Ⅰ 小学生毕业数学模拟试题(六)
小学数学六年级期末试卷(A卷)
一、填空。(6,10题每空2分,其余每空1分,共18分)
1、一百零五万八千写作( ),改写成以万为单位的数是( )万。
2、20.08千米=( )千米( )米
3、3时45分写成分数是( )时,写成小数是( )时。
4、 的分数单位是( ),有( )个这样的分数单位。
5、把340分解质因数应写成340=( )。
6、10以内所有质数的平均数是( )。
7、7==( )%
8、8.4:的比值是( )。
9、( )米的与6米的相等。
10、一个圆柱的高等于底面半径的4倍,这个圆柱的侧面展开图的周长是61.68厘米,这个圆柱体底面半径是( )。(π取3.14)。
二、判断题。对的画“√”,错的画“×”。(4分)
1、一个自然数没有比它本身再大的约数。( )
2、97是100以内最大的质数。( )
3、在一个乘法算式里,乘数是,积与被乘数的比是4:5。( )
4、任何一个圆柱体的体积都比圆锥体多2倍。( )
三、选择题。把表示正确答案的字母填在( )里。(4分)
1、一桶油5千克,先用去全部的,再用去千克,一共用去( )。
A、千克 B、千克 C、4千克
2、用4个体积是1立方分米的正方体木块拼成一个长方体,这个长方体的表面积可能是( )。
A、16平方分米 B、18平方分米 C、24平方分米
四、用简便方法计算(写出简算过程)(6分)
1、
2、1.25×25×0.4×8
五、脱式计算。(20分)
1、205×32-656
2、2975÷125+26×3.5
3、
4、(2-1.25×)×(
5、
六、求下面图形中空白部分的面积。(5分)
七、列式计算。(8分)
1、560的40%比它的多多少?
2、一个数的15%比12.8多,求这个数。(用方程解)
八、应用题。(35分)
1、机床厂第一季度生产机床570台,比计划多生产90台,超额完成计划的百分之几?
2、一项工程,甲队独干3天完成总工程的,照这样计算,完成全部工程的,需要多少天?
3、A、B两地相距32千米,甲、乙分别从A、B两地同时出发,相向而行,乙和甲的速度之比是 3:5,相遇时,甲行了多少千米?
4、一个梯形的面积是12平方分米,上底和高都是2.4分米,下底长多少分米?(用方程解)
5、原来做一套校服需要78元,现在每套提价12元,原来60套校服的钱现在可以做多少套?
6、张老师借来一本书,第一天看了全书的30%,第二天看的比全书的少14页,两天共看了70页,这本书一共多少页?
7、一个圆柱形玻璃缸,底面半径2分米,里面盛有1.5分米深的水,将一块不规则的铁放入这缸水中,水面上升0.5分米,这块铁的体积是多少?
