『壹』 六年级上册30道奥数题(带答案)
应用题:
六年级有三个班,一班与二班的学生人数和比三班学生人数多3/4,二班与三班 的学生人数和比六年级学生总数2/3多3人,已知二班有学生43人,六年级共有学生多少人?
一个圆锥形容器中装有水4升(顶点向下装水),这时水面高度正好是圆锥高度的1/2,水面半径是容器半径的1/2,这个容器还能装多少升水?
加工一批零件,甲独做要20小时,乙独做要30小时,现在两人合做,每小时甲比乙多做40个,这批零件有多少个?
某校六年级进行一次数学竞赛,设一、二、三等奖,其中获得一等奖的占获奖总数的5分之1,获二等奖的与获三等奖的人数的比是3:5,获得二等奖的人数比获三等奖人数少4人,一共有多少人获奖?
小明读一本书,7天后还剩全书的4分之1,以后5天共读了120页,正好读完,小明读这本书平均每天读多少页?
一本书已经看了58页,还剩下全书页数的25%少1页,这本书共有多少页?
一位老奶奶去市场买菜,去时要走8分钟,回来是因为提着东西比过时慢了2分钟,在去的路上第四分钟看到维修工在维修电缆,奶奶在回来的路上第几分钟再次看到维修工?
一、 五年级有学生192人,其中“三好”学生32人,“三好”学生占五年级学生总人数的几分之几?
应用题
二、 新华书店运来一批科技书籍,第一天售出300本,占这批书籍的30%,这批科技书籍共有多少本?
三、 五年级有学生280人,其中男生占50% ,五年级男生有多少人?
四、 六年级有学生300人,是三年级的2倍还少10人,三年级有多少人?
五、 水果店有苹果60箱,是橘子的3倍还多10箱,水果店有橘子多少箱?
一、 五年级有学生192人,其中“三好”学生32人,“三好”学生占五年级学生总人数的几分之几?
应用题
二、 新华书店运来一批科技书籍,第一天售出300本,占这批书籍的30%,这批科技书籍共有多少本?
三、 五年级有学生280人,其中男生占50% ,五年级男生有多少人?
四、 六年级有学生300人,是三年级的2倍还少10人,三年级有多少人?
五、 水果店有苹果60箱,是橘子的3倍还多10箱,水果店有橘子多少箱?
18.已知某一铁桥长1000米,现有一列火车从桥上通过,测得火车开始上桥到完全通过桥共用一分钟,整列火车完全在桥上的时间为40秒钟,求火车的长度和速度。
19.有一位妇女在河边洗碗,旁人看见以后问她为什么要用这么多碗?她回答说,家中来了许多客人,他们每两个人合用一只菜碗,每3个人合用一只汤碗,每4个人合用一只饭碗,共用了65只碗.她家究竟来了多少客人?
20.小明有一包饼干,4个一数,5个一数,6个一数都多一个,小明的这包饼干至少有多少个?
1.小明看一本书,原计划每天看35页,32天看完。实际每天比计划多看5页,实际用多少天看完?
2.修一条路,原计划每天修0.4千米,70天可以修完。实际每天修的米数是计划的1.25倍。实际用多少天完成?
3.绿化队植树,计划8天完成任务。实际每天植树240棵,7天就完成了全部的植树任务。实际比计划每天多植树多少棵?
4.某街道居委会慰问军烈属,给他们送去红糖和白糖。每到一户送去2袋红糖和5袋白糖,送到最后一户时,红糖正好送完,还剩下10袋白糖。已知带去的白糖的袋数是红糖袋数的3倍,那么带去的红糖、白糖各多少袋?
5.服装厂要加工一批服装。第一车间和第二车间同时加工60天正好完成。已知第一车间加工的服装占服装总数的45%,第二车间每天加工132件。第一车间每天加工多少件?
6.洗衣机厂计划生产一批洗衣机。结果9天恰好完成了计划的37.5%。照这样计算,完成计划还要多少天?
7.有一堆煤可以烧120天。由于改进烧煤技术,每天节约用煤0.25吨,结果这堆煤烧了150天。这堆煤共有多少吨?
8.牵走7头黄牛放在水牛群之中,那么这三群牛的头数正好相等。问奶牛有多少头?
9.甲乙两个车间加工一批同样的零件。如果甲车间先加工35个,然后乙先加工1天,然后乙车间再开始加工,经过5天后两车间加工的零件数相等。那么乙车间一天加工多少个零件?
12.有100千克青草,含水量为66%,晾晒后含水量降到15%。这些青草晾晒后重多少千克?
13.将一个正方形的一边减少1/5,另一边增加 4米,得到一个长方形。这个长方形与原来正方形面积相等。那么正方形面积有多少平方米?
14.某车间加工甲、乙两种零件。已加工好的零件中甲种零件占30%,后来又加工好了24个乙种零件,这时甲种零件占25%。那么现在已加工好两种零件共多少个?
15.甲、乙、丙三人共生产零件1760个。如果甲少生产2/9,乙多生产80个,那么甲、乙、丙三人生产零件的个数相等。甲、乙、丙三人各生产了多少个?
16.小明今年的年龄是他爸爸年龄的1/6,15年后他的年龄是他爸爸年龄的4/9。小明和他爸爸今年各多少岁?
17.某校有学生314人,其中男生人数的2/3比女生人数的4/5少40人。这个学校男生、女生各多少人?
18.甲、乙两班人数相等,各有一些同学参加了数学小组。甲班参加数学小组的人数恰好是乙班没参加数学小组人数的1/3;乙班参加数学小组的人数恰好是甲班没参加数学小组人数的1/4。那么甲班没参加数学小组的人数是乙班没参加数学小组人数的几分之几?
19.容器里放着某种浓度的酒精溶液若干升,加 1升水后纯酒精含量为25%;再加1升纯酒精,容器里纯酒精含量为40%。那么原来容器里的酒精溶液共几升?浓度为百分之几?
