『壹』 求第五届小学“希望杯”全国数学邀请赛五年级第2试试题与答案
第五届小学“希望杯”全国数学邀请赛 第2试 试题及答案:
四年级组:http://www.aoshu.cn/News/2007-04/358446269943663.shtml
五年级组:http://www.aoshu.cn/News/2007-04/358446269943663.shtml
六年级组:http://www.aoshu.cn/News/2007-04/392929996989684.shtml
『贰』 第七届小学希望杯全国数学邀请赛邯郸获奖名单
河北 杨宇轩 邯郸市世纪数学辅导学校 四年级 一等奖 2009年
河北 邢卓越 邯郸市世佳培训中心 四年级 一等奖 2009年
河北 郭荣 邯郸市魏县新起点辅导学校 四年级 一等奖 2009年
河北 张凯宁 邯郸市丛台区实验小学 五年级 一等奖 2009年
河北 冯笑天 邯郸市冀南奥数辅导学校 五年级 一等奖 2009年
河北 孙轶泽 邯郸市曙光小学 六年级 一等奖 2009年
河北 李皓 邯郸市阳光奥数学校 六年级 一等奖 2009年
河北 李阳 邯郸市铁路小学 六年级 一等奖 2009年
河北 李世豪 邯郸市世纪兴少儿智力学校 六年级 一等奖 2009年
河北 李紫荆 邯郸市汉光小学 六年级 一等奖 2009年
河北 崔志琛 邯郸市曙光小学 四年级 二等奖 2009年
河北 柳金瑞 邯郸市世纪数学辅导学校 四年级 二等奖 2009年
河北 程昊懿 邯郸市世纪数学辅导学校 四年级 二等奖 2009年
河北 安子涵 邯郸市世纪数学辅导学校 四年级 二等奖 2009年
河北 程昊昱 邯郸市世纪数学辅导学校 四年级 二等奖 2009年
河北 张秉烨 邯郸市赵都小学 四年级 二等奖 2009年
河北 郑嘉琪 邯郸市赵都小学 四年级 二等奖 2009年
河北 唐嘉彤 邯郸市磁县白土学区 四年级 二等奖 2009年
河北 张毅然 邯郸市丛台区实验小学 四年级 二等奖 2009年
河北 陈久毅 邯郸市逸夫小学 四年级 二等奖 2009年
河北 袁怡悦 邯郸市武安西石门矿校 四年级 二等奖 2009年
河北 姜晓凡 邯郸市莱克实验小学 四年级 二等奖 2009年
河北 邵卿宇 邯郸市曙光小学 五年级 二等奖 2009年
河北 刘成 邯郸市展览路小学 五年级 二等奖 2009年
河北 朱慧敏 邯郸市展览路小学 五年级 二等奖 2009年
河北 张达威 邯郸市莱克实验小学 五年级 二等奖 2009年
河北 耿嘉浩 邯郸市岭南路小学 五年级 二等奖 2009年
河北 梁爽 邯郸市磁县实验学校 五年级 二等奖 2009年
河北 李天翔 邯郸市磁县实验学校 五年级 二等奖 2009年
河北 裴晨蕾 邯郸市丛台区广安小学 五年级 二等奖 2009年
河北 王钟钰 邯郸市中华桥小学 五年级 二等奖 2009年
河北 贾京楠 邯郸市铁路小学 五年级 二等奖 2009年
河北 袁世杰 邯郸市丛台区实验小学 五年级 二等奖 2009年
河北 李修恒 邯郸市新起点培训学校 五年级 二等奖 2009年
河北 金子一 邯郸市展览路小学 六年级 二等奖 2009年
河北 杜谦 邯郸市展览路小学 六年级 二等奖 2009年
河北 司坤 邯郸市曙光小学 六年级 二等奖 2009年
河北 王雨菲 邯郸市曙光小学 六年级 二等奖 2009年
河北 赵鸿煜 邯郸市曙光小学 六年级 二等奖 2009年
河北 石若嘉 邯郸市曙光小学 六年级 二等奖 2009年
河北 张铭璇 邯郸市曙光小学 六年级 二等奖 2009年
河北 申子翼 邯郸市丛台小学 六年级 二等奖 2009年
河北 宋世伟 邯郸市丛台区广安小学 六年级 二等奖 2009年
河北 李世超 邯郸市丛台区实验小学 六年级 二等奖 2009年
河北 杜朝阳 邯郸市世纪兴少儿智力学校 六年级 二等奖 2009年
河北 刘威 邯郸市世纪兴少儿智力学校 六年级 二等奖 2009年
河北 李晓峰 邯郸市世纪兴少儿智力学校 六年级 二等奖 2009年
河北 王泽铖 邯郸市世纪兴少儿智力学校 六年级 二等奖 2009年
河北 张世政 邯郸市阳光奥数学校 六年级 二等奖 2009年
河北 吕舜 邯郸市阳光奥数学校 六年级 二等奖 2009年
河北 白瑞祺 邯郸市逸夫小学 六年级 二等奖 2009年
河北 邵蔚 邯郸市新起点培训学校 六年级 二等奖 2009年
河北 张默涵 邯郸市魏县希望辅导学校 六年级 二等奖 2009年
河北 李占印 邯郸市魏县汇英小学 六年级 二等奖 2009年