Ⅱ 小学生三年级数学下学期试题
给你一些三(下)的应用题(60题): 1.学校买来5盒羽毛球,每盒12只。用去20只,还剩下多少只? 2、学校买来3个篮球,共花了96元;又买来一个足球,花了40元。买一个篮球和一个足球需要多少元?两种球的单价相差多少元? 3、王霞买来一本140页的故事书,已经看了86页。剩下的计划6天看完,每天要看多少页? 4、一把椅子的价钱是25元,一张桌子的价钱是一把椅子的3倍。买一把椅子和一张桌子共用多少元? 5、班里图书角有58本故事书、34本科普读物。要放在一个4层的书架上,平均每层要放多少本书? 6、李丽和王敏同时做纸鹤,李丽每小时做12只,王敏每小时做14只,做了3小时,两个人一共做了多少只纸鹤? 7、同学们参加爬山比赛,女同学分成了4组,每组有15人。参赛的男同学有76名,一共有多少名同学参加爬山比赛? 8、王大伯进县城卖了9只兔子,每只22元。还卖1只羊,得160元。(1)王大伯的兔子和羊一共卖了多少钱?(2)王大伯用卖兔子和羊的钱买了4瓶农药,每瓶13元。王大伯还剩多少钱? 9、一桶3Kg的油42元,一桶5Kg的油65元,哪种瓶装的油便宜? 10、一件上衣65元,一条裤子28元。(1)买4件上衣比4条裤子多花多少钱?(2)用150元钱买2套衣服,够吗? 11、有两根铁丝,第一根长35米,第二根的长度比第一根的4倍多2米。第二根长多少米? 12、一个长方形的操场周长是400米,长是宽的3倍,这个操场的长和宽各是多少米? 13、有两个同样的长方形,长是8分米,宽是4分米。如果把它们拼成一个长方形,这个长方形的周长是多少分米?如果拼成一个正方形,这个正方形的周长是多少分米? 14、冬冬借了一本科技书有40页,一周后归还,他每天准备看6页,能按时归还吗? 15、三(2)班有44人,老师准备分成8个小组讨论,每组可分几人,还剩几人? 16、用一段长4米的布料可以裁5件同样大小的背心。做一件背心要用多少布? 17、一头小象重4吨,用一辆载重10吨的大货车运,一次最多能运几头小象? 18、红旗连锁店原有瓶干632袋,卖出385袋,又运来200袋,这时店里有多少袋瓶干? 19、学校买来810本练习册,一年级领走168本,二年级领走165本,还剩多少本? 20、一列火车的第10号车厢原有116人,到某站后,有58人下车,有45人上车。再开车时,这节车厢有多少人? 21、一台VCD要238元,一台扫描仪要458元,爸爸带了800元钱。够不够? 22、张大爷打了700斤鱼,上午卖出523斤,下午比上午少卖出394斤。 (1) 下午卖了多少斤? (2)这一天一共卖了多少斤? (3)还剩多少斤? 23、小明和姐姐一道去书店,姐姐买一本《英语辞典》用去87元,小明买一本科技类的书用去24元。姐姐付给收银员150元,应找回多少元? 24、要给一幅长30厘米,宽26厘米的画做画框。画框的周长至少是多少厘米? 25、用两个长4厘米,宽3厘米的长方形拼成一个大长方形。大长方形的周长可能是多少? 26、某小学的操场是一个长方形,长100米、宽65米。小强围着操场跑了2圈,小强一共跑了多少米? 27、有学生31人,老师2人。每船限乘4人,至少要租多少条小船? 28、一副中国象棋16元,一副跳棋12元,一副围棋是一副中国象棋与一副跳棋价钱和的3倍。小明带80元,买一副围棋够吗? 29、同学们倡议捐400本图书给“手拉手”学校。一至六年级各捐了58本,还要捐多少本就达到了400本? 30、春季植树。五年级植树12棵,六年级植树16棵,全校植树的棵数是五、六年级植树棵数的3倍,全校共植树多少棵? 31、原来有30个同学,又走来15个。这些同学5人排一行,可以排几行? 32、用一根36厘米的铁丝正好围成一个正方形。这个正方形的边长是多少厘米? 33、一根绳子长25米,先剪下10米,剩下的每两米做一根短跳绳。可以做多少根短跳绳,还剩多少米? 34、把一张长36厘米,宽18厘米的长方形纸片,剪成两个最大的正方形,其中一个正方形的周长是多少厘米? 35、一根绳子的5倍是45米,一根铁丝是这根绳子的7倍。这根铁丝长多少米? 36、修一条945米的路,第一个月修了354米,第二个月修了276米,第三个月还要修多少米才能修完? 37、超市上午卖出大米153千克,下午比上午多卖出56袋,这一天工卖出大米多少袋? 