20.甲、乙、丙三人合抄一份稿件,1小时可以完成。如果甲、乙二人合抄,要80分钟完成;如果乙、丙二人合抄,要100分钟完成。如果这份稿件由乙一人独抄,要几小时完成?
21.一件工程,甲独做,20天可以完成;乙独做,30天可以完成。现在两人合做,中间甲休息了3天,乙休息了若干天,结果经过16天才完成。问乙休息了几天?
22.注满一池水,只打开甲管,要8小时;只打开乙管,要12小时;只打开丙管,要15小时。今开始只打开甲、乙两管,中途关掉甲、乙两管,然后打开丙管,前后共用了10小时才注满一池水。那么打开丙管注水几小时?
23.某工程队承建一项工程,要用12天完成。如果只让其中的甲、乙两个小队交换一下工作内容,那么全工程就要推迟3天完成;如果让其中甲、乙两个小队交换一下工作内容的同时,也让丙、丁两个小队交换工作内容,仍然可以按期完成全工程。如果只让丙、丁两个小队交换工作内容,那么可以使全工程提前几天完成?
24.甲、乙两队合干一项工程,甲队先独干了6天后,乙队参加和甲队一起干,又过了4天完成了全工程的1/3。又过了10天正好完成了全工程的3/4。因甲队另有任务调出,乙队继续工作,直到完成全工程。从开始到完工用了多少天?
25.甲、乙二人同时从A、B两地出发,各自去B、A两地,二人速度比为7∶6。二人相遇后继续向前行进,这时乙的速度比原来速度每小时增加来的速度。
1.两个小队割青草,每个小队割3捆,每捆重8千克。一共割了多少千克?
2.张家庄小学新修9个教室,每个教室有6扇窗子,每扇窗子安8块玻璃,一共要安多少块玻璃?
3.每个书架有5层,每层放30本书,3个书架一共放多少本书?
4.学校举行广播操表演。三、四、五年级各有3个班,每班选16人参加。参加表演的一共有多少人?
连除应用题(两种方法解答)
1.商店卖出7箱保温杯,每箱12个,一共收入336元,每个保温杯多少元?
2.三年级有2个班,每个班有43个同学,一共栽树258棵,平均每个同学栽树多少棵?
3.百贷商店卖出3箱上衣,每箱20件,一共卖了720元,每件上衣的价钱是多少元?
4.学校给三好学生买奖品,买了2盒钢笔,每盒10支,一共用去80元。每支钢笔多少元?
这应该是答案:
30.8÷[14-(9.85+1.07)]
[60-(9.5+28.9)]÷0.18
2.881÷0.43-0.24×3.5
20×[(2.44-1.8)÷0.4+0.15]
28-(3.4+1.25×2.4)
2.55×7.1+2.45×7.1
777×9+1111×3
0.8×[15.5-(3.21+5.79)]
(31.8+3.2×4)÷5
31.5×4÷(6+3)
0.64×25×7.8+2.2
2÷2.5+2.5÷2
194-64.8÷1.8×0.9
36.72÷4.25×9.9
5180-705×6
24÷2.4-2.5×0.8
(4121+2389)÷7
671×15-974
0.8×[7.9-(2+5)]
469×12+1492
405×(3213-3189)
3.416÷(0.016×35)
0.8×[(10-6.76)÷1.2]
足够了吧,希望能帮到你啊!
『贰』 小学六年级上册奥数题及答案5道,题目要少,答案不要太复杂。
一、
甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,
池没水,同时打开甲乙两水管,5小时后,再打开
丙,问水池注满还是要多少小时?
解:
1/20+1/16=9/80表示甲乙的工作效率
9/80×5=45/80表示5小时后进水量
1-45/80=35/80表示还要的进水量
35/80÷(9/80-1/10)=35表示还要35小时注满
答:5小时后还要35小时就能将水池注满。
二.
鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?
解:
4*100=400,400-0=400 假设都是兔子,一共有400只兔子的脚,那么鸡的脚为0只,鸡的脚比兔子的脚少400只。
400-28=372 实际鸡的脚数比兔子的脚数只少28只,相差372只,这是为什么?
4+2=6 这是因为只要将一只兔子换成一只鸡,兔子的总脚数就会减少4只(从400只变为396只),鸡的总脚数就会增加2只(从0只到2只),它们的相差数就会少4+2=6只(也就是原来的相差数是400-0=400,现在的相差数为396-2=394,相差数少了400-394=6)
372÷6=62 表示鸡的只数,也就是说因为假设中的100只兔子中有62只改为了鸡,所以脚的相差数从400改为28,一共改了372只
100-62=38表示兔的只数
三.数字数位问题
一个三位数的各位数字 之和是17.其中十位数字比个位数字大1.如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198,求原数.
答案为476
解:设原数个位为a,则十位为a+1,百位为16-2a
根据题意列方程100a+10a+16-2a-100(16-2a)-10a-a=198
解得a=6,则a+1=7 16-2a=4
答:原数为476。
四.
问题
有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有( )
A 768种 B 32种 C 24种 D 2的1
中
解:
根据
,分两步:
第一步是把5对夫妻看作5个整体,进行排列有5×4×3×2×1=120种不同的排法,但是因为是围成一个首尾相接的圈,就会产生5个5个重复,因此实际排法只有120÷5=24种。
第二步每一对夫妻之间又可以相互换位置,也就是说每一对夫妻均有2种排法,总共又2×2×2×2×2=32种
综合两步,就有24×32=768种。
五.
问题
一次考试共有5道试题。做对第1、2、3、、4、5题的分别占参加考试人数的95%、80%、79%、74%、85%。如果做对三道或三道以上为合格,那么这次考试的合格率至少是多少?
答案:及格率至少为71%。
假设一共有100人考试
100-95=5
100-80=20
100-79=21
100-74=26
100-85=15
5+20+21+26+15=87(表示5题中有1题做错的最多人数)
87÷3=29(表示5题中有3题做错的最多人数,即不及格的人数最多为29人)
100-29=71(及格的最少人数,其实都是全对的)
及格率至少为71%
六.
