导航:首页 > 小学年级 > 小学四年级奥数参赛

小学四年级奥数参赛

发布时间:2020-12-31 20:28:38

小学四年级奥数题60道

其实应用题就已经包括了解方成程

四年级奥数题
1、某校有100名学生参加数学竞赛,平均分是63分,其中男生平均分是60分,女生平均分是70分,男同学比女同学多( )人。
2、有黑白棋子一堆,其中黑子的个数是白子个数的2倍,如果从这堆棋子中每次同时取出黑子4个,白子3个,那么取出( )次后,白子余1个,而黑子余18个。
3、学校买回4个篮球和5个排球一共用185元,一个篮球比一个排球贵8元,篮球的单价是( )元。
4、小强爱好集邮,他用1元钱买了4分和8分的两种邮票,共20张,那么他买了4分邮票( )张

Ⅱ 小学四年级奥数题30道

一、按规律填数。

1)64,48,40,36,34,( )
2)8,15,10,13,12,11,( )
3)1、4、5、8、9、( )、13、( )、( )
4)2、4、5、10、11、( )、( )
5)5,9,13,17,21,( ),( )
二、等差数列
1.在等差数列3,12,21,30,39,48,…中912是第几个数?

2.求1至100内所有不能被5或9整除的整数和

3.把210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5,那么,第1个数与第6个数分别是多少?

4.把从1开始的所有奇数进行分组,其中每组的第一个数都等于此组中所有数的个数,如(1),(3、5、7),(9、11、13、15、17、19、21、23、25),(27、29、……79),(81、……),求第5组中所有数的和

5.将自然数如下排列,

1 2 6 7 15 16 …

3 5 8 14 17 …

4 9 13 18 …

10 12 …

11 …



在这样的排列下,数字排在第2行第1列,13排在第3行第3列,问:1993排在第几行第几列?

三、 平均数问题
1.已知9个数的平均数是72,去掉一个数后,余下的数平均数为78,去掉的数是______ .
2.某班有40名学生,期中数学考试,有两名同学因故缺考,这时班级平均分为89分,缺考的同学补考各得99分,这个班级中考平均分是_______ .

3.今年前5个月,小明每月平均存钱4.2元,从6月起他每月储蓄6元,那么从哪个月起小明的平均储蓄超过5元?

4.A、B、C、D四个数,每次去掉一个数,将其余下的三个数求平均数,这样计算了4次,得到下面4个数.
23, 26, 30, 33
A、B、C、D 4个数的平均数是多少?
5 A、B、C、D4个数,每次去掉一个数,将其余3个数求平均数,这样计算了4次得到下面4个数23、26、30、33,A、B、C、D4个数的和是 。

四、加减乘除的简便运算
1)100-98+96-94+92-90+……+8-6+4-2=( )

2)1976+1977+……2000-1975-1976-……-1999=( )

3)26×99 =( )
4)67×12+67×35+67×52+67=( )
5)(14+28+39)×(28+39+15)-(14+28+39+15)×(28+39)

五、数阵图

1、△、□、〇分别代表三个不同的数,并且:

△+△+△=〇+〇;〇+〇+〇+〇=□+□+□; △+〇+〇+□=60

求:△= 〇= □=

2.将九个连续自然数填入3行3列的九个空格中,使每一横行及每一竖列的三个数之和都等于60.

3.将从1开始的九个连续奇数填入3行3列的九个空格中,使每一横行、每一竖列及两条对角线上的三个数之和都相等.

4 用1至9这9个数编制一个三阶幻方,写出所有可能的结果。所谓幻方是指在正方形的方格表的每个方格内填入不同的数,使得每行、每列和两条对角线上的各数之和相等;而阶数是指每行、每列所包含的方格的数。

六、和差倍问题

1.果园里一共种340棵桃树和杏树,其中桃树的棵数比杏树的3倍多20棵,两种树各种了多少棵?

2.一个长方形,周长是30厘米,长是宽的2倍,求这个长方形的面积。

3.甲、乙两个数,如果甲数加上320就等于乙数了.如果乙数加上460就等于甲数的3倍,两个数各是多少?

4.有两块同样长的布,第一块卖出25米,第二块卖出14米,剩下的布第二块是第一块的2倍,求每块布原有多少米?
5.果园里有桃树和梨树共150棵,桃树比梨树多20棵,两种果树各有多少棵?

