『壹』 小学六年级奥数比例应用题
1、解:设王林家上月的收入为X元,则成红家上月的收入为5/8X元。
因为月底王林家回结余720元,所以王林家本答月的开支为;
上月的收入-月底的结余=X-720
因为成红结余810元,所以成红家本月的开支为:5/8X-810,因为本月开支钱数比是8:3,所以
(X-720):(5/8X-810)=8:3
X=2160
成红家收入:2160*5/8=1350元
2、解:设阅览室原来是X人。
(1/3X+4):(X+4)=5:13
X=48
答:阅览室原来是48人.
『贰』 小学六年级奥数应用题
1、解:设王林家上月的收入为X元,则成红家上月的收入为5/8X元。
因为月底王林家结余720元,所以王林家本月的开支为;
上月的收入-月底的结余=X-720
因为成红结余810元,所以成红家本月的开支为:5/8X-810,因为本月开支钱数比是8:3,所以
(X-720):(5/8X-810)=8:3
X=2160
成红家收入:2160*5/8=1350元
2、解:设阅览室原来是X人。
(1/3X+4):(X+4)=5:13
X=48
答:阅览室原来是48人.
『叁』 有没有六年级奥数的应用题及答案
1. 甲、乙两班进行越野行军比赛,甲班以4.5千米/时的速度走了路程的一半,又以内5.5千米/时的容速度走完了另一半;乙班在比赛过程中,一半时间以4.5千米/时的速度行进,另一半时间以5.5千米/时的速度行进。问:甲、乙两班谁将获胜?
2. 轮船从A城到B城需行3天,而从B城到A城需行4天。从A城放一个无动力的木筏,它漂到B城需多少天?
1. 设总路程为S
甲班时间 S/2 / 4.5 + S/2 / 5.5 = 20S/99
乙班时间 S*2/(4.5+5.5) = S/5
乙班时间短,获胜
2. 设A城到B城距离S
则A到B(顺流)速度为S/3,B到A(逆流)速度为S/4
水速为 (S/3-S/4)/2=S/24
即无动力的木筏漂需24天
『肆』 小学六年级上册人教版奥数试题,30题
还有答案
1)某工厂生产一批玩具,完成任务的五分之三后,又增加了280件,这样还需要做的玩具比原来的多10%.原来要做多少玩具?(请写出计算过程)
解:
增加的部分就是原来的:3/5+10%
所以原来要做:280/(3/5+10%)=400件
(2)某校办工厂这个月生产本子的增值额为3万元.如果按增值额的17%交纳增值税,这个月应交纳增值税多少元?(请写出计算过程)
应该交:30000*17%=5100元
(3)爸爸这个月的工资是2100元,按规定工资在1600元以上的部分应缴纳所得税,如果按5%的税率缴纳个人收入调节税,爸爸这个月应交纳税多少元?他实际收入多少元?(请写出计算过程)
应该交:(2100-1600)*5%=25元
实际收入:2100-25=2075元
一、有关平行四边形、三角形、梯形面积计算的应用题
1、解放军战士开垦一块平行四边形的菜地。它的底为24米,高为16米。这块地的面积是多少?
s=ah 24*16=384
2、一块梯形小麦试验田,上底86米,下底134米,高60米,它的面积是多少平方米?
s=(a+b)*h/2 (86+134)*60/2=6600
3、一块三角形土地,底是358米,高是160米,这块土地的面积是多少平方米?
s=ah/2 358*160/2=28640
二、归总应用题
1、解放军运输连运送一批煤,如果每辆卡车装4.5吨,需要16辆车一次运完。如果每辆卡车装6吨,需要几辆车一次运完?
4.5*16/6=12
2、同学们摆花,每人摆9盆,需要36人;如果要18人去摆,每人要摆多少盆?
36*9/18=18
三、三步计算应用题
太阳沟小学举行数学知识竞赛。三年级有60人参加,四年级有45人参加,五年级参加的人数是四年级人数的2倍。三个年级一共有多少人参加比赛?
45*2+45+60=195
四、相遇应用题
1、张明和李红同时从两地出发,相对走来。张明每分走50米,李红每分走40米,经过12分两人相遇。两人相距多少米?