、
问题
1.一只布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要摸出几只手套才能保证有3副同色的?
解:可以把四种不同的颜色看成是4个抽屉,把手套看成是元素,要保证有一副同色的,就是1个抽屉里至少有2只手套,根据
,最少要摸出5只手套。这时拿出1副同色的后4个抽屉中还剩3只手套。再根据
,只要再摸出2只手套,又能保证有一副手套是同色的,以此类推。
把四种颜色看做4个抽屉,要保证有3副同色的,先考虑保证有1副就要摸出5只手套。这时拿出1副同色的后,4个抽屉中还剩下3只手套。根据抽屉原理,只要再摸出2只手套,又能保证有1副是同色的。以此类推,要保证有3副同色的,共摸出的手套有:5+2+2=9(只)
答:最少要摸出9只手套,才能保证有3副同色的。
2.某盒子内装50只球,其中10只是红色,10只是绿色,10只是黄色,10只是蓝色,其余是
和黑球,为了确保取出的球中至少包含有7只同色的球,问:最少必须从袋中取出多少只球?
解:需要分情况讨论,因为无法确定其中黑球与
的个数。
当黑球或
其中没有大于或等于7个的,那么就是:
6*4+10+1=35(个)
如果黑球或白球其中有等于7个的,那么就是:
6*5+3+1=34(个)
如果黑球或白球其中有等于8个的,那么就是:
6*5+2+1=33
如果黑球或白球其中有等于9个的,那么就是:
6*5+1+1=32
七.路程问题
狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。问:狗再跑多远,
以追上它?
解:
根据“马跑4步的距离狗跑7步”,可以设马每
为7x米,则狗每
为4x米。
根据“狗跑5步的时间马跑3步”,可知同一时间马跑3*7x米=21x米,则狗跑5*4x=20米。
可以得出马与狗的速度比是21x:20x=21:20
根据“现在狗已跑出30米”,可以知道狗与马相差的路程是30米,他们相差的份数是21-20=1,现在求马的21份是多少路程,就是 30÷(21-20)×21=630米
八.比例问题
1.甲乙两人在河边钓鱼,甲钓了三条,乙钓了两条,正准备吃,有一个人请求跟他们一起吃,于是三人将五条鱼平分了,为了表示感谢,过路人留下10元,甲、乙怎么分?快快快
答案:甲收8元,乙收2元。
解:
“三人将五条鱼平分,客人拿出10元”,可以理解为五条鱼总价值为30元,那么每条鱼价值6元。
又因为“甲钓了三条”,相当于甲吃之前已经出资3*6=18元,“乙钓了两条”,相当于乙吃之前已经出资2*6=12元。
而甲乙两人吃了的价值都是10元,所以
甲还可以收回18-10=8元
乙还可以收回12-10=2元
刚好就是客人出的钱。
2.一种商品,今年的成本比去年增加了10分之1,但仍保持原售价,因此,每份利润下降了5分之2,那么,今年这种商品的成本占售价的几分之几?
答案22/25
最好画线段图思考:
把去年原来成本看成20份,利润看成5份,则今年的成本提高1/10,就是22份,利润下降了2/5,今年的利润只有3份。增加的成本2份刚好是下降利润的2份。售价都是25份。
所以,今年的成本占售价的22/25。
『叁』 六年级上册30道奥数题带答案谢谢!
应用题:
六年级有三个班,一班与二班的学生人数和比三班学生人数多3/4,二班与三班 的学生人数和比六年级学生总数2/3多3人,已知二班有学生43人,六年级共有学生多少人?
一个圆锥形容器中装有水4升(顶点向下装水),这时水面高度正好是圆锥高度的1/2,水面半径是容器半径的1/2,这个容器还能装多少升水?
加工一批零件,甲独做要20小时,乙独做要30小时,现在两人合做,每小时甲比乙多做40个,这批零件有多少个?
某校六年级进行一次数学竞赛,设一、二、三等奖,其中获得一等奖的占获奖总数的5分之1,获二等奖的与获三等奖的人数的比是3:5,获得二等奖的人数比获三等奖人数少4人,一共有多少人获奖?
小明读一本书,7天后还剩全书的4分之1,以后5天共读了120页,正好读完,小明读这本书平均每天读多少页?
一本书已经看了58页,还剩下全书页数的25%少1页,这本书共有多少页?
一位老奶奶去市场买菜,去时要走8分钟,回来是因为提着东西比过时慢了2分钟,在去的路上第四分钟看到维修工在维修电缆,奶奶在回来的路上第几分钟再次看到维修工?
一、 五年级有学生192人,其中“三好”学生32人,“三好”学生占五年级学生总人数的几分之几?
应用题
二、 新华书店运来一批科技书籍,第一天售出300本,占这批书籍的30%,这批科技书籍共有多少本?
三、 五年级有学生280人,其中男生占50% ,五年级男生有多少人?
四、 六年级有学生300人,是三年级的2倍还少10人,三年级有多少人?
五、 水果店有苹果60箱,是橘子的3倍还多10箱,水果店有橘子多少箱?
一、 五年级有学生192人,其中“三好”学生32人,“三好”学生占五年级学生总人数的几分之几?
应用题
二、 新华书店运来一批科技书籍,第一天售出300本,占这批书籍的30%,这批科技书籍共有多少本?
三、 五年级有学生280人,其中男生占50% ,五年级男生有多少人?
四、 六年级有学生300人,是三年级的2倍还少10人,三年级有多少人?
五、 水果店有苹果60箱,是橘子的3倍还多10箱,水果店有橘子多少箱?
18.已知某一铁桥长1000米,现有一列火车从桥上通过,测得火车开始上桥到完全通过桥共用一分钟,整列火车完全在桥上的时间为40秒钟,求火车的长度和速度.