6.甲、乙两桶油共重30千克,如果把甲桶中6千克油倒入乙桶,那么两桶油重量相等,问甲、乙两桶原有多少油?
七、年龄问题
1.兄弟俩今年的年龄和是30岁,当哥哥像弟弟现在这样大时,弟弟的年龄恰好是哥哥年龄的一半,哥哥今年几岁?

2.母女的年龄和是64岁,女儿年龄的3倍比母亲大8岁,求母女二人的年龄各是多少岁?

3.哥哥今年比小丽大12岁,8年前哥哥的年龄是小丽的4倍,今年二人各几岁?

4.爷爷今年72岁,孙子今年12岁,几年后爷爷的年龄是孙子的5倍?几年前爷爷的年龄是孙子的13倍?

八、假设问题
1、有42个同学参加植树,男生平均每人种3棵,女生平均每人种2棵,男生比女生多种56棵.男、女生各多少人?
2.某小学举行一次数学竞赛,共15道题,每做对一题得8分,每做错一题倒扣4分,小明共得了72分,他做对了多少道题?
3.一张试卷有25道题,答对一题得4分,答错或不答均倒扣1分,某同学共得60分,他答对了多少道题?
4.小华解答数学判断题,答对一题给4分,答错一题要倒扣4分,她答了20个判断题,结果只得了56分,她答错了多少道题?
5. 育才小学五年级举行数学竞赛,共10道题,每做对一道题得8分,错一题倒扣5分,张小灵最终得分为41分,她做对了多少道题?

Ⅲ 小学四年级奥数题及答案50题

小学四年级奥数题及答案和题目分析
一、按规律填数。
1)64,48,40,36,34,( ) 2)8,15,10,13,12,11,( )
3)1、4、5、8、9、( )、13、( )、( ) 4)2、4、5、10、11、( )、( ) 5)5,9,13,17,21,( ),( ) 二、等差数列
1.在等差数列3,12,21,30,39,48,…中912是第几个数?
2.求1至100内所有不能被5或9整除的整数和

3.把210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5,那么,第1个数与第6个数分别是多少?

4.把从1开始的所有奇数进行分组,其中每组的第一个数都等于此组中所有数的个数,如(1),(3、5、7),(9、11、13、15、17、19、21、23、25),(27、29、……79),(81、……),求第5组中所有数的和
三、 平均数问题
1.已知9个数的平均数是72,去掉一个数后,余下的数平均数为78,去掉的数是______ . 2.某班有40名学生,期中数学考试,有两名同学因故缺考,这时班级平均分为89分,缺考的同学补考各得99分,这个班级中考平均分是_______ .
3.今年前5个月,小明每月平均存钱4.2元,从6月起他每月储蓄6元,那么从哪个月起小明的平均储蓄超过5元?
4.A、B、C、D四个数,每次去掉一个数,将其余下的三个数求平均数,这样计算了4次,得到下面4个数. 23, 26, 30, 33
A、B、C、D 4个数的平均数是多少?
5 A、B、C、D4个数,每次去掉一个数,将其余3个数求平均数,这样计算了4次得到下面4个数23、26、30、33,A、B、C、D4个数的和是 。
四、加减乘除的简便运算
1)100-98+96-94+92-90+……+8-6+4-2=( ) 2)1976+1977+……2000-1975-1976-……-1999=( ) 3)26×99 =( )
4)67×12+67×35+67×52+67=( )
5)(14+28+39)×(28+39+15)-(14+28+39+15)×(28+39)
五、数阵图
1、△、□、〇分别代表三个不同的数,并且;
△+△+△=〇+〇;〇+〇+〇+〇=□+□+□; △+〇+〇+□=60 求:△= 〇= □=
2.将九个连续自然数填入3行3列的九个空格中,使每一横行及每一竖列的三个数之和都等于60.
3.将从1开始的九个连续奇数填入3行3列的九个空格中,使每一横行、每一竖列及两条对角线上的三个数之和都相等.

4 用1至9这9个数编制一个三阶幻方,写出所有可能的结果。所谓幻方是指在正方形的方格表的每个方格内填入不同的数,使得每行、每列和两条对角线上的各数之和相等;而阶数是指每行、每列所包含的方格的数。
六、和差倍问题
1.果园里一共种340棵桃树和杏树,其中桃树的棵数比杏树的3倍多20棵,两种树各种了多少棵?
2.一个长方形,周长是30厘米,长是宽的2倍,求这个长方形的面积。

3.甲、乙两个数,如果甲数加上320就等于乙数了.如果乙数加上460就等于甲数的3倍,两个数各是多少?