(50+40)*12=1080
2、甲乙两地相距255千米,两辆汽车同时从两地对开。甲车每小时48千米,乙车每小时行37千米,几小时后两车相遇?
255/(48+37)=3
五、列简易方程解应用题
1、向群文具厂每小时能生产250个文具盒。多少小时能生产10000个?
设:x小时能生产10000个
250x=10000
x=40
答:40小时能生产10000
六、有关长方体、正方体、表面积、体积(容积)计算的应用题
1、一个长方体的铁盒,长18厘米,宽15厘米,高12厘米。做这个铁盒的容积是多少?
18*15*12=3240
2、一个正方体棱长15厘米,它的体积是多少?
15*15*15=3375
1、填一填
(1)分母是12的最简真分数有( )个,他们的和是( )。
(2)一根铁丝长45 米,比另一根短14 米,两根铁丝共( )米。
(3)一根铁丝长45 米,另一根比它短17 米,另一根长( )米。
(4)异分母分数相加减,要先( ),化成( ),再加减。
(5)一批化肥,第一天运走它的13 ,第二天运走它的25 ,还剩这批化肥的( )没有运。
(6)把下面的分数和小数互化。
0.75=( ) 25 =( ) 3.42=( )
58 =( ) 2.12=( ) 414 =( )
2、计算题
512 +34 +112 710 -38 -18 415 +56
12 -(34 -38 ) 56 -(13 +310 ) 23 +56
3、解方程
17 +x=23 45 -x=14 x-16 =38
5、解决问题
(1)有一块布料,做上衣用去78 米,做裤子用去34 米,还剩112 米,这些布料一共用去多少米?
(2)某工程队修一条路,第一周修了49 千米,第二周修了29 千米,第三周修的比前两周的总和少16 千米,第三周修了多少?
(3)课堂上学生做实验用15 小时,老师讲解用310 小时,其余的时间学生独立做作业。已知每堂课是23 小时,学生做作业用了多少时间?
一填空题
1. 米表示把1米平均分成( )份,取其中的( )份。
2. 的分数单位是( ),它有( )个这样的分数单位。
3.( )个 是 , 里有( )个 。
4.在括号里填上适当的分数。
24千克=( )吨 4米20厘米=( )米
360米=( )千米 1小时=( )日
5. = = = =( )÷9=44÷( )
6.分数单位是 的最大真分数是( ),最小假分数是( ),最小的最简分数是( )。
7.把2米长的木料,平均分成7段,每段长 米,每段占全长的 。
8. + 表示( )个( )加上( )个( ),和是( )。
9. 、 、 、 这几个分数中能化成有限小数的是( )。
10.把下面各组分数从大到小排列。
、 、 ( )>( )>( )
、 、4.5 ( )>( )>( )
二、选择题:
1.下列各数中,不小于 的是( )。
A、1 B、 C、
2.把5千克盐放入20千克水中,盐的重量占盐水的( )。
A、 B、 C、
3.小于 的最简真分数有( )个。
A、3 B、4 C、无数
4. 和 这两个分数( )。
A、意义相同 B、大小相等 C、分数单位相同
5.甲的 等于乙的 ,那么甲( )乙。
A、大于 B、等于 C、小于
三、判断题。
1.3千克水的 和1千克水的 一样重。 ( )
2. 吨棉花= 吨铁。 ( )
3.1 是一个最简分数。 ( )
4.因为 比 小,所以 的分数单位比 的分数单位小。( )
5.真分数总是小于假分数。 ( )
6. 米比 大。 ( )
7.最简分数的分子与分母没有公因数。 ( )
四、口算。
+0.5 + 3.6+ +
2.4-1 +3.6 6.43- -0.375
五、计算下列各题。(能简算的尽量简算)
1+ - + - - -
2.15-( - ) 2.85+ +2.15+ 3.4-(0.25+ )
六、解方程。
+x=5.6 x- = x-(1.4+ )=1.8
七、列式计算。
1. 甲数是 ,比乙数多0.75,两数的和是多少?
2. 一个数减去3.25的差加上 ,结果是2.5,这个数是多少?