19.有一位妇女在河边洗碗,旁人看见以后问她为什么要用这么多碗?她回答说,家中来了许多客人,他们每两个人合用一只菜碗,每3个人合用一只汤碗,每4个人合用一只饭碗,共用了65只碗.她家究竟来了多少客人?
20.小明有一包饼干,4个一数,5个一数,6个一数都多一个,小明的这包饼干至少有多少个?
1.小明看一本书,原计划每天看35页,32天看完.实际每天比计划多看5页,实际用多少天看完?
2.修一条路,原计划每天修0.4千米,70天可以修完.实际每天修的米数是计划的1.25倍.实际用多少天完成?
3.绿化队植树,计划8天完成任务.实际每天植树240棵,7天就完成了全部的植树任务.实际比计划每天多植树多少棵?
4.某街道居委会慰问军烈属,给他们送去红糖和白糖.每到一户送去2袋红糖和5袋白糖,送到最后一户时,红糖正好送完,还剩下10袋白糖.已知带去的白糖的袋数是红糖袋数的3倍,那么带去的红糖、白糖各多少袋?
5.服装厂要加工一批服装.第一车间和第二车间同时加工60天正好完成.已知第一车间加工的服装占服装总数的45%,第二车间每天加工132件.第一车间每天加工多少件?
6.洗衣机厂计划生产一批洗衣机.结果9天恰好完成了计划的37.5%.照这样计算,完成计划还要多少天?
7.有一堆煤可以烧120天.由于改进烧煤技术,每天节约用煤0.25吨,结果这堆煤烧了150天.这堆煤共有多少吨?
8.牵走7头黄牛放在水牛群之中,那么这三群牛的头数正好相等.问奶牛有多少头?
9.甲乙两个车间加工一批同样的零件.如果甲车间先加工35个,然后乙先加工1天,然后乙车间再开始加工,经过5天后两车间加工的零件数相等.那么乙车间一天加工多少个零件?
12.有100千克青草,含水量为66%,晾晒后含水量降到15%.这些青草晾晒后重多少千克?
13.将一个正方形的一边减少1/5,另一边增加 4米,得到一个长方形.这个长方形与原来正方形面积相等.那么正方形面积有多少平方米?
14.某车间加工甲、乙两种零件.已加工好的零件中甲种零件占30%,后来又加工好了24个乙种零件,这时甲种零件占25%.那么现在已加工好两种零件共多少个?
15.甲、乙、丙三人共生产零件1760个.如果甲少生产2/9,乙多生产80个,那么甲、乙、丙三人生产零件的个数相等.甲、乙、丙三人各生产了多少个?
16.小明今年的年龄是他爸爸年龄的1/6,15年后他的年龄是他爸爸年龄的4/9.小明和他爸爸今年各多少岁?
17.某校有学生314人,其中男生人数的2/3比女生人数的4/5少40人.这个学校男生、女生各多少人?
18.甲、乙两班人数相等,各有一些同学参加了数学小组.甲班参加数学小组的人数恰好是乙班没参加数学小组人数的1/3;乙班参加数学小组的人数恰好是甲班没参加数学小组人数的1/4.那么甲班没参加数学小组的人数是乙班没参加数学小组人数的几分之几?
19.容器里放着某种浓度的酒精溶液若干升,加 1升水后纯酒精含量为25%;再加1升纯酒精,容器里纯酒精含量为40%.那么原来容器里的酒精溶液共几升?浓度为百分之几?
20.甲、乙、丙三人合抄一份稿件,1小时可以完成.如果甲、乙二人合抄,要80分钟完成;如果乙、丙二人合抄,要100分钟完成.如果这份稿件由乙一人独抄,要几小时完成?
21.一件工程,甲独做,20天可以完成;乙独做,30天可以完成.现在两人合做,中间甲休息了3天,乙休息了若干天,结果经过16天才完成.问乙休息了几天?
22.注满一池水,只打开甲管,要8小时;只打开乙管,要12小时;只打开丙管,要15小时.今开始只打开甲、乙两管,中途关掉甲、乙两管,然后打开丙管,前后共用了10小时才注满一池水.那么打开丙管注水几小时?
23.某工程队承建一项工程,要用12天完成.如果只让其中的甲、乙两个小队交换一下工作内容,那么全工程就要推迟3天完成;如果让其中甲、乙两个小队交换一下工作内容的同时,也让丙、丁两个小队交换工作内容,仍然可以按期完成全工程.如果只让丙、丁两个小队交换工作内容,那么可以使全工程提前几天完成?
24.甲、乙两队合干一项工程,甲队先独干了6天后,乙队参加和甲队一起干,又过了4天完成了全工程的1/3.又过了10天正好完成了全工程的3/4.因甲队另有任务调出,乙队继续工作,直到完成全工程.从开始到完工用了多少天?
25.甲、乙二人同时从A、B两地出发,各自去B、A两地,二人速度比为7∶6.二人相遇后继续向前行进,这时乙的速度比原来速度每小时增加来的速度.
1.两个小队割青草,每个小队割3捆,每捆重8千克.一共割了多少千克?
2.张家庄小学新修9个教室,每个教室有6扇窗子,每扇窗子安8块玻璃,一共要安多少块玻璃?
3.每个书架有5层,每层放30本书,3个书架一共放多少本书?
4.学校举行广播操表演.三、四、五年级各有3个班,每班选16人参加.参加表演的一共有多少人?
连除应用题(两种方法解答)
1.商店卖出7箱保温杯,每箱12个,一共收入336元,每个保温杯多少元?
2.三年级有2个班,每个班有43个同学,一共栽树258棵,平均每个同学栽树多少棵?
3.百贷商店卖出3箱上衣,每箱20件,一共卖了720元,每件上衣的价钱是多少元?
4.学校给三好学生买奖品,买了2盒钢笔,每盒10支,一共用去80元.每支钢笔多少元?