4.有两块同样长的布,第一块卖出25米,第二块卖出14米,剩下的布第二块是第一块的2倍,求每块布原有多少米?
5.果园里有桃树和梨树共150棵,桃树比梨树多20棵,两种果树各有多少棵?
6.甲、乙两桶油共重30千克,如果把甲桶中6千克油倒入乙桶,那么两桶油重量相等,问甲、乙两桶原有多少油?
七、年龄问题
1.兄弟俩今年的年龄和是30岁,当哥哥像弟弟现在这样大时,弟弟的年龄恰好是哥哥年龄的一半,哥哥今年几岁?
2.母女的年龄和是64岁,女儿年龄的3倍比母亲大8岁,求母女二人的年龄各是多少岁?
3.哥哥今年比小丽大12岁,8年前哥哥的年龄是小丽的4倍,今年二人各几岁?
4.爷爷今年72岁,孙子今年12岁,几年后爷爷的年龄是孙子的5倍?几年前爷爷的年龄是孙子的13倍?
八、假设问题
1、有42个同学参加植树,男生平均每人种3棵,女生平均每人种2棵,男生比女生多种56棵.男、女生各多少人?
2.某小学举行一次数学竞赛,共15道题,每做对一题得8分,每做错一题倒扣4分,小明共得了72分,他做对了多少道题?
3.一张试卷有25道题,答对一题得4分,答错或不答均倒扣1分,某同学共得60分,他答对了多少道题?
4.小华解答数学判断题,答对一题给4分,答错一题要倒扣4分,她答了20个判断题,结果只得了56分,她答错了多少道题?
5. 育才小学五年级举行数学竞赛,共10道题,每做对一道题得8分,错一题倒扣
5分,张小灵最终得分为41分,她做对了多少道题?
自己做吧,有了答案就不会好好做,对不起

Ⅳ 20道小学四年级奥数题及答案

1.有一串数19962808864……,这串数的排列规律是:从第7个数起,每个数都是它前面两个数之和的个位数。那么这串数中第1999个数字是(),这1999个数字的和是()。
2.有一种细胞,每分钟分裂一次,每次能把一个细胞分裂成9个。经过1999分钟,把这些细胞平均装在7个试管里,还剩下()个细胞。
3.用记号(a)表示a的整数部分,如(10,62)=10,(15÷4)=3,那么(120÷7)×(9.47-1.83)=()
4.□□□□□+□□□□□=199998,则这10个□中的数字之和是()。
5.印刷厂要印刷数学口算册27万本,白班每天印刷2855本,夜班比白班每天多印刷290本。完成任务时,白班比夜班少印刷()本。
6.一条长2000米的公路两旁每隔10米种一棵杨树,每二棵杨树之间等距离种3棵枫树。这条公路两旁一共种枫树()棵。
7.

8.小明骑在牛背上要赶着四头水牛过河,这四头牛过河分别需要2分、3分、6分、8分钟,并且每次只能赶着两头牛过河。那么小明至少需要()分钟才能把牛全部赶过河去。
9.海关大楼共有十二层,李苹的爸爸在十楼办公,有一天,李苹去找爸爸,她用40秒从一楼走到五楼,照此速度,她至少还要再走()秒才能到达她爸爸办公室。
10.今年小玲12岁,妈妈40岁。当妈妈的年龄是女儿5倍的时候,母女两人年龄的和是()岁。
11.小巍带着一条猎犬骑车离家到26千米远的招宝山郊游,他骑车速度是每小时18千米,猎犬奔跑速度是骑车速度的2倍。当猎犬跑到招宝山脚下后,如小巍还未到,则马上返回迎着小巍跑去,遇到小巍后再跑向招宝山,……这样来回跑一直到小巍到招宝山为止。这时,这只猎犬一共跑了()千米路。
12.有一组算式:1+1,2+3,3+5,1+7,2+9,3+11,1+13……那么和是1997的算式是左起第()个算式,第1999个算式的和是()。
13.有两列火车,客车长200米,每秒行30米,货车长300米,每秒行20米。两车在平行轨道上齐头同向行进,()秒后客车超过货车;如两车相向而行,从相遇到错车而过,需要()秒。
14.四年级数学竞赛试卷共有15道题,做对一题得10分,做错一题扣4分,不答得0分。陈莉得了88分,她有()题未答。
15.四(2)班举行“六一”联欢晚会,辅导员老师带着一笔钱去买糖果,如果买芒果13千克,还差4元,如果买奶糖15千克,则还剩2元。已知每千克芒果比奶糖贵2元,那么辅导员老师带了()元钱。