八、应用题。
1. 五三班有学生48人,其中男生21人。女生人数占全班人数的几分之几?男生人数是女生人数的几分之几?
2. 做同样的零件,小张12小时可做27个,小王6小时可做13个,小赵 8小时可做19个。谁做得最快?谁做得最慢?
3. 修一条1500米长的路,第一周完成了全工程的 ,第二周完成了全工程的 ,再修全工程的几分之几就完成了全部任务?
4. 王林看一本书,第一天看了全书的 ,第二天和第三天都比第一天多看全书的 ,三天后还剩全书的几分之几没看?
5. 有一个长方形,周长是68厘米,已知长是2 分米,宽是多少厘米?
回答者: 断翼天使ylq - 秀才 三级 1-18 10:07
干什么呀?????
回答者: 小朝夕 - 试用期 一级 1-20 13:12
分数、百分数应用题解题公式
单位“1”已知: 单位“1” × 对应分率 = 对应数量
求单位“1”或单位“1”未知: 对应数量 ÷ 对应分率 = 单位“1”
求一个数是另一个数的几分之几(或百分之几)公式:
一个数 ÷ 另一个数 = 一个数是另一个数的几分之几(或百分之几)
求一个数比另一个数多几分之几(或百分之几)公式:
多的数量÷单位“1” = 一个数比另一个数多几分之几(或百分之几)
求一个数比另一个数少几分之几(或百分之几)公式:
少的数量÷单位“1” = 一个数比另一个数少几分之几(或百分之几)
(注意:这里的“多”、“少”还可以换成“增产”、“节约”等字。)
(注意:例题:(1)果园里有桃树120棵,梨树的棵数比桃树多20%,果园里有梨树多少棵?
(2)果园里有桃树120棵,比梨树的棵数少20%,果园里有梨树多少棵?
分析思路:先找出单位“1”,确定已知还是未知,单位“1” 知道就用乘法,单位“1”不知道就用除法。“比谁多(少)几分之几“列式就是“1+(-)几分之几”。)
列式:(1)120×(1+20%)
(2)120÷(1-20%)
打折、利润、利息、税收应用题的解题公式
含义:“八折”的含义是:现价是原价的80%;“八五折”的含义是:现价是原价的85%
公式:
现价 = 原价 × 折数(通常写成百分数形式)
利润 = 售价 - 成本
利息 = 本金 × 利率 × 时间
税后利息 = 本金×利率×时间×80%(注意:国债和教育储蓄不交税)
应纳税额 = 需要交税的钱 × 税率
圆的周长和面积的有关公式及关键语句
圆的周长和直径的比的比值叫做圆周率。 π = C ÷ d
已知直径求周长:C = πd 已知周长求直径:d = C ÷π
已知半径求周长:C = 2πr 已知周长求半径:r = C÷π÷2
已知半径求面积:S =πr
已知直径求面积:r = d÷2
S = πr
已知周长求面积:r = C÷π÷2
S = πr
半圆周长 = C ÷ 2 + d (注意:半圆周长 = 5.14r,适用于填空题)
半圆面积 = S ÷ 2
把一个圆平均分成若干份,拼成一个近似的长方形。(图见书本)
(1)拼成的长方形面积 = 圆的面积
(2)拼成的长方形的长 = 圆周长的一半 ( 长 = )
(3)拼成的长方形的宽 = 圆的半径 ( 宽 = r )
一、填空。(每空1分,共20分)
⑴、一个数由3个100、2个10、5个0.01组成,这个数写作( )。
⑵、7吨560千克=( )吨, 1 小时=( )分
⑶、把子80分解质因数,(180= )
⑷、 的分数单位是( ),它再加上( )个这样的分数单
位就得最小的质数。
⑸、2.7∶1 化成最简单的整数比是( ),比值是( )。
⑹、一个三角形至少有( )个锐角。
⑺、一个圆柱体钢铁可以铸成( )个等底等高的圆锥体。
⑻、5米布用去 米,剩下多少米?列式是( )。