这应该是答案:
30.8÷[14-(9.85+1.07)]
[60-(9.5+28.9)]÷0.18
2.881÷0.43-0.24×3.5
20×[(2.44-1.8)÷0.4+0.15]
28-(3.4+1.25×2.4)
2.55×7.1+2.45×7.1
777×9+1111×3
0.8×[15.5-(3.21+5.79)]
(31.8+3.2×4)÷5
31.5×4÷(6+3)
0.64×25×7.8+2.2
2÷2.5+2.5÷2
194-64.8÷1.8×0.9
36.72÷4.25×9.9
5180-705×6
24÷2.4-2.5×0.8
(4121+2389)÷7
671×15-974
0.8×[7.9-(2+5)]
469×12+1492
405×(3213-3189)
3.416÷(0.016×35)
0.8×[(10-6.76)÷1.2]
足�
『肆』 六年级上册奥数题(答案也要)
工程问题
1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?
解:
1/20+1/16=9/80表示甲乙的工作效率
9/80×5=45/80表示5小时后进水量
1-45/80=35/80表示还要的进水量
35/80÷(9/80-1/10)=35表示还要35小时注满
答:5小时后还要35小时就能将水池注满。
2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?
解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。
又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。只有这样才能“两队合作的天数尽可能少”。
设合作时间为x天,则甲独做时间为(16-x)天
1/20*(16-x)+7/100*x=1
x=10
答:甲乙最短合作10天
3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。乙单独做完这件工作要多少小时?
解:
由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量
(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。
根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。
所以1-9/10=1/10表示乙做6-4=2小时的工作量。
1/10÷2=1/20表示乙的工作效率。
1÷1/20=20小时表示乙单独完成需要20小时。
答:乙单独完成需要20小时。
4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?
解:由题意可知
1/甲+1/乙+1/甲+1/乙+……+1/甲=1
1/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×0.5=1
(1/甲表示甲的工作效率、1/乙表示乙的工作效率,最后结束必须如上所示,否则第二种做法就不比第一种多0.5天)
1/甲=1/乙+1/甲×0.5(因为前面的工作量都相等)
得到1/甲=1/乙×2
又因为1/乙=1/17
所以1/甲=2/17,甲等于17÷2=8.5天
5.师徒俩人加工同样多的零件。当师傅完成了1/2时,徒弟完成了120个。当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?
答案为300个
120÷(4/5÷2)=300个
可以这样想:师傅第一次完成了1/2,第二次也是1/2,两次一共全部完工,那么徒弟第二次后共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,刚好是120个。
6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。单份给男生栽,平均每人栽几棵?
答案是15棵
算式:1÷(1/6-1/10)=15棵
7.一个池上装有3根水管。甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?
答案45分钟。
1÷(1/20+1/30)=12 表示乙丙合作将满池水放完需要的分钟数。
1/12*(18-12)=1/12*6=1/2 表示乙丙合作将漫池水放完后,还多放了6分钟的水,也就是甲18分钟进的水。
1/2÷18=1/36 表示甲每分钟进水
最后就是1÷(1/20-1/36)=45分钟。
8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?
答案为6天
解:
由“若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,”可知:
乙做3天的工作量=甲2天的工作量
即:甲乙的工作效率比是3:2
甲、乙分别做全部的的工作时间比是2:3
时间比的差是1份
实际时间的差是3天
所以3÷(3-2)×2=6天,就是甲的时间,也就是规定日期
方程方法:
[1/x+1/(x+2)]×2+1/(x+2)×(x-2)=1
解得x=6
9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?
答案为40分钟。
解:设停电了x分钟
根据题意列方程
1-1/120*x=(1-1/60*x)*2
解得x=40
二.鸡兔同笼问题
1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?
解:
4*100=400,400-0=400 假设都是兔子,一共有400只兔子的脚,那么鸡的脚为0只,鸡的脚比兔子的脚少400只。
400-28=372 实际鸡的脚数比兔子的脚数只少28只,相差372只,这是为什么?
4+2=6 这是因为只要将一只兔子换成一只鸡,兔子的总脚数就会减少4只(从400只变为396只),鸡的总脚数就会增加2只(从0只到2只),它们的相差数就会少4+2=6只(也就是原来的相差数是400-0=400,现在的相差数为396-2=394,相差数少了400-394=6)
372÷6=62 表示鸡的只数,也就是说因为假设中的100只兔子中有62只改为了鸡,所以脚的相差数从400改为28,一共改了372只
100-62=38表示兔的只数
『伍』 小学六年级上册的奥数题及答案
1. 小伟在计算(6+O)*3时,误将算式写成(6+O)*8,这样他算出的得数比正确的得数多45,O等于多少? (答案:3)
2. 125*2*3=2000这个式子显然不成立,可是如果在算式中巧妙地插入两个数字“7”,这个算式便可以成立。你知道这两个“7”应该插在哪吗? (答案:125*72*3=27000)
3. 在800米的环岛上,每隔50米插一面彩旗,后来又增加了一些彩旗,就把彩旗的间隔缩短了。已知起点彩旗不动,重新插完后发现,一共有4面彩旗没动,现在彩旗的间隔是多少米?
(答案:40米)
4. 有一批图书,总数在1000本以内。若按24本书包成一捆,最后一捆差2本;若按28本书包成一捆,最后一捆还是差2本书;若按32本包一捆,最后一捆是30本。这批图书有多少本? (答案:674本)
5.一个书架分上、中、下三层,一共放书384本。如果从上层取出与中层一样多的本数放入中层,再从中层取出与下层一样多的本数放入下层,最后从下层取出与上层现在一样多的本数放入上层,这时三层书架中书的本数像等。书架的中层原来有书多少本? (答案:96本)
『陆』 六年级上册数学100道奥数题
1、一个四位数3()7()能同时被9和4整除,求这样的四位数中最大数十多少?最小是多少?
2、要使六位数15ABC能被36整除,而且所得的商最小,问A、B、C、各代表什么数字?商最大呢?