38、水果店运回54筐水果,其中48筐是苹果,其余是梨,问苹果的筐数是梨的多少倍? 39、一辆汽车每小时行55千米,照这样计算,4小时可以行多少恰千米? 40、饲养小组养32只白兔,26只黑兔,养的灰兔比白兔的总数少18只,养会灰兔多少只? 41、修路队修一条路,已经修了550米,剩下的是已经修的4倍,剩下多少米?这条路全长多少米? 42、明明有42张油票,芳芳的邮票比明明多14张。他们一共有多少张邮票? 43、校园里有水杉树24棵,松树的棵数是水杉数的3倍。水杉和松树一共有多少棵?水杉树比松数少多少棵? 44、黑天鹅有35只,白天鹅的只数比黑天鹅的3倍还多8只。白天鹅有多少只? 45、王阿姨去买3个足球,每个足球28元,付给营业员100元,找回多少元? 46、一个长方形操场,长55米,宽35米,小华沿操场的边跑了两全圈,跑了多少米? 47、三(1)班借29本,三(2)班借了38本,三(3)班借的书比一班和二班借的总数少34本,三(3)班借书多少本? 48、水果店运来850千克苹果,上午卖286千克,下午卖354千克,还剩多少千克? 49、一根绳子长25米,先剪下10米,剩下的每两米做一根短跳绳。可以做多少根短跳绳,还剩多少米? 50、小红、小英、小兰、小平四人进行一次乒乓球比赛。每两人打一次,一共要打多少场?请把他们写出来。 51、水果店运回650千克苹果,卖出了385千克,有运回270千克。水果店现在有苹果多少千克? 52、某小学三年级的同学乘四辆汽车去春游,前3辆车各坐68个同学,第4辆车坐74人,这次春游一共去了多少人? 53、一篇文章600字,小芳的爸爸平均每分钟能打67个,9分钟能打完吗? 54.修路队修一条长1500米的公路,已经修好了300米,剩下的要在6天修完,平均每天要修多少米? 55.运动场跑道一圈是400米,王叔叔每天坚持跑2圈半。他每天跑多少米? 56.小丽走一步长约5分米,她从家到学校一共走了540步,算一算,她家到学校大约有多少米? 57.兰兰身高134厘米,东东比兰兰高5厘米。东东身高是多少厘米? 58.红领巾小学三年级有男生257人,女生235人,已经体检身体的有387人,没有体检的有多少人? 59.图书室借出456本图书,还剩207本,现在又还回285本,图书室里现在有多少本? 60.红领巾小学买来皮球380个,足球70个,课外活动时借出去423个,现在学校还剩多少个球?
Ⅲ 小学生数学毕业试题精选全部答案
900里面()个60,()的片倍是600。
Ⅳ 小学生典型数学题库
1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?
解:一把椅子的价钱:
288÷(10-1)=32(元)
一张桌子的价钱:
32×10=320(元)
答:一张桌子320元,一把椅子32元。
2. 3箱苹果重45千克。一箱梨比一箱苹果多5千克,3箱梨重多少千克?
解:45+5×3=45+15=60(千克)
答:3箱梨重60千克。
3. 甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。甲比乙速度快,甲每小时比乙快多少千米?
解:4×2÷4=8÷4=2(千米)
答:甲每小时比乙快2千米。
4. 李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。每支铅笔多少钱?
解:0.6÷[13-(13+7)÷2]=0.6÷[13—20÷2]=0.6÷3=0.2(元)
答:每支铅笔0.2元。
5. 甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河 的两岸。由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。甲车每小时行40千米,乙车每小时行 45千米,两地相距多少千米?(交换乘客的时间略去不计)
解:下午2点是14时。
往返用的时间:14-8=6(时)
两地间路程:(40+45)×6÷2=85×6÷2=255(千米)
答:两地相距255千米。
6. 学校组织两个课外兴趣小组去郊外活动。第一小组每小时走4.5千米,第二小组每小时行3.5千米。两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。多长时间能追上第二小组?