参考答案
1.(2)(8003) 2.(2)
3.(119) 4.(90)
5.(13050) 6.(1200)
7.(略)
8.(19) 9.(70) 10.(42)
11.(52) 12.(998)(3998) 13.(20)(10)
14.(2) 15.(152)

1.1993年的元旦是星期五,请你算一算,1997年的元旦是星期几?2000年的元旦是星期几?
答: 星期三、星期六
2.某年的10月有5的星期六,4个星期日,问这一年的十月一日是星期几?
答: 星期一
3.
第一列 第二列 第三列 第四列 第五列
614…… 27101518 38111619 49121720 …… 51321
问:(1)300排在第几列?(2)1000排在第几列?
答: 第四列、第三列
4.用5÷14,商的小数点后面第1997位上数字是几?
答: 4
5.1÷7的商小数点后面2001个数字之和是多少?
答:2001÷6=333……3,(1+4+2+8+5+7)×333+1+4+2=8998
6.数列1,3,4,7,11,18……,从第三项开始,每项均为它前面相邻两项之和,数列中第2001个数被4除余几?
答: 0
7、将1----100的自然数按下面的顺序排列:
答:正方形里的9个数和是90,能否照这样框出9个数,使它们的和分别是170、216、630?
分析与解答:首先先观察9个数的特点。上下两个数的平均数是10,左右两个数的平均数也是10,对角线的平均数还是10。说明10是这九个数的平均数,它们的和就是90。从这里可以看出,用3×3的正方形框出来的9个数的和一定是9的倍数。170不是9的倍数,所以不可能和是170。225和630都是9的倍数,是不是这两个数都可以呢?可以发现,排在最左边一列和最右边一列上的数,不能做这9个数的平均数,因为画不出正方形。216和630÷9分别等于24和70,这两个数分别在哪一列呢?8个一循环,24÷8=3,正好在最右边一列,所以画不出来。而70÷8=8……6,余数是6,排在第6列,所以能画出来。
8、有一个数列:
1,2,3,5,8,13,……。(从第3个数起,每个数恰好等于它前面相邻两个数的和)
求第1993个数被6除余几?(这道题需要你耐心解答呦)
分析:如果能知道第1993个数是哪个数,问题很容易解决。可是要做到这一点不容易。由于我们所研究的是“余数”,如能构造出数列各项被6除,余数构成的数列,问题也可以得到解决。
解:根据“如果一个数等于几个数的和,那么这个数被a除的余数,等于各个加数被a除的余数的和再被a除的余数”。得到数列各项被6除,余数组成的数列是:
1,2,3,5,2,1,3,4,1,5,0,5,5,4,3,1,4,5,3,2,5,1,0,1,1,2,3,5,……。
观察规律,发现到第25项以后又重复出现前24项。呈现周期性变化规律。一个周期内排有24个数。(余数数列的前24项)
1993÷24=83……1。
第1993个数是第84个周期的第1个数。因此被6除是余1。

