❶ 跪求北师大版数学六年级上册《圆的认识(一)》的说课稿!!
《圆的认识》说课稿
内江八小•陈彬
一、说教材
1、教学内容及其所处的位置与作用:“圆的认识”是“人教版”六年级上册第四单元的内容,它是几何初步知识内容,既是一节起始课,也是后继学习“圆的周长”、“圆的面积”、“圆柱”、“圆锥”的基础。
2、学生情况分析:学生在日常生活中经常接触到圆形物体,在低年级也已经初步认识过程,但都是直观的表象的认识。
3、教学重难点:进一步认识圆的特征及其内在的联系,使学生深刻体会到圆与我们生活的密切联系,并学会用圆规画标准的圆。
二、说教学目标
1、使学生认识圆,掌握圆的特征,理解直径与半径的关系。
2、会使用工具画圆。
3、培养学生观察、分析、综合、概括及动手操作能力。
三、说教法和学法
本节课我将采用多种教学方法进行教学。用“情境教学法”,导入新课,激发学生的学习兴趣,引导学生深入研究圆与我们生活的密切联系,用“活动探究法”让学生主动探索,实践操作,认识圆的各部分名称及具体特征。用“小组合作法”让同学们在小组活动中,相互合作,创造性的以不同方法画圆。如果按照以上的方法实施教学,那么学生在学习过程中将会主动尝试,自主探索,以小组合作交流的方式,深入地认识圆、了解圆。
四、说教学过程
我的设计本着既要关注学生的知识与技能的培训,更要关注学生的学习过程与方法,情感态度与价值观的形成的教学思想,对本节课的教学,设计了二个主要环节。
(一)创设情境、导入新课
首先复习以前学过的平面图形有哪些?这些图形都是用什么线围成的?简单说出这些图形的特征。
(二)突出主体、探究新知
1、初步感知圆
首先我会让学生举举生活中的例子。“日常生活中哪些物体的形状是圆的?”学生可能会说出:硬币、光碟、路标、钟面、车轮等,这些物体的形状都是圆的。让学生初步感知圆,培养学生的空间想象力。
接着,我会出示的两组图形,第一组是长方形、正方形、三角形、梯形、平行四边形,第二组就是刚认识的圆,通过对比,可以清楚地看到,第一组图形是由线段首尾连接所围成的,而圆是由曲线所围成的,形成正确表象——圆是一种平面上的曲线图形。
2、认识圆的各部分名称和特征
(1)找圆心
首先让学生把事先准备好的圆形纸对折后打开,用笔和直尺把折痕画出来,并在圆形纸的其他位置上重复上面的折纸活动二、三次。操作后,问:“你发现了什么?”学生亲手操作后,发现所有的折痕都会相交于一点。这些折痕的交点,正好在圆的正中心,我们数学上把这一点叫作圆心,用字母“O”来表示。(设计意图:通过学生的直观操作,使学生的学习过程“动作化”,调动学生多种感官参与学习,并有意设置一些认知冲突,让学生积极主动地参与知识的形成过程。)
(2) 认识半径、直径
连接圆心和圆上任意一点的线段叫做半径,半径一般用字母r表示。让学生通过动手画一画,小组议一议,引导他们归纳总结出:在同一个圆里,半径能画无数条,所有半径的长度都相等。
通过圆心并且两端都在圆上的线段叫直径,直径一般用字母d表示。在这里因为有半径的知识做基础,我会尝试放手,让学生小组合作探讨直径的知识,引导他们归纳总结出,在同一个圆里直径也能画无数条,所有直径的长度都相等。
(3) 探讨半径和直径的关系
分组讨论在一个圆里,半径和直径有什么关系?通过测量和比较,让学生理解和掌握在同一个圆里半径和直径之间的关系,让学生用含有字母的式子表示半径是直径的一半、直径是半径的2倍关系。得出d = 2r与r = d/2的字母公式,并在练习中通过填表强调了圆内半径与直径的对应关系,还要求学生在圆内一些线段中,找出半径和直径。(设计意图:合理发挥学生的主体作用,让学生动脑、动手、动口、动眼,自主探索知识的形成与发展,并及时巩固学习成果。)
3、掌握画圆方法
在教学画圆的过程中,我同样会放手让同学们大胆的动脑,动手探索不同的画圆方法。学生可能会想到借助圆形物体画圆,用绕线钉子画圆,还有用圆规画圆等等。最后我会试着让学生用圆规在练习本上画圆,并要求一边画,一边想画圆的步骤有哪些。通过学生的汇报,我引导他们归纳出画圆的一般步骤:(1)定点(也就是定圆心的位置)(2) 定长(也就是定半径的长度),(3)旋转画圆。接着我会示范一次画圆的方法,强调画好后要标出圆心,半径和直径。