⑼、圆是轴对称圆形,它的对称轴有( )条。
⑽、小学数学竞赛的获奖人数共30名,一、二、三等奖人数的比是
1∶2∶3,获三等奖的人数有( )名。
⑾、一个圆的周长是18.84厘米,这个圆的面积是( )。
⑿、在比例尺是1∶30000000的地图上,量得北京到广州的距离是6
厘米,北京到广州的实际距离大约是( )千米。
二、判断题。(正确的在括号内画“√”,错误的画“×”)(共8分)
⑴、16和24的最大公约数是它们最小公倍数的 。 ( )
⑵、循环小数0.5按四舍五入法保留两位小数约得0.55。 ( )
『伍』 6年级上册奥数应用题60道,只要题和答案。
设吃X周。因为牛吃的肯定能生长那么我们先算出生长速度。调每周长出量为Y。27*6-6*Y=23*9-9Y=21*X-X*Y 解出Y=15,X=12。所以可以吃12周甲、乙、丙三人和修一条道路。甲、乙合作5天,修好道路的3分之1,乙、丙合修2天,修好余下的4分之1,剩下的道路三个人合修4天才能完成,共得工资2280元。按个人所完成的工作量合理分配每人各得多少元甲2280*3/8=855元
乙2280*11/40=627元
丙2280-855-627=798从甲地到乙地,只有上坡、下坡路(无平路),上坡每小时20千米,下坡每小时35千米。从甲地到乙地用9小时,从乙到甲用7又2分之1小时(7又2分之1小时是分数)甲乙两地相距多少千米?坡路为140千米,下坡路为70千米.105人,每人至少会一门外语,其中94人懂英语,75人懂俄语,62人懂德语,会三种语言的有50人,多少人只懂两门外语???设只会二门的有X人
94+75+62=231人
231-X+50*2=105
三门会的人共231人,减去只会二门的X人,而当减去只会二门的人时,三门会的人减去了三遍,所以应补上2*50。
10个学生去文具店,6人买了铅笔,5人买了圆珠笔,5人买了钢笔,3人买了铅笔和圆珠笔,2人买了圆珠笔和钢笔,3人买了钢笔和铅笔,三样都买和三样都不买的人恰好一样多,几个人三样都买??? 1
某班有学生50人,其中35人会游泳,38人会骑自行车,40人会溜冰,46人会打乒乓球。问四项活动都会的人数至少有多少人?
9人
正在修建中的高速公路要招标,现有甲、乙两个工程队,若甲、乙两队合作,24天可以完成;需费用120万元;若甲单独做20天后,剩下的工程由乙做,还需40天才能完成,这样需费用110万元。问:(1)甲、乙两队单独完成此项工程各需多少天?甲的工作效率=1/24-1/120=1/30
甲单独完成需要1/(1/30)=30天
(2)甲、乙两队单独完成此项工程,各需费用多少万元?
甲单独完成需要4.5×30=135万元
乙单独完成需要0.5×120=60万元、某市日产垃圾700吨,甲乙合作要7小时,两厂合作2.5小时后,乙厂单独处理要10小时,已知甲每小时550元,乙每小时495元,要求费用不得超过7370元,那么甲至少处理多少小时?甲至少要工作6小时
、一项工程,甲队单独完成需12天,乙队单独完成需18天,现要,则甲乙两队至少合作多少天?3、一项工作,甲乙要4小时完成,乙丙要6小时完成。现在甲丙合作2小时,剩下的乙7小时完成。甲乙丙单独要多久完成?解:甲丙合作2小时,乙独做7小时
相当于甲乙可做2小时,乙丙合作2小时,乙独做7-2-2=3小时
那么乙独做完成1-1/4×2-1/6×2=1-1/2-1/3=1/6
乙的工作效率=(1/6)/3=1/18
甲的工作效率=1/4-1/18=7/36
丙的工作效率=1/6-1/18=1/9
甲单独完成需要1/(7/36)=36/7天=5又1/7天
乙单独完成需要1/(1/18)=18天
丙单独完成需要1/(1/9)=9天
就这些了 剩下的自己找吧!!