Ⅳ 小学四年级奥数人教版

13排
首先要想清楚怎样坐才能让学生人数同样多的情况尽量少:每排不同,从30、29、28……7,这样坐完24排时,我们发现(30+7)*24/2=444人,还有650-444=206人没有坐下,这时,怎样安排206人坐下都会产生相同人数的排,最少的办法是先坐满30人的,这样,从7人的排开始坐满30人,也就是补充23人,以此往下坐,206-23-22-21-20-19-18-17-16-15-14-13=8,我们再将8人坐在未坐满的某一排(29、28、27、26、25、24、23人的除外)都会产生同样多的2排,因此,将8人坐在22人的那一排,和原来30人的同样,这时,我们可以算出原来有一排是30人的,后来从补23-13共11排30人的,再加上原来22人补上8人的1排,共有13排是同样多人的,13是唯一的最少排人数相同的,注意:有人会说为什么要全部是30人的,如果从这30人的13排里任意抽出1人来,让30人的排数少了1人,但无论将这个人放在哪一排,都会产生相同的2排人,也就成了14排相同的了!这是一种方法
第二种,将650/30=21……20人,也就是先安排630人坐前面21排全是30人,然后第22排坐20人,这样还有2排是空的,这时有21排是相同的人数的,第一排抽1人出来成29人的,第二排抽2人成28人的,第三排抽3人出来成27人的,第四排抽4人成26人,第五排抽5人出来成25,第六排抽6人出来成24,第七排抽7人出来成23,第八排抽8人出来成22,第九排抽9人出来成21,这时,30人的排由21-9=12排,抽出了45人,20人的排已经有了,只能安排坐19、18人的了,45-19-18=8人,没办法,只能将8人放在22人的那一排,30人的排由12+1=13排了,如果将8人的放在其它排或者再拆分来坐都会产生更多相同人数的排(注意:现在是30人的有13排,但如果变成12排,而其它的排会出现2排以上相同的,也是相同人数排,这样就会更多相同人数排!)
标准答案:至少13排人数同样多!

Ⅵ 四年级上册奥数题及答案

四年级数学奥林匹克竞赛试题

参赛者班级: 姓名:

一、计算:

⑴20082008×2007-20072007×2008(10分)

⑵222222×999999(10分)

二、填空:(1—8题每题3分,9—14题每题7分。)

1、小军计算除法时把76写成67,结果得到的商是150余6,正确的结果应该是( )。

2、从10000里面连续减25,减( )次差是0?

3、小强今年11岁,小军今年17岁,两人年龄一共42岁时,小强( )岁。

4、用四个“5”和三个“0”,组成最大的且只读1个“0”的七位数是( )

5、小强、小清、小玲、小红四人中,小强不是最矮的,小红不是最高的,但比小强高,小玲不比大家高。请按从高到矮的顺序,把名字写出来。

( )

6、有两块木板各长80厘米,钉在一起的地方长10厘米,钉好后共长( )厘米?

7、两袋糖,一袋是84粒,一袋是20粒,每次从多的一袋里拿出8粒糖放到少的一袋里去,拿( )次才能使两袋糖的粒数同样多。

8、三棵树上停着24只鸟。如果从第一棵树上飞4只鸟到第二棵树上去,再从第二棵树飞5只鸟到第三树上去,那么三棵树上的小鸟的只数都相等,第二棵树上原有( )只?

9、用中国象棋的车,马,炮分别表示不同的自然数.如果:车÷马=2,炮÷车=4,炮-马=56,那么“车+马+炮”等于( ).

10、一个两位数,它的数字之和正好是9,而个位数字是十位数字的8倍,这个两位数是( )。

11、一张长方形纸片,长7厘米,宽5厘米.把它的右上角往下折叠,再把左下角往上折叠(如图).那么,未盖住的阴影部分的面积是( )平方厘米.

12、东东3年前的年龄与西西4年后的年龄之和是25岁,东东3年后的年龄等于西西l年前的年龄,求东东今年的年龄是( ),西西今年的年龄是( ).

13、在下面的3个方框内分别填入恰当的数字,可以使得这3个数的平均数是150.那么所填的3个数字之和是( ).

□,□8,□97

14、莉莉和莎莎一起从家去学校,莉莉步行,莎莎骑车.莎莎到学校发现自己没带文具盒,便立刻骑车回家去取,到家取出后又马上骑回学校,结果和莉莉一起到校.如果莉莉平均每分走53米,那么莎莎骑车平均每分行进( )米.

三、看规律填数

(1)0,1,3,8,21,( )(10分)

(2) (5分)

(3)下面乘法的算式中:A是( )、B是( )、C是( )、D是( )、E是( )。(5分)

Ⅶ 小学四年级奥数题目及答案。。。

问题1 如果一个四位数与一个三位数的和是1999,并且四位数和三位数是由7个不同的数字组成的。那么,这样的四位数最多能有多少个?

这是北京市小学生第十五届《迎春杯》数学竞赛决赛试卷的第三大题的第4小题,也是选手们丢分最多的一道题。

得到a=1,b+e=9,(e≠0),c+f=9,d+g=9。

为了计算这样的四位数最多有多少个,由题设条件a,b,c,d,e,f,g互不相同,可知,数字b有7种选法(b≠1,8,9),c有6种选法(c≠1,8,b,e),d有4种选法(d≠1,8,b,e,c,f)。于是,依乘法原理,这样的四位数最多能有(7×6×4=)168个。

在解答完问题1以后,如果再进一步思考,不难使我们联想到下面一个问题。

题2 有四张卡片,正反面各写有1个数字。第一张上写的是0和1,其他三张上分别写有2和3,4和5,7和8。现在任意取出其中的三张卡片,放成一排,那么一共可以组成多少个不同的三位数?