河北 孙成龙 邯郸市魏县汇英小学 六年级 二等奖 2009年
河北 李雪微 邯郸市魏县河岸上花蕾学校 六年级 二等奖 2009年
河北 魏志涵 邯郸市魏县申甫育英学校 六年级 二等奖 2009年
河北 牛慧慧 邯郸市魏县小斜街英才学校 六年级 二等奖 2009年
河北 汤乐 邯郸市魏县聂街育才学校 六年级 二等奖 2009年
河北 申怡园 邯郸市魏县聂街育才学校 六年级 二等奖 2009年
河北 刘冲 邯郸市肥乡星苑小学 六年级 二等奖 2009年
河北 藏子儒 邯郸市复兴路小学 六年级 二等奖 2009年
河北 胡庚辰 邯郸市和平小学 六年级 二等奖 2009年
河北 孙敬源 邯郸市磁县实验学校 六年级 二等奖 2009年
河北 赵向宇 邯郸市磁县实验学校 六年级 二等奖 2009年
河北 吕怀乾 邯郸市磁县实验学校 六年级 二等奖 2009年
河北 史佳慧 邯郸市世纪数学辅导学校 六年级 二等奖 2009年
河北 郑琨鹏 邯郸市绿化路小学 六年级 二等奖 2009年
河北 黄天波 邯郸市黎明小学 六年级 二等奖 2009年
河北 郝媛媛 邯郸市黎明小学 六年级 二等奖 2009年
河北 胡佳豪 邯郸市武安镇南关小学 六年级 二等奖 2009年
河北 贺瑞瑛 邯郸市武安镇南关小学 六年级 二等奖 2009年
河北 江梓健 邯郸市武安镇南关小学 六年级 二等奖 2009年
河北 王宇飞 邯郸市武安镇南关小学 六年级 二等奖 2009年
河北 姜超 邯郸市武安镇南关小学 六年级 二等奖 2009年
河北 张文瀚 邯郸市第一中学 初一 一等奖 2009年
河北 张晨曦 邯郸市第一中学 初一 一等奖 2009年
河北 李熠辉 邯郸市第一中学 初二 一等奖 2009年
河北 孟祥来 邯郸市第一中学 初二 一等奖 2009年
河北 郭宇飞 邯郸市第一中学 初二 一等奖 2009年
河北 刘松卓 邯郸市第一中学 初一 二等奖 2009
河北 李雨晨 邯郸市第一中学 初一 二等奖 2009年
河北 申怡飞 邯郸市第一中学 初一 二等奖 2009年
河北 冀昊琰 邯郸市新起点培训学校 初一 二等奖 2009年
河北 冯小珊 邯郸市新起点培训学校 初一 二等奖 2009年
河北 赵凯宁 邯郸市新起点培训学校 初一 二等奖 2009年
河北 张文楷 邯郸市育华中学 初一 二等奖 2009年
河北 李家鑫 邯郸市汉光中学 初一 二等奖 2009年
河北 李睿 邯郸市汉光中学 初一 二等奖 2009年
河北 张逸晨 邯郸市汉光中学 初一 二等奖 2009年
河北 许一帆 邯郸市第一中学 初二 二等奖 2009年
河北 李翀 邯郸市第一中学 初二 二等奖 2009年
河北 吕梦璇 邯郸市第一中学 初二 二等奖 2009年
河北 王缙 邯郸市第一中学 初二 二等奖 2009年
河北 苏航 邯郸市第十一中学 初二 二等奖 2009年
河北 宋康 邯郸县第一中学 高一 二等奖 2009年
河北 张辉 邯郸县第一中学 高一 二等奖 2009年
河北 裴世杰 邯郸县第一中学 高一 二等奖 2009年
『叁』 第四届小学希望杯全国数学邀请赛六年级1试试卷及答案
(1)16 (2)3又7分之6 (3)c;a (4)9 (5)9
(6)3 (7)2006 (8)2.4 (9)7 (10)20:25:24
(11)1.5 (12)18 (13)300/π或360/π (14)15
(15)39
『肆』 第七届小学希望杯全国数学邀请赛第二试答案{四年级}
1、计算:1÷50+2÷50+……+98÷50+99÷50= 。
2、2009年1月的月历如图所示,则2009年的“六一”儿童节是星期 。
3、《希望杯数学能力培训教程(四年级)》一书有160页,在它的页码中,数字“2”共出现了 次。
4、将1到35这35个自然数连续地写在一起,够成了一个大数:12345678910011……333435,则这个大数的位数是 。
5、在一次数学测验中,四(2)班的全体同学平均88分,男生平均92分,女生平均82分,则男生人数是女生人数的 倍。
6、图3是著名的汉诺塔,有三个圆盘,按半径从小到大,由上而下地套在A柱上,要将A柱上的三个圆盘移到C柱上(可利用B柱过渡)规定:每次只能移动一个圆盘,并且大圆盘不能在小圆盘的上面,那么,至少要移 次。
7、图中共有 个三角形。
8、如图,将四边形ABCD的四条边分别延长一段,得∠CBE,∠BAH,∠ADG,∠DCF,那么,这四个角的和等于 。
9、若用G(a)表示自然数a的约数的个数,如:自然数6的约数有1、2、3、6,共4个,记作G(6)=4,则G(36)+G(42)= .