3、从0、3、5、7这四个数字中任选3个数,排成能同时被2、3、5整除的三位数,这样的三位数有哪些?
4、用2、3、4、5四个数字组成的四位数中,能被11整除的数都有哪些,请按从大到小排列出来。
5、个位数字为6,且能被3整除的四位数共有多少?
6、把若干个自然数1,2,3,。。。。。。乘在一起,如果已知这个成绩的最末13位恰好都是0,那么最后那个自然数最小应该是多少?
7.一件商品按原价的8折出售,能获利20%,由于成本降低,先按原价的75折出售,能获利25%,那么现在的成本比原来降低了几分之几?
8.某校四年级原有两个班,现在重新编为三个班,将原一班的1/3和原二班的1/4组成新一班,将原一班的1/4和原二班的1/3组成新二班,余下的30人组成新三班。如果新一班的人数比新二班的人数多10%。新一班有多少人?
9.已知甲、乙两车分别从相距300千米的A、B两地同时出发,相向而行。其中甲到B以后立即反回,甲去时用了3小时,返回时用了15/4小时。乙车较慢,甲返回后,再过一会才到A地。当他们行驶与各自的出发地距离相等时,都用了9/2小时,求他们何时相遇。
10.小刚和小明从家出发相向而行,小刚每分钟走52米,小明每分钟走70米,两人在途中A相遇,若小刚提前4分钟出发,且速度不变,小明每分钟走90米,两人仍然在A处相遇,两家距离多少米?
11.某车间共有86名工人,已知每人平均每天可加工甲种部件15个,或乙种部件12个,或丙种部件9个,要使加工后的部件按3个甲种部件、2个乙种部件和1个丙种部件配套,则应安排多少人加工甲种部件,多少人加工乙种部件,多少人加工丙种部件。
12.女儿每天放学后,父亲都准时去接.某日女儿提前放学步行回家.而父亲当天因事晚10分钟出发接女儿.女儿在步行8分钟后遇到父亲,然后一起回家.结果到家时间比平时晚了3分钟,假设父亲的速度保持恒定,求女儿提前多少分钟放学?
13.用0,1,2,…,9十个数字组成五个两位数,每个数字只能用一次,要求它们的和是一个奇数,并且尽可能的大,两位数的和是多少?
14.某商品成本为每个80元,如果按每个100元卖,可卖出1000个。当这种商品每个涨价1元,销售量就减少20个。为了赚取最多的利润,售价应定为每个多少元。
15.甲乙两人分别从A,B 两地出发,相向而行,出发时他们的速度比是3:2,他们第一次相遇后,甲的速度提高了20% ,乙的速度提高了30% ,这样,当甲到达B地时,乙离地A地还有14千米 ,那么AB两地之间的距离是多少?
16甲乙丙三根管子共长360m,甲的1/4在水面上,乙1/9在水面上,丙1/6在水面上,问水深
『柒』 六年级上册奥数题 100道
1.公园只售两种门票:个人票每张5元,l0人一张的团体标每张如元,购买10张以上团体票者可优惠l0%
(1)甲单位45人逛公园,按以上规定买票,最少应付多少钱?
(2)乙单位208人逛公园,按以上规定买票,最少应付多少钱?
2.用无色透明玻璃小正方体和红色玻璃小正方体拼成一个大正方体(如右图),大正方体内的对角线,,,所穿过的小正方体都是红色玻璃小正方 体,其它部分都是无色透明玻璃小正方体,小红正方体共用了40l个.问:无色透明小正方体用了多少个?
3.a是自然数,且17a=,求a的最小值.
4.对一个自然数作如下操作:如果是偶数则除以2,如果是奇数则加l。如此进行直到为l时操作停止。问:经过9次操作变为1的数有多少个?
5.已知m,n,k为自然数,m≥n≥k,是100的倍数,求m+n-k的最小值。
6.1998个小朋友围成一圈,从某人开始,逆时针方向报数,从l报到64,再依次从l报到64,一直报下去,直到每人报过l0次为止。问:
(1)有没有报过5,又报过l0的人?有多少?说明理由;
(2)有没有报过5,又报过ll的人?有多少?说明理由;
1.【解】(1)45个人,应当买4张团体票(每张10人),5张个人票,共用:30×4+5×5=145元(比5张团体票省)。
(2)208个人,可以买21张团体票(每张10人),共用:30×21×(1-10%)=3×21×9=567元,
如果买20张团体票,8张个人票,共用:30×20×(1-10%)+5×8=580元
由于购买10张以上团体票的可以优惠10%,所以208人买21张团体票反而省钱.本题答案应当是567元
2.【解】、、、,四条对角线都穿过在正中央的那个小正方体,
除此而外,每两条对角线没有穿过相同的小正方体,所以每条对角线穿过+1=101个小正方体
这就表明大正方体的每条边由101个小正方体组成因此大正方体由
1013个小正方体组成,其中无色透明的小正方体有
1013-401=1030301—40l=1029900,
即用了1029900个无色透明的小正方体.
3.【解】由除法(不断在右面添写1直到整除为止)得
a的最小值是65359477124183
4.【解】可以先尝试一下,得出下面的图:
其中经1次操作变为1的1个,即2,经2次操作变为1的1个,即4,经3次操作变为1的2个,即3,8,…,经6次操作变为1的8个,即11,24,10,28,13,64,31,30.
于是,经1、2、…次操作变为1的数的个数依次为:1,1,2,3,5,8,…(1)
这一串数有个特点:自第三个开始,每一个等于前两个的和,即:
2=1+1,3=2+1,5=3+2,8=5+3,…
如果这个规律正确,那么8后面的数依次是:
8+5=13,13+8=21,21+13=34,…
即经过9次操作变为1的数有34个。
为什么上面的规律是正确的呢?