此题为北京市小学生第十四届《迎春杯》数学竞赛初赛试题。其解为:

后,十位数字b可取其他三张卡片的六种数字;最后个位数c可取剩余两张卡片的四种数字。综上所述,一共可以组成不同的三位数共(7×6×4=)168个。

如果从甲仓库搬67吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的2倍;如果从甲仓库搬17吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的5倍,原来两仓库各存货物多少吨?
67×(2+1)-17×(5+1)
=201-102
=99(吨)
99÷〔(5+1)-(2+1)〕
=99÷3
=33(吨)答:原来的乙有33吨。
(33+67)×2+67
=200+67
=267(吨)答:原来的甲有267吨。
分析:
1、如果从甲仓库搬67吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的2倍;
甲和乙总的数量没有变,总的数量包括2+1=3个现在的乙,现在的乙是原来的乙加上67得来。所以总的数量就包括3个原来的乙和3个67〔67×(2+1)=201〕。
2、如果从甲仓库搬17吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的5倍,
理由同上,总的数量包括5+1=6个原来的乙和6个17(即17×(5+1)=102)
3、从1和2可看出,原来3个乙和原来6个乙只相差3个乙,而这三个乙正好相差201-102=99吨。可求出原来的乙是多少,99÷3=33吨。
4、再求原来的甲即可。

甲每小时行12千米,乙每小时行8千米.某日甲从东村到西村,乙同时从西村到东村,以知乙到东村时,甲已先到西村5小时.求东西两村的距离
甲乙的路程是一样的,时间甲少5小时,设甲用t小时
可以得到
1. 12t=8(t+5)
t=10
所以距离=120千米

小明和小芳围绕着一个池塘跑步,两人从同一点出发,同向而行。小明:280米/分;小芳:220/分。8分后,小明追上小芳。这个池塘的一周有多少米?
280*8-220*8=480
这时候如果小明是第一次追上的话就是这样多
这时候小明多跑一圈...

1.用3.5.7.0组成一个两位数,( )乘( )的积最大.( )乘( )的积最小.
2.有一些积木的块数比50多,比70少,每7个一堆,多了一块,每9个一堆,还是多1块,这些积木有多少块?
3.6盆花要摆成4排,每排3盆,应该怎样摆?
4.4(1)班有4个人参加4X50米接力赛,问有多少种不同的安排方法?
5.能否从右图中选出5个数,使它们的和为60?为什么? 15 25 35
25 15 5
5 25 45
6.5饿连续偶数的和是240,这5个偶数分别是多少?
7.某人从甲地到乙地,先骑12小时摩托车,再骑9小时自行车正好到达.返回时,先骑21小时自行车,再骑8小时摩托车也正好到达.从甲地到乙地如果全骑摩托车需要多少时间?
1 70*53最大 30*75最小
2 64块
3 五角星形
4 4*3*2*1=24
5不能,因为都是奇数,奇数个奇数相加不可能得偶数
6.240/5=48,则其余偶数是:48-2=46,48-4=44,48+2=50,48+4=52
7.摩托车的速度是xkm/h,自行车速是ykm/h 。
21y+8x=12x+9y
4x=12y
x=3y
所以摩托车共需12+9/3=15小时