五、巩固练习:这些题进一步加深对圆的认识,并培养学生分析、推理和判断能力。
❷ 六年级上册数学日记《圆的认识》
篇一:学习圆的周长
今天早上老师要教我们怎样算周长。
老师先拿出圆片说:“每个人先画一个圆片或拿出一个圆形的东西,想办法量出它的周长。”于是,我们开始讨论了。我们先想办法,再动手操作,一个同学马上想出了办法,便说:“我有办法了。先在圆片上做一个记号,再从那个记号为点,向右在尺子上滚动一周,做一个记号,量出的长度就是这个圆片的周长了。”我马上又想到了一个办法,我说:“我也有办法,我们用纸条在圆片上绕一周,做一个记号,然后量出纸条长度,就是圆的周长了。”
过了一会,老师听我们讲出各自的办法之后便说,这样有些办法不免会有些误差,我来教你们怎样算周长吧!
“圆的周长要用到直径,圆的周长总是直径的3倍多一些,实际上,圆的周长除以直径是一个固定的数,我们把它叫做圆周率,用字母π表示,计算时通常取3.14,所以圆的周长=直径×圆周率(3.14),也就是c=πd或c=2πr。老师说完又举了例子。
我们学会了怎样算圆周率(圆的周长)。
篇二:关于圆的数学日记
老师就让我们将学具中的圆折一折看看能从中发现什么?我心里奇怪了:圆就是一个圆,有什么好折的呢?原来让我们折圆是为了了解圆的对称啊!
我们又拿出剪刀将一个圆剪了下来,再平均剪成八份。老师让我们想一想如何球出圆的面积来。同学们有的说用π乘、有的说用半径求……大家七嘴八舌,课堂好不热闹。最后老师让我们把剪好的八份近似于扇形的纸片试着拼成一个别的图形。我拼的是一个近似于平行四边形的图形。
随后,我们又分别将圆平均分成了16份、32份,再分别将剪好的小扇形拼成一个多边形。这时候我发现,平均分的数量越多,拼成的图形越接近长方形。
因为:长方形的面积=长×宽
所以:圆的面积=C/2×r=2πr/2×r=πr2
经过了图形的分解再组合,我知道了怎么求圆的面积啦!数学好神奇哟~
篇三:圆与正方形的奥秘
周末,我和爸爸一起去超市买卧室门外的小地毯,到了超市,爸爸选中了一种花色,这种花色有两种形状:圆形和正方形,服务员告诉我们,这两种地毯的周长都是一样的,是12.56dm。爸爸说:“反正大小都一样的,你来挑吧!”我连忙喊道:“我来算算。”说着,我向服务员要了纸和笔,按老师教过的方法,算起圆的面积。
要算圆的面积先求圆的半径:12.56÷3.14÷2=2分米,面积:3.14×2×2=12.56平方分米.
正方形的边长:12.56÷4=3.14分米,面积:3.14×3.14=9.8596平方分米.
“以即使圆和正方形的周长相等,它们的面积也不一定相等,买圆形地毯比正方形地毯要划算。”我滔滔不绝地给爸爸讲着,爸爸听得目瞪口呆,一旁的服务员也夸我聪明,我别提有多高兴了。
生活中真是处处有数学,处处有学问啊!
篇四:生活中的圆
今天,我在写作业的时候发现了一个问题。那就是生活中的圆。
什么叫做生活中的圆,那就是在生活中有哪些关于圆的周长、圆的面积还有圆的对称轴之类的东西,也就是圆的知识在生活中的应用。
在我们的现实生活中有许多地方要应用到圆的周长,只要你认真观察,就肯定能发现的,虽然我不知道大家知道多少关于圆的周长的东西,今天我就把我所知的一点皮毛告诉大家,据我所知,车轮走一圈的路程就是这个圆的周长;时钟的分针针尖走过的路线是钟面的周长;圆形餐桌围的花布边的长度也是餐桌面的周长;人们经常戴在手上的手镯也含有圆的周长的知识……真的是太多太多了,我只说了一点剩下的就由你这位高手去观察了。
圆面积其实也很简单,只要你会观察,眼睛亮一点就可以了。圆桌的大小也就是圆桌的面积;时针扫过的面的大小也就是这个钟的面积;还有就是可能大家很少见,那就是用绳子拴住牛吃草,求牛吃草的最大范围,也就是求圆的面积,……。这是我所归纳的。
还有,圆有无数条对称轴,切记!