『陆』 六年级奥数应用题
1.计算: 12-22+32-42+52-62+…-1002+1012=________。
2.一个两位数等于其个位数字的平方与十位数字之和,这个两位数是________。
3.五个连续自然数,每个数都是合数,这五个连续自然数的和最小是________。
4.有红、白球若干个。若每次拿出一个红球和一个白球,拿到没有红球时,还剩下50个白球;若每次拿走一个红球和3个白球,则拿到没有白球时,红球还剩下50个。那么这堆红球、白球共有________个。
5.一个年轻人今年(2000年)的岁数正好等于出生年份数字之和,那么这位年轻人今年的岁数是________。
6.如右图, ABCD是平行四边形,面积为72平方厘米,E,F分别为AB,BC的中点,则图中阴影部分的面积为_____平方厘米。
7.a是由2000个9组成的2000位整数,b是由2000个8组成的2000位整数,则a×b的各位数字之和为________。
8.四个连续自然数,它们从小到大顺次是3的倍数、5的倍数、7的倍数、9的倍数,这四个连续自然数的和最小是____。
9.某区对用电的收费标准规定如下:每月每户用电不超过10度的部分,按每度0.45元收费;超过10度而不超过20度的部分,按每度0.80元收费;超过20度的部分,按每度1.50元收费。某月甲用户比乙用户多交电费7.10元,乙用户比丙用户多交3.75元,那么甲、乙、丙三用户共交电费________元(用电都按整度数收费)。
10.一辆小汽车与一辆大卡车在一段9千米长的狭路上相遇,必须倒车,才能继续通行。已知小汽车的速度是大卡车的速度的3倍,两车倒车的速度是各自速度的 ;小汽车需倒车的路程是大卡车需倒车的路程的4倍。如果小汽车的速度是50千米/时,那么要通过这段狭路最少用________小时。
11.某学校五年级共有110人,参加语文、数学、英语三科活动小组,每人至少参加一组。已知参加语文小组的有52人,只参加语文小组的有16人;参加英语小组的有61人,只参加英语小组的有15人;参加数学小组的有63人,只参加数学小组的有21人。那么三组都参加的有________人。
12.有8级台阶,小明从下向上走,若每次只能跨过一级或两级,他走上去可能有________种不同方法。
预赛(B)卷
1. 计算: =________。
2. 2.1到2000之间被3,4,5除余1的数共有________个。
3. 3.已知从1开始连续n个自然数相乘,1×2×3×…×n,乘积的尾部恰有25 个连续的0,那么n的最大值是____ 。
4. 4.若今天是星期六,从今日起102000天后的那一天是星期________。
5. 如右图,在平行四边形ABCD中,AB=16,AD=10,BE=4,则FC=________。
6.所有适合不等式 的自然数n之和为________。
7.有一钟表,每小时慢2分钟,早上8点时,把表对准了标准时间,当中午钟表走到12点整的时候,标准时间为_____。
8.地震时,地震中心同时向各个方向传播出纵波和横波,纵波的传播速度是3.96千米/秒,横波的传播速度是2.58千米/秒。某次地震,地震检测点用地震仪接受到地震的纵波之后,隔了18.5秒钟,接受到这个地震的横波,那么这次地震的地震中心距离地震检测点________千米(精确到个位)。
9.一块冰,每小时失去其重量的一半,八小时之后其重量为 千克,那么一开始这块冰的重量是________千克。
10.五年级一班有32人参加数学竞赛,有27人参加英语竞赛,有22人参加语文竞赛,其中参加了数学和英语两科的有12人,参加了语文和英语的有14人,参加了数学和语文两科的有10人,那么五年级一班至少有________人。
11.有2000盏亮着的电灯,各有一个拉线开关控制着。现按其顺序编号为1,2,3,…,2000,然后将编号为2的倍数的灯线拉一下,再将编号为3的倍数的灯线拉一下,最后将编号为5的倍数的灯线拉一下,三次拉完之后,亮着的电灯有________盏。
12.有25张纸片,每张纸片的正面用红色铅笔任意写上一个不超过5的自然数,反面用蓝色铅笔任意写上一个也是不超过5的自然数,唯一的限制是:红色数字相同的任何两张纸片上,所写的蓝色数字一定不能相同。现在把每张纸片上的红、蓝两个整数相乘,这25个积的和为________。