解:第一组追赶第二组的路程:
3.5-(4.5-?3.5)=3.5-1=2.5(千米)
第一组追赶第二组所用时间:
2.5÷(4.5-3.5)=2.5÷1=2.5(小时)
答:第一组2.5小时能追上第二小组。
7. 有甲乙两个仓库,每个仓库平均储存粮食32.5吨。甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?
解:乙仓存粮:
(32.5×2+5)÷(4+1)=(65+5)÷5=70÷5=14(吨)
甲仓存粮:
14×4-5=56-5=51(吨)
答:甲仓存粮51吨,乙仓存粮14吨。
8. 甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。甲、乙两队每天共修多少米?
解:乙每天修的米数:
(400-10×4)÷(4+5)=(400-40)÷9=360÷9=40(米)
甲乙两队每天共修的米数:
40×2+10=80+10=90(米)
答:两队每天修90米。
9. 学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?
解:每把椅子的价钱:
(455-30×6)÷(6+5)=(455-180)÷11=275÷11=25(元)
每张桌子的价钱:
25+30=55(元)
答:每张桌子55元,每把椅子25元。
10. 一列火车和一列慢车,同时分别从甲乙两地相对开出。快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?
解:(7+65)×[40÷(75- 65)]=140×[40÷10]=140×4=560(千米)
答:甲乙两地相距560千米。
11. 某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。运后结算时,共付运费4400元。托运中损坏了多少箱玻璃?
解:(20×250-4400)÷(10+20)=600÷120=5(箱)
答:损坏了5箱。
12. 五年级一中队和二中队要到距学校20千米的地方去春游。第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。第一中队先出发2小时后,第二中队再出发,第二中队出发后几小时才能追上一中队?
解:4×2÷(12-4)=4×2÷8 =1(时)
答:第二中队1小时能追上第一中队。
13. 某厂运来一堆煤,如果每天烧1500千克,比计划提前一天烧完,如果每天烧1000千克,将比计划多烧一天。这堆煤有多少千克?
解:原计划烧煤天数:
(1500+1000)÷(1500-1000)=2500÷500=5(天)
这堆煤的重量:
1500×(5-1)=1500×4=6000(千克)
答:这堆煤有6000千克。
14. 妈妈让小红去商店买5支铅笔和8个练习本,按价钱给小红3.8元钱。结果小红却买了8支铅笔和5本练习本,找回0.45元。求一支铅笔多少元?
解:每本练习本比每支铅笔贵的钱数:
0.45÷(8-5)=0.45÷3=0.15(元)
8个练习本比8支铅笔贵的钱数:
0.15×8=1.2(元)
每支铅笔的价钱:
(3.8-1.2)÷(5+8)=2.6÷13=0.2(元)
答:每支铅笔0.2元。
15. 根据一辆客车比一辆卡车多载10人,可求6辆客车比6辆卡车多载的人数,即多用的(8-6)辆卡车所载的人数,进而可求每辆卡车载多少人和每辆大客车载多少人。
解:卡车的数量:
360÷[10×6÷(8-6)]=360÷[10×6÷2]=360÷30=12(辆)
客车的数量:
360÷[10×6÷(8-6)+10]=360÷[30+10]=360÷40=9(辆)
答:可用卡车12辆,客车9辆。
16. 某筑路队承担了修一条公路的任务。原计划每天修720米,实际每天比原计划多修80米,这样实际修的差1200米就能提前3天完成。这条公路全长多少米?
解:已修的天数:
(720×3-1200)÷80=960÷80=12(天)
公路全长:
(720+80)×12+1200=800×12+1200=9600+1200=10800(米)
答:这条公路全长10800米。
17. 某鞋厂生产1800双鞋,把这些鞋分别装入12个纸箱和4个木箱。如果3个纸箱加2个木箱装的鞋同样多。每个纸箱和每个木箱各装鞋多少双?