我知道的就这些,不算多,所谓:“天外有山,人外有人”请指教。
其实生活中有许多数学,看你仔细不仔细。Do you know?
篇五:数学日记之圆的面积
之前,我们探索了圆的周长,现在我们继续我们的探索之旅。圆有周长就"理所当然"会有面积。现在我们探索我们的圆的周长的"兄弟"圆的面积。
之前,圆的周长是关于直径的,那"兄弟"面积就是关于直径的"老弟"半径的了。我们看着书上的探究活动,我们拿出数学用具,里面有两个圆形,一个圆是把一个圆分成了12份,一个圆是把一个圆分成了24份。我把12份的剪了下来,按照书上,我们拼成了一个像平行四边形的图形,我很奇怪,继续把24份的也拼成了像长方形的图形,我慢慢的理解到了:拼成的平行四边形的高相当于圆的半径,它的底相当于圆周长的一半。而长方形的长相当于圆周长的一半,它的宽相当于圆的半径。从我的理解中,我推测出了圆的面积计算公式:π乘r的平方就是圆的面积了。在原来的基础中,我举一反三,列出了考试时考圆的面积的三种方式:1.已知半径求面积,这一种是最简单的,直接π乘r的平方就行了。2.已知直径求面积,这一种先要求出半径(直径除以2=半径),再用半径的平方乘π就行了。3.已知周长就面积,这一道题就有点困难,但只要细心就能做好。先求直径:周长除以π,再求半径:直径除以2,再π乘r的平方就行了。
数学我们要学会举一反三,我们也要学会自己动手推出公式,这样数学才会成为你的知心朋友。
篇六:圆的周长
我们刚刚学习了圆的认识(一)、(二),知道了圆的许多知识,并且由圆的认识了解到了圆周长的应用,能联系生活实际解决问题,我们去了解一下圆周长的知识!
刚开始学圆的周长时,知道了能用滚动法和绕线法来量出圆的周长,探究出了圆的周长总是直径3倍多一些,实际上,圆的周长除以直径的商是一个固定的数,我们把它叫做圆周率,用字母π表示,计算时,通常取3.14。我们就得出一个公式:如果用C表示的周长,那么C=πd或C=2πr也就是圆的周长=圆周率×直径。圆的周长有3个应用:1.已知d求C=πd 2.已知r求C,先求d再求C 3.已知C求d d=C÷π 已知C求r 先求d 再求r。
已知d求C:一个圆的直径是5.5分米, 求这个圆的周长,那就用π3.14×直径5.5=17.27dm.
已知r求C:汽车车轮的半径为0.3米,它滚动1圈前进多少米?滚动1000圈前进多少米?它滚动一圈前进多少米?也就是求这个轮子的周长,先求出直径:0.3×2=0.6m,然后求一圈的周长:3.14×0.6=1.884m 最后求出1000圈前进多少米:1.884×1000=1884m。
已知C求d:花坛的的周长是62.8m。你能求出这个圆形花坛的直径吗?周长6.28÷π3.14=d 2m
已知C求r:一个圆的周长是25.12㎝,求这个圆的半径,那么先求这个圆的直径:用周长25.12÷π3.14=d 8㎝ 再求半径:8÷2=4㎝。
这是圆周长的四大典型例题,圆的周长,除以直径是一个固定的数,π是≈3.14的。
还有一种类型的题目:下图是一个一面靠墙,另一面用竹篱笆围成的半圆形养鸡场,这个半圆的直径为6米,篱笆长多少米?这题是求半圆的周长,一面靠墙的就不用算上篱笆,也就是求圆周长的一半,就用直径6m×π3.14=圆的周长 18.84m 再算圆周长的一半:18.84÷2=9.42m。
这就是有趣的圆的周长,圆周长的一半,让数学与生活紧紧地联系在一起,原来数学也是蕴藏着生活的奥秘!