Ⅷ 我想要小学四年级奥数题100道

小学四年级奥数练习题上学期
1.计算:
(1) 7,8,14,16,21,24,( ),32。(2) (16,7),(17,10),(24,19),(18, )。2.如果25×口÷3×15+5=2005,那么口_________.3. 教室里的彩灯按照5盏红灯,4盏蓝灯,3盏黄灯的顺序循环出现,则第80盏是( )色的,前160盏中有( )红灯. 4.下面的算式是按一定规律排列的,那么第100个算式的得数是多少? 4+3,5+6,6+9,7+12,…( )=( )5.某工厂为了表扬好人好事核实一件事,厂方找了A,B,C,D四人.A说:“是B做的.”B说:“是D做的.”C说:“不是我做的.”D说:“B说的不对.”这四人中只有一人说了实话.问:这件好事是___________做的.6.李志明、张斌、王大为三个同学毕业后选择了不同的职业,三人中一个当了记者.一次有人问起他们的职业,李志明说:“我是记者.”张斌说:“我不是记者.”王大为说:“李志明说了假话.”如果他们三人中只有一句是真的,那么______________是记者.7.从1开始的前2005个整数的和是__________数(填:“奇数”或“偶数”)。8. 计算 1-2+3-4+5-6+…+1991-1992+1993=( ) 100-99+98-97+96-95+……+4-3+2-1=________。9.如果○+□=6,□=○+○,那么□-○=__________。10.从1开始的奇数:1,3,5,7,……其中第100个奇数是__________。11、应用题:(1)、学校第一次买了3个水瓶和20个茶杯,共用134元,第二次有买了同样的3个水瓶和16个茶杯,共用118元,每个水瓶和茶杯各要多少元?

(2)一个班有51人,男生是女生的2倍,女生和女生各有多少人?

(3)、哥哥比弟弟多钓了20条鱼,哥哥是弟弟的3倍,他们各钓了几条鱼?

(4) 两缸金鱼共46尾,若甲缸再放入5尾,乙缸取出2尾,这时乙缸仍比甲缸多3尾,甲、乙两缸原有金鱼多少尾?

12、计算
(1) 612-375+275+(388+286)

(2) 756+1478+346-(256+278)-246

13、某体育馆西侧看台有30排座位,后一排都比前一排多2个座位。最后一排有132个座位。体育馆西侧看台共有多少个座位?

14、某车间原有男工人数比女工人数多48人,若调走2名女工,男工人数就是女工人数的3倍。求车间原有男、女工各多少人?

15、甲、乙、丙三人共生产了163个零件,乙比甲多生产8个,丙比乙少生产3个。甲、乙、丙三人各生产多少个?

16、在一个减法算式里,被减数、减数、差的和等于120,差是减数的3倍。求差。

17、今天是星期天,从今天算起,第300天是星期几?

18、小强和爸爸的年龄和是45岁,再过5年,爸爸的年龄是小强的4倍。他们今年各多少岁?

19、某人从一楼到六楼用了120秒,如果他用同样的速度上到第十二楼。还需多少秒?

20、一个笼子里有鸡和兔共30只,数脚共有70只。问鸡和兔各多少只?

21、一木器厂生产课桌,计划每天生产60张,实际每天多生产4张,结果提前一天完成任务。原计划要生产课桌多少张?

22.小红沏茶要经过洗壶要2分钟,烧水20分钟,洗茶杯2分钟,买茶叶15分钟,等茶叶开需3分钟,把茶沏好,小红最少需( 25 )分钟。
23.一个生产小组要加工一批零件,原计划15天完成任务,实际每天比原来多做50个,结果比计划提前3天完成任务。实际每天完成( 250 )个。
24.某数分别被2、3、5除,都余1,那么这个数最小是( 31 )。
25.书架上有10本故事书,3本历史书,12本科普读物,小王任意从书架上取一本书,有( 25 )种不同的取法。
26.玲玲今年11岁,爷爷今年74岁。再过( 10 )年,爷爷的年龄是玲玲年龄的4倍。
27.一根木料长21米,把它锯成3米长的一段。每锯一段要用6分钟,共用( 36 )分钟。
28.一把钥匙只能开一把锁,现有8把钥匙8把锁,但不知哪把钥匙能开哪把锁。至少要试( 28)次,就可以保证使全部钥匙与锁相匹配。
29.如下图,五圆相连,每个位置的数字都是按一定规律填写的,请找出规律,并求出x所代表的数是( ).

30.把1、2、3、4、5、6这六个数字分别填入右面的表格中,每格只填一个数字,使每一行右边的数字比左边的大,每一列下面的数字比上面的大,共有5种不同的填法。请写出一种填法即可。