10、奥运商品展卖厅的厨窗里放了100个福娃,从左向右依次是:
按此规律,排在第30个的是 。
11、如图所示的算式中,相同的汉字表示相同的一位数字,不同的汉字表示不同的一位数字,则数+学+竞+赛= 或 。
12、小明从家里出发,先向东偏北30°的方向跑了350米到达点A,接着向北偏西30°的方向跑了200米到达点B,然后又向西偏南30°的方向跑了350米到达点C,这时小明距离家 米。
13、希望小学的生物标本室里有蜻蜓,蝉,蜘蛛共11只,它们共有74条腿,10对翅膀,由图知该标本室里有 只蜘蛛。
14、人的头发平均有12万根,如果最多不超过20万根,那么13亿中国人中至少有 人的头发的根数相同。
15、大宝和小贝同时从学校出发去市图书馆,大宝到了图书馆还书,借书,用了半个小时,然后骑车沿原路返回学校,在途中遇到小贝,两人出发时刻与相遇时刻如图所示,则学校与市图书馆距离为( )米。
16、 abcd,abc,ab,a依次表示四位数,三位数,两位数及一位数,
且满足abcd—abc—ab—a= 1787,则这四位数abcde= 或 。
17、百米决赛前,小芳对参赛的五名选手的名次作了预测,比赛的结果同她预测的名次全不相同,由图10知小芳预测为第一名的选手的实际名次是第 名。
18、图11中“风车”(阴影部分)的面积等于 。
19、如图12,边长为4cm的正方形将边长为3cm的正方形遮住了一部分,则空白部分的面积的差等于 。
12
a
B
1
c
d
m
11
n
20、在图13的九个方格中,每行、每列,每条对角线上的三个数的和都相等,则a+b+c+d=
题号
1
2
3
4
5
6
7
8
9
10
答案
99
一
36
61
1.5
7
35
360°
17
迎迎
题号
11
12
13
14
15
16
17
18
19
20
答案
24;28
200
4
6500
10350
2009;2010
5
4
7
29
1、一个小数的小数点分别向右,左边移动一位所得两数之差为2.2,则这个小数用分数表示为 。
2、某种皮衣标价为1650元,若以8折降价出售仍可盈利10%(相对于进价)那么若以标价1650元出售,可盈利 元。
3、求多位数111……11(2000个)222……22(2000个)333……33(2000个)被多位数333……33(2000个)除所得商的各个数上的数字的和为 。
4、计算(1/(1×2)+2/(1×2×3)+3/(1×2×3×4)+……+9/(1×2×3×……×10)的值为 。
5、一只船顺流而行的航速为30千米/小时,已知顺水航行3小时和逆水航行5小时的航程相等,则此船顺水漂流1小时的航程为( )千米。
6、某电视机厂计划15天生产1500台,结果生产5天后,由于引进新的生产线生产效率提高25%,则这个电视机厂会提前( )天完成计划。
7、从1,2,3,4,5,6,7,8,9中任意选出三个数,使它们的和为偶数,则共有( )种不同的选法。
8、某书的页码是连续的自然数1,2,3,4,…9,10…当将这些页码相加时,某人把其中一个页码错加了两次,结果和为2001,则这书共有( )页。
9、现有21朵鲜花分给5人,若每个人分得的鲜花数各不相同,则分得鲜花最多的人至少分得( )朵鲜花。
10、三名工人师傅张强、李辉和王充分别加工200个零件。他们同时开始工作,当李辉加工200个零件的任务全部完成时,张强才加工了160个,王充还有48个没有加工。当张强加工200个零件的任务全部完成时,王充还有__个零件没有加工。
11、有一块表在10月29日零点比标准时间慢4分半,一直到11月5日上午7时,这块表比标准时间快了3分钟,那么这块表正好指向正确的时间是在11月 日 时。
12、一个水箱中的水以等速流出箱外,观察到上午9:00时,水箱中的水是2/3满,到11点,水箱中只剩下1/6的水,那么到什么时间水箱中的水刚好流完?( )
13、清华大学附中共有学生1800名,若每个学生每天要上8节课,每位教师每天要上4节课,每节课有45名学生和1位教师,据此请推出清华大学附中共有教师 名?
14、某班45人参加一次数学比赛,结果有35人答对了第一题,有27人答对了第二题,有41人答对了第三题,有38人答对了第四题,则这个班四道题都对的同学至少有 人?
15、一个数先加3,再除以3,然后减去5,再乘以4,结果是56,这个数是_______。
16、一个盖着瓶盖的瓶子里面装着一些水(如下图所示),请你根据图中标明的数据,计算瓶子的容积是_________cm³。
17、六年级某班学生中有的学生年龄为13岁,有的学生年龄为12岁,其余学生年龄为11岁,这个班学生的平均年龄是__________岁。
18、将25克白糖放入空杯中,倒入100克白开水,充分搅拌后,喝去一半糖水。又加入36克白开水,若使杯中的糖水和原来的一样甜,需要加入_______克白糖。
19、六年级一班的所有同学都分别参加了课外体育小组和唱歌小组,有的同学还同时参加了两个小组。若参加两个小组的人数是参加体育小组人数的,是参加歌唱小组人数的,这个班只参加体育小组与参加唱歌小组的人数之比是________。
20、熊猫他*的小宝宝——小熊猫今年2岁了,过若干年以后,当小熊猫和熊猫妈妈当年年龄一样大时,熊猫妈妈已经18岁了。熊猫妈妈今年是_______岁。
21、果园收购一批苹果,按质量分为三等,最好的苹果为一等,每千克售价3.6元;其次是尔等苹果。每千克售价2.8元;最次的是三等苹果每千克售价2.1元。这三种苹果的数量之比为2:3:1。若将这三种苹果混在一起出售,每千克定价________元比较适宜。
22、某班学生不超过60,在一次数学测验中,分数不低于90分的人数占,得80----89分的人数占,得70-----79分的人数占,那么得70分以下的有______人。
23、有一列数,按照下列规律排列:1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,7,……这列数的第200个数是__________.
