脚总数除以1只鸡的脚数,即2,得50/2=25
用这个商减去鸡兔总数,25-20=5,这个差就是兔的个数。
答:有鸡15只,兔5只。
❽ 兔狗+兔兔=狗兔鸡 数学+数=学数 各是什么 一年级数学题,求帮忙!
兔=9,狗=1,鸡=0,91+99=190.
数学+数=学数?
应该是:学数+数=数学 !或者 是 数学 - 数=学数 哈!
数=9,学=8,则有:89+9=98,即:学数+数=数学
❾ 1年级数学‘鸡跟兔同住笼子。有7个头。下面看有18只脚。请问兔和鸡各有多少只。还要讲解方法‘要教小
先叫他们都抬起一条腿。18-7=11。在叫它们抬起一条腿。11-7=4。这是鸡都座在了地上。兔子还有俩条腿。4除二等于二。。7-2=5。。兔子俩个。鸡五个。
❿ 一年级下册鸡兔同笼怎样解答
鸡兔同笼是中国古代的数学名题之一。大约在1500年前,《孙子算经》中就记载了版这个有趣的问题权。书中是这样叙述的:
今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?
这四句话的意思是:
有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。问笼中各有多少只鸡和兔?
算这个有个最简单的算法。
(总脚数-总头数×鸡的脚数)÷(兔的脚数-鸡的脚数)=兔的只数
(94-35×2)÷2=12(兔子数) 总头数(35)-兔子数(12)=鸡数(23)
解释:让兔子和鸡同时抬起两只脚,这样笼子里的脚就减少了总头数×2只,由于鸡只有2只脚,所以笼子里只剩下兔子的两只脚,再÷2就是兔子数。