31.从1000至199的整数中,数字1出现了( )次?
32.芳芳做加法时,把一个加数个位上的9看作7,十位上的6看作9,结果和是201,正确的结果应当是( )。
33. 2只小花猫2小时能钓到2条鱼,按照它们这样的钓鱼本领,要在10小时钓到10条鱼,应该去( 2 )只小花猫。
34.赵、钱、孙、李和周姓五个同学,他们一个比一个大一岁,合计50岁,现知赵比李大;孙比钱大,比周小;钱比李大;周比赵小;那么孙是( 10 )岁。
35.一次智力测验有10道判断题,每答对一道题得3分,每答错一道扣2分。小红答完10道,只得20分,她答错( 2 )道。(8)小朋友分苹果,如果每人分2个,就余16个,如果每人分5个,少14个,小朋友有( 10 )个。
36.东风汽车集团原计划制造一批高级出口轿车,每天制造18辆,要30天完成。如果每天多制造2辆,可以提前( 3 )天完成。
37.三年级一班有45人,三年级二班和三年级一班的平均人数是47人。三年级二班比三年级三班少1人,三年级三班有( )人?
38.某校饲养场有182只兔子,把它们装进两种笼子里,一种每笼装6只,另一种每笼装4只,正好装满36个笼子,每笼装6只兔子的笼子有( 19 )个。
39.哥哥现在的年龄是弟弟当年年龄的3倍,哥哥当年的年龄与弟弟现在的年龄相同,哥哥与弟弟现在的年龄和为30岁。问:哥哥现在( )岁?
40. 若干个人参加劳动,他们一部分人抬土,另一部分人挑土,共用去27根扁担和44个筐,求共有多少人参加劳动?
41.甲、乙、丙三人各有若干粒豆子,甲先拿自己的豆粒数的一半给乙和丙;然后乙也拿出自己现有豆粒数的一半给丙和甲;丙也把自己现有豆粒数的一半儿分给甲和乙;他们三人至少共有多少粒小豆?
42.一辆卡车运矿石,晴天每天可运16次,雨天每天只能运一次。它运了17天。共运了122次。求这些天中有几天下雨?

43.一筐梨连筐重48千克,取出一半后,连筐还有25千克,这只筐原来装多少千克梨?

44. 一种浮在水面生长的草莲,每天长大一倍,如果10天正好长满一池塘,问长满半池要多少天?

45. 有5只猫,同时吃5只老鼠,需要3分钟,现有50只猫同时吃50只老鼠需要多少分钟?

46. 小周在期终中,语文、外语、自然平均成绩74分,数学考试成绩公布后,他的平均成绩提高了3分,小周的数学考了多少分?

47. 蓓蓓读一本文艺书,前9天每天看25页,以后每天比前一天多读10页,又经过3天读完。蓓蓓平均每天看多少页?

48.小许考了语文、数学、外语、自然、地理五门功课,数学不算在内,平均成绩90分,把数学加进去,平均成绩是92分,小强的数学成绩是多少分?

49.现有鸡和兔共15只,合计腿数共46条,求鸡和兔各有多少只?

50. 鸡兔同笼共21个头,62条腿,问鸡兔各是多少只?

51. 李玲买来8分和1角的练习本共20本,共用去了1元8角4分钱,问她买回两种练习本各是多少?

52. 买来1角,8分和4分的三种邮票共20张,总值1元7角,其中1角与8分的邮票的张数相等,求三种邮票各购几张?

53.一次智力测验有10道题,每答一道得10分,每答错一道扣2分,小红答完了10道题,只得64分,他答对了几道题?

54.香坊区小学数学竞赛共15道题,每做对一题得8分,做错一题倒扣3分,李明共得76分,他做对了几道题?

55.一张桌子30元,一把椅子22元,现买桌子和椅子共14件,付款392元,买桌子和椅子各多少件?

阅读全文

与小学四年级奥数参赛相关的资料

热点内容
小学读书计划表格模板 浏览:342
小学语文四年级感叹句 浏览:243
天通苑中山实验小学 浏览:596
小学三年级语文补习班内容 浏览:921
吉安师范附属小学作文 浏览:396
小学教师备课网站 浏览:1
私立美男学院 浏览:383
小学六年级上册语文第六单元试卷凉州岛 浏览:915
小学1年级手gong大全 浏览:459
小学生手抄报的图片大全图片大全 浏览:68
小学健康知识讲座 浏览:120
小学毕业季适合发老师的句子 浏览:451
汕尾凤山中心小学校长 浏览:606
小学生毕业汇演舞蹈 浏览:702
小学生抗击疫情的表演 浏览:107
私立华联大学本科 浏览:61
小学三年级作文我想谢谢你400 浏览:855
中小学生睡眠问题 浏览:174
小学生公共生活守规则教案 浏览:313
淮河私立学校 浏览:99