24、某个五位数加上20万并且3倍以后,其结果正好与该五位数的右端增加一个数字2的得数相等,这个五位数是___________。
25、从3、13、17、29、31这五个自然数中,每次取两个数分别作一个分数的分子和分母,一共可组成__个最简分数。
26、北京一零一中学由于近年生源质量不断提高,特别是师生们的共同努力,使得高考成绩逐年上升。在2001年高考中有59%的考生考上重点大学;2002年高考中有68%的考生考上重点大学;2003年预计将有74%的考生考上重点大学,这三年一零一中学考上重点大学的年平均增长率是____________。
27、右图,过平行四边形ABCD内一点P画一条直线,将平行四边形分成面积相等的两部分(画图并说明方法)。
28、某学校134名学生到公园租船,租一条大船需60元可乘坐6人;租一条小船需45元可积坐4人,请设计一种租船方案,使租金最省。
29、一列火车驶过长900米的铁路桥,从车头上桥到车尾离桥共用1分25秒钟,紧接着列车又穿过一条长1800米的隧道,从车头进隧道到车尾离开隧道用了2分40秒钟,求火车的速度及车身的长度。
30、有一个六位数,它的二倍、三倍、四倍、五倍、六倍还是六位数,并且它们的数字和原来的六位数的数字完全相同只是排列的顺序不一样,求这个六位数。
31、50枚棋子围成圆圈,编上号码1、2、3、4、……50,每隔一枚棋子取出一枚,要求最后留下的枚棋子的号码是42号,那么该从几号棋子开始取呢?
32、计算(1.6-1.125 + 8(3/4))÷37(1/6) + 52.3×(3/41)
33、 1999年2月份,我国城乡居民储蓄存款月末余额是56767亿元,&127;比月初余额增长18%,那么我国城乡居民储蓄存款2月份初余额是( )亿元 (精确到亿元)。
34、 环形跑道周长400米,甲乙两名运动员同时顺时针自起点出发,甲速度是 400米/分,乙速度是375米/分。( )分后甲乙再次相遇。
35、 2个整数的最小公倍数是1925,这两个整数分别除以它们的最大公约数, 得到2个商的和是16,这两个整数分别是( )和( )。
36、 数学考试有一题是计算4个分数(5/3) ,(3/2) ,(13/8) ,(8/5)的平均值,小明很粗心,把其中1个分数的分子和分母抄颠倒了。抄错后的平均值和正确的答案 最大相差( )。
37、果品公司购进苹果5.2万千克,每千克进价是0.98元,付运费等开支1840 元,预计损耗为1%,。如果希望全部进货销售后能获利17%。每千克苹果 零售价应当定为( )元。
38、计算:19+199+1999+……+19999…99
└1999个9┘
39、《新新》商贸服务公司,为客户出售货物收取3%的服务费,代客户购物 品收取2%服务费。今有一客户委托该公司出售自产的某种物品和代为 购置新设备。已知该公司共扣取了客户服务费264元,客户恰好收支平衡,问所购置的新设备花费了多少元?
40、一列数,前3个是1,9,9以后每个都是它前面相邻3个数字之和除以3所得 的余数,求这列数中的第1999个数是几?
41、一根长方体木料,体积是0.078立方米。已知这根木料长1.3米,宽为3分米,高该是多少分米?孙健同学把高错算为3分米。这样,这根木料的体积要比0.078立方米多多少?
42、有一大一小两个正方形,它们的周长相差20厘米,面积相差55平方厘米。小正方形的面积是多少平方厘米?
43、有9个小长方形,它们的长和宽分别相等,用这9个小长方形拼成的大长方形的面积是45平方厘米,求这个大长方形的周长。
44、 77×13+255×999+510
45、a=8.8+8.98+8.998+8.9998+8.99998,a的整数部分是____。
46、1995的约数共有____。
47、等式“学学×好好+数学=1994”,表示两个两位数的乘积,再加上一个两位数,所得的和是1994。式中的“学、好、数”3个汉字各代表3个不同数字,其中“数”代表____。
48、如图1,“好、伙、伴、助、手、参、谋”这7个汉字代表1~7这7个数字。已知3条直线上的3个数相加、2个圆圈上3个数相加所得的5个和都相等。图中间的“好”代表____。
49、农民叔叔阿根想用20块长2米、宽1.2米的金属网建一个*墙的长方形鸡窝(如图2)。为了防止鸡飞出,所建鸡窝高度不得低于2米。要使所建的鸡窝面积最大,BC的长应是 米。
50、小胡和小涂计算甲、乙两个两位数的乘积,小胡看错了甲数的个位数字,计算结果为1274;小涂看错了甲数的十位数字,计算结果为819。甲数是____。
51、1994年“世界杯”足球赛中,甲、乙、丙、丁4支队分在同一小组。在小组赛中,这4支队中的每支队都要与另3支队比赛一场。根据规定:每场比赛获胜的队可得3分;失败的队得0分;如果双方踢平,两队各得1分。已知:
(1)这4支队三场比赛的总得分为4个连续奇数;
(2)乙队总得分排在第一;
(3)丁队恰有两场同对方踢平,其中有一场是与丙队踢平的。
根据以上条件可以推断:总得分排在第四的是____队。
52、一块空地上堆放了216块砖(如图3),这个砖堆有两面*墙。现在把这个砖堆的表面涂满石灰,被涂上石灰的砖共有____块。
53、南方某城市的一家企业有90%的员工是股民,80%的员工是“万元户”,60%的员工是打工仔。那么,这家企业的“万元户”中至少有____%是股民;打工仔中至少有____(填一个分数)是“万元户”。
54、方格纸(图4)上有一只小虫,从直线 AB上的一点 O出发,沿方格纸上的横线或竖线爬行。方格纸上每小段的长为1厘米。小虫爬过若干小段后仍然在直线AB上,但不一定回到O点。如果小虫一共爬过2厘米,那么小虫的爬行路线有____种;如果小虫一共爬过3厘米,那么小虫爬行的路线有____。
55、自然数按一定的规律排列如下:
从排列规律可知,99排在第____行第____列。
56、如图5,AF=2FB,FD=2EF,直角三角形ABC的面积是36平方厘米,求平行四边形EBCD的面积。
57、利民商店从日杂公司买进一批蚊香,然后按希望获得的纯利润,每袋加价40%定价出售。但是,按这种定价卖出这批蚊香的90%时,夏季即将过去。为加快资金周转,商店以定价打七折的优惠价,把剩余蚊香全部卖出。这样,实际所得纯利润比希望获得的纯利润少了15%。按规定,不论按什么价钱出售,卖完这批蚊香必须上缴营业税300元(税金与买蚊香用的钱一起作为成本)。问利民商店买进这批蚊香用了多少元?