解:12个纸箱相当木箱的个数:
2×(12÷3)=2×4=8(个)
一个木箱装鞋的双数:
1800÷(8+4)=18000÷12=150(双)
一个纸箱装鞋的双数:
150×2÷3=100(双)
答:每个纸箱可装鞋100双,每个木箱可装鞋150双
18. 某工地运进一批沙子和水泥,运进沙子袋数是水泥的2倍。每天用去30袋水泥,40袋沙子,几天以后,水泥全部用完,而沙子还剩120袋,这批沙子和水泥各多少袋?
解:水泥用完的天数:
120÷(30×2-40)=120÷20=6(天)
水泥的总袋数:
30×6=180(袋)
沙子的总袋数:
180×2=360(袋)
答:运进水泥180袋,沙子360袋。
19. 学校里买来了5个保温瓶和10个茶杯,共用了90元钱。每个保温瓶是每个茶杯价钱的4倍,每个保温瓶和每个茶杯各多少元?
解:每个茶杯的价钱:
90÷(4×5+10)=3(元)
每个保温瓶的价钱:
3×4=12(元)
答:每个保温瓶12元,每个茶杯3元。
20. 两个数的和是572,其中一个加数个位上是0,去掉0后,就与第二个加数相同。这两个数分别是多少?
解:第一个加数:
572÷(10+1)=52
第二个加数:
52×10=520
答:这两个加数分别是52和520。
21. 一桶油连桶重16千克,用去一半后,连桶重9千克,桶重多少千克?
解:9-(16-9)=9-7=2(千克)
答:桶重2千克。
22. 一桶油连桶重10千克,倒出一半后,连桶还重5.5千克,原来有油多少千克?
解:(10-5.5)×2=9(千克)
答:原来有油9千克。
23. 用一只水桶装水,把水加到原来的2倍,连桶重10千克,如果把水加到原来的5倍,连桶重22千克。桶里原有水多少千克?
解:(22-10)÷(5-2)=12÷3=4(千克)
答:桶里原有水4千克。
24. 小红和小华共有故事书36本。如果小红给小华5本,两人故事书的本数就相等,原来小红和小华各有多少本?
解:小华有书的本数:
(36-5×2)÷2=13(本)
小红有书的本数:
13+5×2=23(本)
答:原来小红有23本,小华有13本。
25. 有5桶油重量相等,如果从每只桶里取出15千克,则5只桶里所剩下油的重量正好等于原来2桶油的重量。原来每桶油重多少千克?
解:15×5÷(5-2)=25(千克)
答:原来每桶油重25千克。
26. 把一根木料锯成3段需要9分钟,那么用同样的速度把这根木料锯成5段,需要多少分?
解:9÷(3-1)×(5-1)=18(分)
答:锯成5段需要18分钟。
27. 一个车间,女工比男工少35人,男、女工各调出17人后,男工人数是女工人数的2倍。原有男工多少人?女工多少人?
解:35÷(2-1)=35(人)
女工原有:
35+17=52(人)
男工原有:
52+35=87(人)
答:原有男工87人,女工52人。
28. 李强骑自行车从甲地到乙地,每小时行12千米,5小时到达,从乙地返回甲地时因逆风多用1小时,返回时平均每小时行多少千米?
解:12×5÷(5+1)=10(千米)
答:返回时平均每小时行10千米。
29. 甲、乙二人同时从相距18千米的两地相对而行,甲每小时行走5千米,乙每小时走4千米。如果甲带了一只狗与甲同时出发,狗以每小时8千米的速度向乙跑去,遇到乙立即回头向甲跑去,遇到甲又回头向飞跑去,这样二人相遇时,狗跑了多少千米?
解:18÷(5+4)=2(小时)
8×2=16(千米)
答:狗跑了16千米。
30. 有红、黄、白三种颜色的球,红球和黄球一共有21个,黄球和白球一共有20个,红球和白球一共有19个。三种球各有多少个?