决赛(A)卷
1.计算: =________。
2.原有男、女同学325人,新学年男生增加25人;女生减少5%,总人数增加16人,那么现有男同学________人。
3.一商店以每3盘16元的价格购进一批录音带,又从另一处以每4盘21元的价格购进比前一批加倍的录音带。如果以每3盘K元的价格全部出售可得到所投资的20%的收益,则K值是________。
4.在除13511,13903及14589时能剩下相同余数的最大整数是________。
5.试将20表示成一些合数的和,这些合数的积最大是________。
6. 在1×2×3×...×100的积中,从右边数第25个数字是___。
7.如右图所示, 角AOB=90o,C为AB弧的中点,已知阴影甲的面积为16平方厘米,则阴影乙的面积为________平方厘米。
8.各数位上数码之和是15的三位数共有_____个。
9.若有8分和15分的邮票可以无限制地取用,但某些邮资如:7分、29分等不能刚好凑成,那么只用8分和15分的邮票不能凑成的最大邮资是________。
10. 的末两位数是________。
11.4只小鸟飞入4个不同的笼子里去,每只小鸟都有自己的一个笼子(不同的鸟,笼子也不相同),每个笼子只能飞进一只鸟。若都不飞进自己的笼子里去,有________种不同的飞法。
12.甲、乙两船分别在一条河的A,B两地同时相向而行,甲顺流而下,乙逆流而行。相遇时,甲、乙两船行了相等的航程,相遇后继续前进,甲到达B地,乙到达A地后,都立即按原来路线返航,两船第二次相遇时,甲船比乙船少行1千米。如果从第一次相遇到第二次相遇时间相隔1小时20分,则河水的流速为每小时_______千米。
决赛(B)卷
1.计算: =________。
2.一个千位数字是1的四位数,当它分别被四个不同的质数相除时,余数都是1,满足这些条件的最大的偶数是 ____。
3.有两个三位数,它们的和是999,如把较大数放在较小数的左边,点一个小数点在两数之间所成的数,正好等于把较小数放在较大数的左边,点一个小数点在两数之间所成的数的6倍,那么这两个数的差(大减小)是 ________。
4.一千个体积为1立方厘米的小立方体合在一起成为一个边长为10厘米的大立方体,表面涂油漆后再分开为原来的小立方体,这些小立方体中至少有一面被油漆涂过的数目是_______。
5.某班有50名学生,参加语文竞赛的有28人,参加数学竞赛的有23人,参加英语竞赛的有20人,每人至多参加两科,那么参加两科的最多有_______人。
6.甲、乙两人进行百米赛跑,当甲到达终点时,乙在甲后面20米处;如果两人各自的速度不变,要使甲、乙两人同时到达终点,甲的起跑线应比原来的起跑线后移_______米。
7.一水池有一根进水管不断地进水,另有若干根相同的抽水管。若用24根抽水管抽水,6小时即可把池中的水抽干;若用21根抽水管抽水,8小时可将池中的水抽干。若用16根抽水管抽水,_______小时可将池中的水抽干。
8.如右图, P为平行四边形ABCD外一点,已知三角形PAB与三角形PCD的面积分别为7平方厘米和3平方厘米,那么平行四边形ABCD的面积为_______平方厘米。
9.甲、乙、丙三人跑步锻炼,都从A地同时出发,分别跑到B,C,D三地,然后立即往回跑,跑回A地再分别跑到B,C,D,再立即跑回A地,这样不停地来回跑。B与A相距 千米,C与A相距 千米,D与A相距 千米,甲每小时跑3.5千米,乙每小时跑4千米,丙每小时跑5千米。问:若这样来回跑,三人第一次同时回到出发点需用_______小时。
10.一个盒子里面装有标号为1到100的100张卡片,某人从盒子里随意抽卡片,如果要求取出的卡片中至少有两张标号之差为5,那么此人至少需要抽出_______张卡片。
11.8点10分,有甲、乙两人以相同的速度分别从相距60米的A,B两地顺时针方向
沿着长方形ABCD(见右图)的边走向D点,甲8点20分到D后,丙、丁两人立即
以相同的速度从D点出发,丙由D向A走去,8点24分与乙在E点相遇,丁由D向C
走去,8点30分在F点被乙追上,则连接三角形BEF的面积为________平方米。