58、A、B、C三个油桶各盛油若干千克。第一次把A桶的一部分油倒入B、C两桶,使B、C两桶内的油分别增加到原来的2倍;第二次从B桶把油倒入C、A两桶,使C、A两桶内的油分别增加到第二次倒之前桶内油的2倍;第三次从C桶把油倒入A、B两桶,使A、B两桶内的油分别增加到第三次倒之前桶内油的2倍,这样,各桶的油都为16千克。问A、B、C三个油桶原来各有油多少千克?
59、园林工人要在周长300米的圆形花坛边等距离地栽上树。他们先沿着花坛的边每隔3米挖一坑,当挖完30个坑时,突然接到通知:改为每隔5米栽一棵树。这样,他们还要挖多少个坑才能完成任务?
60、一个学雷锋小组的大学生们每天到餐馆打工半小时,每人可挣3元钱。到11月11日,他们一共挣了1764元。这个小组计划到12月9日这天挣足3000元,捐给“希望工程”。因此小组必须在几天后增加一个人。问:增加的这个人应该从11月几日起每天到餐馆打工,才能到12月9日恰好挣足3000元钱?
61、有男女运动员各一名在一个环形跑道上练长跑,跑步时速度都不变,男运动员比女运动员跑得稍快些。如果他们从同一起跑点同时出发沿相反方向跑,那么每隔25秒钟相遇一次。现在,他们从同一起跑点同时出发沿相同方向跑,经过13分钟男运动员追上了女运动员,追上时,女运动员已经跑了多少圈?(圈数取整数)
62、在555555的倍数中,有没有各位数字之和是奇数的?如果有,请举出一个例子;如果没有,请说明理由。
63、右图是一个直角梯形。请你画一条线段,把它分成两个形状相同面积相等的四边形。(请标明表示线段位置的数据及符号或写出画法)。
64、下面5个图形都具有两个特点:(1)由4个连在一起的同样大小的正方形组成;(2)每个小正方形至少和另一个小正方形有一条公共边。我们把具有以上两个特点的图形叫做“俄罗斯方块”。
如果把某个俄罗斯方块在平面上旋转后与另一个俄罗斯方块相同(比如上面图中的B与E),那么这两个俄罗斯方块只算一种。
除上面4种外,还有好几种俄罗斯方块,请你把这几种都画出来。
65、在下面的“□”中填上合适的运算符号,使等式成立:(1□9□9□2)×(1□9□9□2)×(19□9□2)=1992
66、一个等腰梯形有三条边的长分别是55厘米、25厘米、15厘米,并且它的下底是最长的一条边。那么,这个等腰梯形的周长是__厘米。
67、一排长椅共有90个座位,其中一些座位已经有人就座了。这时,又来了一个人要坐在这排长椅上,有趣的是,他无论坐在哪个座位上都与已经就座的某个人相邻。原来至少有__人已经就座。
68、用某自然数a去除1992,得到商是46,余数是r,a=__,r=__。
69、“重阳节”那天,延龄茶社来了25位老人品茶。他们的年龄恰好是25个连续自然数,两年以后,这25位老人的年龄之和正好是2000。其中年龄最大的老人今年____岁。
70、学校买来历史、文艺、科普三种图书若干本,每个学生从中任意借两本。那么,至少____个学生中一定有两人所借的图书属于同一种。
71、五名选手在一次数学竞赛中共得404分,每人得分互不相等,并且其中得分最高的选手得90分。那么得分最少的选手至少得____分,至多得____分。(每位选手的得分都是整数)
72、要把1米长的优质铜管锯成长38毫米和长90毫米两种规格的小铜管,每锯一次都要损耗1毫米铜管。那么,只有当锯得的38毫米的铜管为____段、90毫米的铜管为____段时,所损耗的铜管才能最少。
73、甲乙两个工程队共同修筑一段长4200米的公路,乙工程队每天比甲工程队多修100米。现由甲工程队先修3天。余下的路段由甲、乙两队合修,正好花6天时间修完。问:甲、乙两个工程队每天各修路多少米?
74、一个人从县城骑车去乡办厂。他从县城骑车出发,用30分钟时间行完了一半路程,这时,他加快了速度,每分钟比原来多行50米。又骑了20分钟后,他从路旁的里程标志牌上知道,必须再骑2千米才能赶到乡办厂,求县城到乡办厂之间的总路程。
75、一个长方体的宽和高相等,并且都等于长的一半(如图12)。将这个长方体切成12个小长方体,这些小长方体的表面积之和为600平方分米。求这个大长方体的体积。
76、有1992粒钮扣,两人轮流从中取几粒,但每人至少取1粒,最多取4粒,谁取到最后一粒,就算谁输。问:保证一定获胜的对策是什么?