道理也很简单.设经过n次操作变为1的数的个数为,则=1,=1,=2,…
从上面的图看出,比大.一方面,每个经过n次操作变为1的数,乘以2,就得出一个偶数,经过n+1次操作变为1;反过来,每个经过n+1次操作变为1的偶数,除以2,就得出一个经过n次操作变为1的数.所以经过n次操作变为1的数与经过n+1次操作变为1的偶数恰好一样多.前者的个数是,因此后者也是个。
另一方面,每个经过n次操作变为1的偶数,减去1,就得出一个奇数,它经过n+1次操作变为1,反过来每个经过n+1次操作变为1的奇数,加上1,就得出一个偶数,它经过n次操作变为1.所以经过n次操作变为1的偶数与经过n+1次操作变为1的奇数恰好一样多.而由上面所说,前者的个数就是,因此后者也是.
经过,n+1次操作变为1的数,分为偶数、奇数两类,所以=+(2)
即上面所说的规律的确成立。
满足规律(2),并且==1的一串数(1)称为斐波那契数.斐波那契(Fibonacci,约1175-1250)是意大利数学家,以他名字命名的这种数列有很广泛的应用
5.【解】首先注意100=22×52
如果,n=k,那么2m是100的倍数,因而是5的倍数,这是不可能的,所以n-k≥1
2m十2n-2k=2k(2m-k+2n-k-1)被22整除,所以k≥2
设a=m-k,b=n-k,则a≥b.而且都是正整数
2a+2b-1被52整除,要求a+b+k=m+n-k的最小值,
不难看出:210+21-1=1025
被25整除,所以a+b+k的最小值≤1O+1十2=13
而且在a=10,b=1,k=2时,上式等号成立
还需证明在a+b≤10时,2a+2b-1不可能被52整除
列表如下:
a≤3时,2a+2b-1<8+8=16不被52整除.其它表中情况,不难逐一检验,均不满足2a+2b-1被25整除的要求
因此a+b+k即m十n-k的最小值是13
6.【解】首先注意:1998=64×31+14(1)
所以第一次报5的人,第二次报5+14,第三次报5+14×2,…,第K+1次报5+14K(K=0,1,…,9),当然在5+14K超过64时,要减去64的倍数,直至差不大于64。因为5是奇数,14,64是偶数,所以5十14K-64H一定是奇数,不可能为10,即没有报过5,又报10的人
每个第一次报5的人.第二、三、四、五、六次依次报
5+14,5+14×2,
5+14×3,5+14×4
5+14×5—64=11.
因为5×1998=9990=156×64+6
所以在前五轮报数中,有157(=156+1)个人报5,这些人在10轮报数中,又报过11,而后五轮报5的人,不可能再报11,在前五轮报1的人,以后报
11+14,11+14×2,11+14×3,11十14×4-64=3,3十14,3+14×2,
3+14×3,3+14×4,3+14×5-64=9不报5
因此,报过5,又报过11人,有157人
希望对你有帮助!
1. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵。已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树。两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?
2. 有三块草地,面积分别是5,15,24亩。草地上的草一样厚,而且长得一样快。第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?
3. 某工程,由甲、乙两队承包,2。4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元。在保证一星期内完成的前提下,选择哪个队单独承包费用最少?
4. 一个圆柱形容器内放有一个长方形铁块。现打开水龙头往容器中灌水。3分钟时水面恰好没过长方体的顶面。再过18分钟水已灌满容器。已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比。
5. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售。两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?
6. 有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5。经过2+1/3小时,A,B两池中注入的水之和恰好是一池。这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?
7. 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校。小明从家到学校全部步行需要多少时间?
8. 甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离。乙车的速度是甲车速度的80%。已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地。最后乙车比甲车迟4分钟到C地。那么乙车出发后几分钟时,甲车就超过乙车。
9. 甲、乙两辆清洁车执行东、西城间的公路清扫任务。甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?
10. 今有重量为3吨的集装箱4个,重量为2。5吨的集装箱5个,重量为1。5吨的集装箱14个,重量为1吨的集装箱7个。那么最少需要用多少辆载重量为4。5吨的汽车可以一次全部运走集装箱?
11. 师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?
12. 一辆大轿车与一辆小轿车都从甲地驶往乙地。大轿车的速度是小轿车速度的80%。已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地。又知大轿车是上午10时从甲地出发的。那么小轿车是在上午什么时候追上大轿车的。
13. 一部书稿,甲单独打字要14小时完成,,乙单独打字要20小时完成。如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时。。。。。。。两人如此交替工作。那么打完这部书稿时,甲乙两人共用多少小时?
14. 黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多?
15. 一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米?
16. 甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨?
17. 甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478。那么甲、乙丙三数之和是几?
18. 一辆车从甲地开往乙地。如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达。甲、乙两地之间的距离是多少千米?
19. 某校参加军训队列表演比赛,组织一个方阵队伍。如果每班60人,这个方阵至少要有4个班的同学参加,如果每班70人,这个方阵至少要有3个班的同学参加。那么组成这个方阵的人数应为几人?
20. 甲、乙、丙三台车床加工方形和圆形的两种零件,已知甲车床每加工3个零件中有2个是圆形的;乙车床每加工4个零件中有3个是圆形的;丙车床每加工5个零件中有4个是圆形的。这天三台车床共加工了58个圆形零件,而加工的方形零件个数的比为4:3:3,那么这天三台车床共加工零件几个?
21. 圈金属线长30米,截取长度为A的金属线3根,长度为B的金属线5根,剩下的金属线如果再截取2根长度为B的金属线还差0。4米,如果再截取2根长度为A的金属线则还差2米,长度为A的等于几米?
22. 某公司要往工地运送甲、乙两种建筑材料。甲种建筑材料每件重700千克,共有120件,乙种建筑材料每件重900千克,共有80件,已知一辆汽车每次最多能运载4吨,那么5辆相同的汽车同时运送,至少要几次?
23. 从王力家到学校的路程比到体育馆的路程长1/4,一天王力在体育馆看完球赛后用17分钟的时间走到家,稍稍休息后,他又用了25分钟走到学校,其速度比从体育馆回来时每分钟慢15米,王力家到学校的距离是多少米?