12.今有长度分别为1厘米、2厘米、3厘米、...、9厘米长的木棍各一根(规定不许折断),从中选用若干根组成正方形,可有_______种不同方法。
参考答案
预赛A 1、5151 2、89 3、 130 4、 250 5、 19 6、 48 7、 18000 8、 642 9、 24.05 10、 9/10 11、 8 12、 34
预赛B 1、0.5 2、34 3、 109 4、 星期一 5、 8 6、 104 7、 12时8又29分之8分 8、 137 9、 80 10、 47 11、 1002 12、 225
决赛A 1、2又8分之5 2、170 3、 19 4、 98 5、 1024 6、 4 7、 16 8、 69 9、 97 10、 76 11、 9 12、 3/8
决赛B 1、100 2、1996 3、 715 4、 488 5、 35 6、 25 7、 18 8、 8 9、 6 10、 51 11、 2497.5 12、 9
『柒』 急需六年级上册数学奥数题应用题题目(最好附答案)
题1、营业员把一张5元的人民币和一张5角的人民币换成了28张票面为1元和1角的人民币,求换来的这两种人民币各多少张?
题2、有一元,二元,五元的人民币共50张,总面值为116元,已知一元的比二元的多2张,问三种面值的人民币各多少张?
题3、有3元,5元和7元的电影票400张,一共价值1920元,其中7元和5元的张数相等,三种价格的电影票各多少张?
题4、用大、小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱,现在有18车货,价值3024元,若每箱便宜2元,则这批货价值2520元,问:大、小汽车各有多少辆?
题5、一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次,平均每天运14次,这几天中有几天是雨天?
题6、运来一批西瓜,准备分两类卖,大的每千克0.4元,小的每千克0.3元,这样卖这批西瓜共值290元,如果每千克西瓜降价0.05元,这批西瓜只能卖250元,问:有多少千克大西瓜?
题7、甲、乙二人投飞镖比赛,规定每中一次记10分,脱靶每次倒扣6分,两人各投10次,共得152分,其中甲比乙多得16分,问:两人各中多少次?
题8、某次数学竞赛共有20条题目,每答对一题得5分,错了一题不仅不得分,而且还要倒扣2分,这次竞赛小明得了86分,问:他答对了几道题?
.解:设有1元的x张,1角的(28-x)张
x+0.1(28-x)=5.5
0.9x=2.7
x=3
28-x=25
答:有一元的3张,一角的25张。
2.解:设1元的有x张,2元的(x-2)张,5元的(52-2x)
x+2(x-2)+5(52-2x)=116
x+2x-4+260-10x=116
7x=140
x=20
x-2=18
52-2x=12
答:1元的有20张,2元18张,5元12张。
3.解:设有7元和5元各x张,3元的(400-2x)张
7x+5x+3(400-2x)=1920
12x+1200-6x=1920
6x=720
x=120
400-2x=160
答:有3元的160张,7元、5元各120张。
4.解:货物总数:(3024-2520)÷2=252(箱)
设有大汽车x辆,小汽车(18-x)辆
18x+12(18-x)=252
18x+216-12x=252
6x=36
x=6
18-x=12
答:有大汽车6辆,小汽车12辆。
5.解:天数=112÷14=8天
设有x天是雨天
20(8-x)+12x=112
160-20x+12x=112
8x=48
x=6
答:有6天是雨天。
6.解:西瓜数:(290-250)÷0.05=800千克
设有大西瓜x千克
0.4x+0.3(800-x)=290
0.4x+240-0.3x=290
0.1x=50
x=500
答:有大西瓜500千克。
7.解:甲得分:(152+16)÷2=84分
乙:152-84=68分
设甲中x次
10x-6(10-x)=84
10x-60+6x=84
16x=144
x=9
设乙中y次
10y-6(10-y)=68
16y=128
y=8
答:甲中9次,乙8次。
8.解:设他答对x道题
5x-2(20-x)=86
5x-40+2x=86
7x=126
x=18
答:他答对了18题。