77、有一块边长24厘米的正方形厚纸,如果在它的四个角各剪去一个小正方形,就可以做成一个无盖的纸盒。现在要使做成的纸盒容积最大,剪去的小正方形的边长应为几厘米?
78、个体铁铺的金师傅加工某种铁皮制品,需要如图13所示的(a)、(b)两种形状的铁皮毛坯。现有甲、乙两块铁皮下脚料(如图14、图15),图13、图14、图15中的小方格都是边长相等的正方形。金师傅想从其中选用一块,使选用的铁皮料恰好适合加工成套的这种铁皮制品(“成套”,指(a)、(b)两种铁皮同样多),并且一点材料也不浪费。问:(1)金师傅应当从甲、乙两块铁皮下脚料中选哪一块?(2)怎样裁剪所选用的下脚料?(请在图上画出裁剪的线痕或用阴影表示其中一种形状的毛坯)
79、只修改21475的某一位数字,就可以使修改后的数能被225整除。怎样修改?
80、(1)要把9块完全相同的巧克力平均分给4个孩子(每块巧克力最多只能切成两部分),怎么分?
(2)如果把上面(1)中的“4个孩子”改为“7个孩子”,好不好分?如果好分,怎么分?如果不好分,为什么?
第四届华罗庚金杯少年数学邀请赛初赛试题
第四届华罗庚金杯少年数学邀请赛初赛试题
1.请将下面算式的计算结果写成带分数:
2. 一块木板上有13枚钉子(右图)。用橡皮筋套住其中的几枚钉子,可以构成三角形,正方形,梯形等等(下图)。请回答:可以构成多少个正方形?
3.这里有一个圆柱和一个圆锥(下图),它们的高和底面直径都标在图上,单位是厘米。请回答:圆锥体积与圆柱体积的比是多少?
4.这里有5个分数: ,,,,.如果按从大到小的顺序排列,排在中间的是哪个数?
5.现在流行的变速自行车,在主动轴和后轴分别安装了几个齿数不同的齿轮。用链条连接不同搭配的齿轮,通过不同的传动比获得若干档不同的车速。“希望牌”变速自行车主动轴上有三个齿轮,齿数分别是48,36,24;后轴上有四个齿轮,齿数分别是36,24,16,12。问:这种变速车一共有几档不同的车速?
6.图中的大正方形ABCD面积是1,其它点都是它所在的边的中点。请问:阴影三角形的面积是多少?(见下图)
7.在右边的算式中,被加数的数字和是和数的数字和的三倍。问:被加数至少是多少?
8.筐中有60个苹果,将它们全部都取出来,分成偶数堆,使得每堆的个数相同。问:有多少种分法?
9.小明玩套圈游戏,套中小鸡一次得9分,套中小猴得5分,套中小狗得2分。小明共套了10次,每次都套中了,每个小玩具都至少被套中一次。小明套10次共得了61分。问:小鸡至少被套中多少次?
10.车库中停放着若干辆双轮摩托车和四轮小卧车,车的辆数与车的轮子数之比是2∶5。问:摩托车的辆数与小卧车的辆数之比是多少?
11.有一个时钟,它每小时慢25秒,今年3月21日中午十二点它的指示正确。请问:这个时钟下一次指示正确时间是几月几日几点钟?
12.某人由甲地去乙地。如果他从甲地先骑摩托车行12小时,再换骑自行车行9小时,恰好到达乙地。如果他从甲地先骑自行车行21小时,再换骑摩托车行8小时,也恰好到达乙地。问:全程骑摩托车需要几小时到达乙地?
13.下图的二个圆只有一个公共点A,大圆直径48厘米,小圆直径30厘米。二只甲虫同时从A点出发,按箭头所指的方向以相同速度分别沿二个圆爬行。问:当小圆上的甲虫爬了几圈时,二只甲虫相距最远?
14.某种少年读物,如果按原定价格销售,每售一本,获利0.24元;现在降价销售,结果售书量增加一倍,获利增加0.5倍。问:每本书售价降低多少元?
15有一座四层楼房,每个窗户的4块玻璃分别涂上红色和白色,每个窗户代表一个数字(下图)。
每层搂有三个窗户,由左向右表示一个三位数。四个楼层表示的三位数有:791,275,362,612。问:第二层楼表示那个三位数?
第四届华罗庚金杯少年数学邀请赛复赛试题
1.化简
2.电视台要播放一部30集的电视连续剧,如果要求每天安排播出的集数互不相等,该电视连续剧最多可以播几天?
3.一个正方形的纸盒中恰好能放入一个体积为628立方厘米的圆柱体,纸盒的容积有多大?(圆周率=3.14)
4.有一筐苹果,把它们三等分后还剩2个苹果;取出其中两份,将它们三等分后还剩两个;然后再取出其中两份,又将这两份三等分后还剩2个,问:这筐苹果至少有几个?
5.计算
6.长方形ABCD周长为16米,在它的每条边上各画一个以该边为边长的正方形,已知这四个正方形的面积的和是68平方米,求长方形ABCD的面积。
『伍』 东风小学四年级3个班的全体学生报名参加第七届小学“希望杯”全国数学邀请赛,一班和二班共有67人参加,
根据题意,3个班参加来的总人数是自:(67+64+63)÷2=97(人);
那么一班的人数是:97-64=33(人);
二班的人数是:97-63=34(人);
三班的人数是:97-67=30(人).
故答案为:33,34,30.