24. 师徒两人合作完成一项工程,由于配合得好,师傅的工作效率比单独做时要提高1/10,徒弟的工作效率比单独做时提高1/5。两人合作6天,完成全部工程的2/5,接着徒弟又单独做6天,这时这项工程还有13/30未完成,如果这项工程由师傅一人做,几天完成?
25. 六年级五个班的同学共植树100棵。已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是一、二、三、四、五班。又知一班植的棵数是二、三班植的棵数之和,二班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵?
26. 甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米。乙总共跑了多少千米?
27. 有高度相等的A,B两个圆柱形容器,内口半径分别为6厘米和8厘米。容器A中装满水,容器B是空的,把容器A中的水全部倒入容器B中,测得容器B中的水深比容器高的7/8还低2厘米。容器的高度是多少厘米?
28. 有104吨的货物,用载重为9吨的汽车运送。已知汽车每次往返需要1小时,实际上汽车每次多装了1吨,那么可提前几小时完成。
29. 师、徒二人第一天共加工零件225个,第二天采用了新工艺,师傅加工的零件比第一天增加了24%,徒弟增加了45%,两人共加工零件300个,第二天师傅加工了多少个零件?徒弟加工了几个零件?
30. 奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米。去时用了4天,回来时用了3天,问学校距离百花山多少千米?
呵呵就这么多了,希望对你有帮助。选我吧
『捌』 小学六年级上册奥数题及答案
二个相邻的正方形,其中一条边在同一直线上,直线长度为20分米,现已知大正方形的面积比小正方形的面积多40平方分米,问:大、小正方形的边长各是多少?
把两个正方形的两条边对齐,重叠后,可看出大正方形比小正方形大的部分是两个长方形。一个的长是大正方形的边长,另一个的长是小正方形的长,两个的宽都是大正方形与小正方形边长的差。把这两个长方形拼成一个长方形
所拼长方形的长是大、小正方形边长的和 20分米,
面积是大、小正方形面积的差 40平方分米,
宽是大、小正方形边长的差
用40除以20的商是2分米,即大、小正方形边长的差。
用大、小正方形边长的和减去大、小正方形边长的差,再除以2,得数9分米就是小正方形的边长。说清楚了吗?
有甲乙丙三种货物。若购甲3件,乙7件,丙1件共花3.15元,若购甲4件,乙10件,丙1件共花4.2元,现购甲、乙、丙各1件,共须多少元?这道小学奥数题怎样用小学的方法解答,要有详细的解题过程。望高人指点,多谢啦啊~~~~~~
(1)3a+7b+c=315
4a+10b+11c=420
12a+28b+4c=1260
12a+30b+33c=1260
2b+29c=0
b=c=0
a=105
105分=1.05元
(2)设甲的价格为x,乙的价格为y,丙的价格为z,
那么得到的方程就是:
3x+7y+z=3.15 (1)
4x+10y+z=4.20 (2)
x=0.15
y=0.3
z=0.6
所以购买甲乙丙一件就是1.05元
如果从甲仓库搬67吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的2倍;如果从甲仓库搬17吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的5倍,原来两仓库各存货物多少吨?
67×(2+1)-17×(5+1)
=201-102
=99(吨)
99÷〔(5+1)-(2+1)〕
=99÷3
=33(吨)答:原来的乙有33吨。
(33+67)×2+67
=200+67
=267(吨)答:原来的甲有267吨。
分析:
1、如果从甲仓库搬67吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的2倍;
甲和乙总的数量没有变,总的数量包括2+1=3个现在的乙,现在的乙是原来的乙加上67得来。所以总的数量就包括3个原来的乙和3个67〔67×(2+1)=201〕。
2、如果从甲仓库搬17吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的5倍,
理由同上,总的数量包括5+1=6个原来的乙和6个17(即17×(5+1)=102)
3、从1和2可看出,原来3个乙和原来6个乙只相差3个乙,而这三个乙正好相差201-102=99吨。可求出原来的乙是多少,99÷3=33吨。
4、再求原来的甲即可。
甲每小时行12千米,乙每小时行8千米.某日甲从东村到西村,乙同时从西村到东村,以知乙到东村时,甲已先到西村5小时.求东西两村的距离
甲乙的路程是一样的,时间甲少5小时,设甲用t小时
可以得到
1. 12t=8(t+5)
t=10
所以距离=120千米
小明和小芳围绕着一个池塘跑步,两人从同一点出发,同向而行。小明:280米/分;小芳:220/分。8分后,小明追上小芳。这个池塘的一周有多少米?
280*8-220*8=480
这时候如果小明是第一次追上的话就是这样多
这时候小明多跑一圈...
1.用3.5.7.0组成一个两位数,( )乘( )的积最大.( )乘( )的积最小.
2.有一些积木的块数比50多,比70少,每7个一堆,多了一块,每9个一堆,还是多1块,这些积木有多少块?
3.6盆花要摆成4排,每排3盆,应该怎样摆?
4.4(1)班有4个人参加4X50米接力赛,问有多少种不同的安排方法?
5.能否从右图中选出5个数,使它们的和为60?为什么? 15 25 35
25 15 5
5 25 45
6.5饿连续偶数的和是240,这5个偶数分别是多少?
7.某人从甲地到乙地,先骑12小时摩托车,再骑9小时自行车正好到达.返回时,先骑21小时自行车,再骑8小时摩托车也正好到达.从甲地到乙地如果全骑摩托车需要多少时间?
1 70*53最大 30*75最小
2 64块
3 五角星形
4 4*3*2*1=24
5不能,因为都是奇数,奇数个奇数相加不可能得偶数
6.240/5=48,则其余偶数是:48-2=46,48-4=44,48+2=50,48+4=52
7.摩托车的速度是xkm/h,自行车速是ykm/h 。
21y+8x=12x+9y
4x=12y
x=3y
所以摩托车共需12+9/3=15小时