『陆』 第十届小学希望杯全国数学邀请赛六年级第二试答案
(1)41/8
(2)24又8/33
(3)28
(4)0.2012041(5) 0.2(0120415) 此处专括号代表循属环节
(5)2 24/7
(6)48;256/3
(7)35个
(8)30
(9)21件、 7件
(10)628
(11)198
(12)甲6元,乙3元。
(13)略
(14)1680
(15)130,134,136,138,140,142 。
(16)能。一共需要6步,坐标分别为(7、9) (8、8) (9、7) (9、9)
『柒』 第十届小学希望杯全国数学邀请赛都有什么奖
(1) 进入第二来试者为第一试优胜,自由各校通报表扬。
(2) 在参加第二试的学生中按成绩取五分之一(即参赛总人数的二十分之一)的参赛者评定一、二、三等奖,分别授予金、银、铜奖牌及获奖证书。
(3)参赛学生可参加“希望杯”组委会组织的“数学英语夏令营”(国内外,八月上旬),获奖学生优先安排。
(4) 授予一、二等奖获奖学生的辅导教师“数学竞赛优秀教练”称号及证书,授予三等奖获得者的辅导教师中的优秀者“数学竞赛优秀辅导员”称号及证书。
(5) 授予组织工作出色的地区或学校“希望杯”组织工作奖,授予负责人“数学教育优秀园丁”称号及证书。
『捌』 第四届小学"希望杯"全国数学邀请赛六年级第2试答案
我从网上搜的,加上记忆,应该差不多
(每小题4分),共60分。) 1.8.1×1.3-8÷1.3+1.9×1.3+11.9÷1.3=________。一个数的2/3比3小3/7,则这个数是________。 牧羊人赶一群羊过10条河,每过一条河时都有三分之一的羊掉入河中,每次他都捞上3只,最后清查还剩9只。这群羊在过河前共有________只。 【考点】还原问题的逆推法,量率对应。 【分析与解】第九次:(9-3)÷(2/3)=9,第八次:(9-3)÷(2/3)……第一次:(9-3)÷(2/3),原共有9只 5.如图所示,圆圈中分别填人0到9这10个数,且每个正方形顶点上的四个数之和都是18,则中间两个数A与B的和是________。 【考点】数阵图:常与整数、余数问题结合出题。主动学习网总结的惯例方法:分析特征求总和,求分和,求特殊位置的和,应用整数或余数问题或其他知识求解答案。 【分析与解】A,B在求和时用了2次,比其他位置多用了一次,比较特殊。(0+1+2+3+…+9)+A+B=45+A+B=18×3=54,A+B=9。 6.磁悬浮列车的能耗很低。它的每个座位的平均能耗是汽车的70%,而汽车每个座位的平均能耗是飞机的10/21,则飞机每个座位的平均能耗是磁悬浮列车每个座位的平均能耗的________倍。 【考点】比例问题,设数法。要注意“比”字后面的是比较的标准,也就是分数中分母的含义,或者说作为除数。 【分析与解】设飞机每个座位的平均能耗为1,则磁悬浮列车每个座位的平均能耗为1×10/21×70%=1/3,1÷1/3=3倍 7.“△”是一种新运算,规定:a△b=a×c+b×d(其中c,d为常数),如5△7=5×c+7×d。如果1△2=5,2△3=8,那么6△1OOO的计算结果是________。 【考点】定义新运算:理解并掌握“对号入座”就可以了,有些定义新算还应注意计算先后顺序。本题还考查了学生解二元一次方程组的能力。 【分析与解】1△2=1×c+2×d=5,2△3=2×c+3×d=8,解得:a=1,d=2.6△1OOO=6×1+1000×2=2006 8.一筐萝卜连筐共重20千克,卖了四分之一的萝卜后,连筐重15.6千克,则这个筐重________千克。 【考点】还原思想、假设法、差异分析,量率对应。 【分析与解】假设“卖了四分之一的萝卜和筐”,此时剩下重量为20×3/4=15,15.6-15=0.6,0.6是什么呢?0.6应该是1/4筐重,所以筐重0.6÷1/4=2.4千克。 9.如果a,b均为质数,且3a+7b=41,则a+b=________。 【考点】质数合数问题:常考2(2是唯一的偶质数),常与奇偶性综合出题。 【分析与解】奇×奇+奇×奇=偶,说明a,b中必有一个为偶数,所以为2. 如果a=2,则b=5,满足条件,a+b=7。 如果b=2,则a=9,不满足质数条件。 10.如图,三个图形的周长相等,则a∶b∶c=________。 【考点】方程思想,连比(找桥梁)。 【分析与解】图一图二图三知a+4b=6a=5c,得a:b=4:5,a:c=5:6,所以a:b:c=20:25:24 11.如图,底面积为50平方厘米的圆柱形容器中装有水,水面上漂浮着一块棱长为5厘米的正方体木块,木块浮出水面的高度是2厘米。若将木块从容器中取出,水面将下降________厘米。 【考点】等积变化原理(体积不变,面积不变)中的体积不变原理的应用。 【分析与解】5×5×3÷50=1.5厘米。 12.如图,正方形ABCD和正方形ECGF并排放置,BF与EC相交于点H,已知AB=6厘米,则阴影部分的面积是________平方厘米。 【考点】直线型面积计算,特殊化处理。 【分析与解】(解法一)本题是填空题,可以特殊化处理。题目没有告诉EFGC的边长,说明EFGC的边长对解题没有影响。假设EFGC边长为0,则阴影面积为6×6÷2=18。 (解法二)假设EFGC边长为6,则阴影面积=6×3÷2×2=18 (解法三) 13.圆柱体的侧面展开,放平,是边长分别为10厘米和12厘米的长方形,那么这个圆柱体的体积是________立方厘米。(结果用π表示) 【考点】严密思维能力,立体与平面图形的转化,圆柱体的认识。 【分析与解】圆柱底圆面周长是可能为10或12,所以分两种情况考虑。 (1)10为圆柱底圆面周长,则r=10÷(2π)=5/π,体积=π×(5/π)×(5/π)×12=300/π (2)12为圆柱底圆面周长,则r=12÷(2π)=6/π,体积=π×(6/π)×(6/π)×10=360/π 所以圆柱体的体积为300/π或360/π,只写一个答案给2分。 14.箱子里装有若干个相同数量的黑球和白球,现往箱子里再放入14个球(只有黑球和白球),这时黑球数量占球的总数的1/6,那么现在箱子里有________个白球。 【考点】不定方程。 【分析与解】假设原来黑球为X,白球数也为X,14个球里有Y个黑球,14-Y个白球。 X+Y=(2X+14)×1/6,化简得4X+6Y=14,可得X=2,Y=1。则现有白球2+(14-1)=15个。 15.体育课上,60名学生面向老师站成一行,按老师口令,从左到右报数:1,2,3,…,60,然后,老师让所报的数是4的倍数的同学向后转,接着又让所报的数是5的倍数的同学向后转,最后让所报的数是6的倍数的同学向后转,现在面向老师的学生有________人。 【考点】容斥原理,严密思维能力的考查,本题有一定难度。 【分析与解】第一次转动人数: ,第二次面转动人数: ,第三次转动人数: , 二、解答题。(每小题l0分,共40分。)要求:写出推算过程写出推算过程写出推算过程写出推算过程。 16.国际统一书号ISBN由10个数字组成,前面9个数字分成3组,分别用来表示区域、出版社和书名,最后一个数字则作为核检之用。核检码可以根据前9个数字按照一定的顺序算得。如:某书的书号是ISBN 7-107-17543-2,它的核检码的计算顺序是: ①7×10+1×9+0×8+7×7+1×6+7×5+5×4+4×3+3×2=207; ②207÷11=18……9; ③11-9=2。这里的2就是该书号的核检码。 依照上面的顺序,求书号ISBN-7-303-07618-□的核检码。 【考点】找规律,领悟能力的考查。 【分析与解】①7×10+3×9+0×8+3×7+0×6+7×5+6×4+1×3+8×2=196; ②196÷11=17……9; ③11-9=2。这里的2就是该书号的核检码。 17.甲乙两车分别从A、B两地相向而行,两车在距A点10千米处相遇后,各自继续以原速前进,到达对方出发点后又立即返回,从B地返回的甲车在驶过A、B中点3千米处再次与从A地返回的乙车相遇,若甲每小时行驶60千米,则乙每小时行驶多少千米? 【考点】线段多次相遇问题、中点问题。解这类问题可以用主动学习网胡先友老师提出的万能法-“2倍关系,左右关系”解题。 【分析与解】画图求解,合走3个全程时,甲比乙多走3×2=6千米,那么合走一个全程时,甲比乙多走2千米,说明甲走10千米,乙走8千米,乙的速度是甲速度的4/5,60×4/5=48(千米/时) 18.在如图S所示的圆圈中各填入一个自然数,使每条线段两端的两个数的差都不能被3整除。请问这样的填法存在吗?如存在,请给出一种填法;如不存在,请说明理由。 【考点】整除、余数问题,抽屉原理。 【分析与解】不存在这样的填法。(2分) 所有的自然数除以3的余数只有0、1、2. 对于任意一个圆圈与三个圆圈相连,共4个数,必然有两个数除以3的余数相同,由同余定理可知,这两个数作差必是3的倍数。所以不存这样的填法。 19.40名学生参加义务植树活动,任务是:挖树坑,运树苗。这40名学生可分为甲、乙、丙三类,每类学生的劳动效率如下表所示。如果他们的任务是:挖树坑30个,运树苗不限,那么应如何安排人员才能既完成挖树坑的任务,又使树苗运得最多? 解法1 这三类学生挖树坑的相对效率是 甲类: ,乙类:丙类:。 (3分) 由上可知,乙类学生挖树坑的相对效率最高,其次是丙类学生,故应先安排乙类学生挖树坑,可挖 1.2×15=18(个). (5分) 再安排丙类学生挖树坑,可挖0.8×10=8(个), (7分) 还差30-18-8=4(个)树坑,由两名甲类学生丢挖,这样就能完成挖树坑的任务,其余13名甲类学生运树苗,可以运13×20=260(棵)。 (10分) 解法2 设甲、乙、丙三类学生中挖树坑的分别有x人、y人、z人,其中 0≤x≤15,0≤y≤15,0≤z≤10, (1分) 则甲、乙、丙三类学生中运树苗的分别有(15-x)人、(15-y)人、(10-z)人。要完成挖树坑的任务,应有 2x+1.2y+0.8z=30, ① 即 20x≥300-12y-8z. ② (4分) 在完成挖树坑任务的同时,运树苗的数量为 P=20(15-x)+10(15-y)+7(10-2) =520-20x-lOy-7z。 ③ (6分) 将②代人③,得 p=520-300+12y+8z-lOy-7z=220+2y+z。 当y=15,z=10时,P有最大值,=220+2×15+10=260(棵)。 (8分) 将y=15,z=lO代入①,解得x=2,符合题意。 因此,当甲、乙、丙三类学生中挖树坑的分别有2人、15人、10人时,可完成挖树坑的任务,且使树苗运得最多,最多为260棵。 (10分)
『玖』 第十二届小学希望杯全国数学邀请赛第二试答案
查希望杯官网
『拾』 第十三届小学希望杯全国数学邀请赛一试答案
这个不能提前告诉家长吧