解:总个数:
(21+20+19)÷2=30(个)
白球:30-21=9(个)
红球:30-20=10(个)
黄球:30-19=11(个)
答:白球有9个,红球有10个,黄球有11个。
31. 在一根粗钢管上接细钢管。如果接2根细钢管共长18米,如果接5根细钢管共长33米。一根粗钢管和一根细钢管各长多少米?
解题思路:
解:(33-18)÷(5-2)=5(米)
18-5×2=8(米)
答:一根粗钢管长8米,一根细钢管长5米。
32. 水泥厂原计划12天完成一项任务,由于每天多生产水泥4.8吨,结果10天就完成了任务,原计划每天生产水泥多少吨?
解:4.8×10÷(12-10)=24(吨)
答:原计划每天生产水泥24吨。
33. 学校举办歌舞晚会,共有80人参加了表演。其中唱歌的有70人,跳舞的有30人,既唱歌又跳舞的有多少人?
解:4.8×10÷(12-10)=24(吨)
答:原计划每天生产水泥24吨。
34. 学校举办语文、数学双科竞赛,三年级一班有59人,参加语文竞赛的有36人,参加数学竞赛的有38人,一科也没参加的有5人。双科都参加的有多少人?
解:36+38+5-59=20(人)
答:双科都参加的有20人。
35. 学校买了4张桌子和6把椅子,共用640元。2张桌子和5把椅子的价钱相等,桌子和椅子的单价各是多少元?
解:5×(4÷2)+6=16(把)
640÷16=40(元)
40×5÷2=10O(元)
答:桌子和椅子的单价分别是100元、40元。
36. 父亲今年45岁,5年前父亲的年龄是儿子的4倍,今年儿子多少岁?
解:(45-5)÷4+5 =10+5 =15(岁)
答:今年儿子15岁。
37. 有两桶油,甲桶油重是乙桶油重的4倍,如果从甲桶倒入乙桶18千克,两桶油就一样重,原来每桶各有多少千克油?
解:18×2÷(4-1)=12(千克)
12×4=48(千克)
答:原来甲桶有油48千克,乙桶有油12千克。
38. 光明小学举办数学知识竞赛,一共20题。答对一题得5分,答错一题扣3分,不答得0分。小丽得了79分,她答对几道,答错几道,有几题没答?
解:(5×20-75)÷8=2(题)……5(分)
20-2-1=17(题)
答:答对17题,答错2题,有1题没答。
39. 光明小学举办数学知识竞赛,一共20题。答对一题得5分,答错一题扣3分,不答得0分。小丽得了79分,她答对几道,答错几道,有几题没答?
40. 一列火车长600米,通过一条长1150米的隧道,已知火车的速度是每分700米,问火车通过隧道需要几分?
解:(600+1150)÷700 =1750÷700 =2.5(分)
答:火车通过隧道需2.5分。
41.小明从家里到学校,如果每分走50米,则正好到上课时间;如果每分走60米,则离上课时间还有2分。问小明从家里到学校有多远?
解:60×2÷(60-50)=12(分)
50×12=600(米)
答:小明从家里到学校是600米。
42.有一周长600米的环形跑道,甲、乙二人同时、同地、同向而行,甲每分钟跑300米,乙每分钟跑400米,经过几分钟二人第一次相遇?
解:600÷(400-300)=600÷100 =6(分)
答:经过6分钟两人第一次相遇
43.有一个长方形纸板,如果只把长增加2厘米,面积就增加8平方米;如果只把宽增加2厘米,面积就增加12平方厘米。这个长方形纸板原来的面积是多少?
解:(12÷2)×(8÷2)=24(平方厘米)
答:这个长方形纸板原来的面积是24平方厘米。
44.妈妈买苹果和梨各3千克,付出20元找回7.4元。每千克苹果2.4元,每千克梨多少元?
解:(20-7.4)÷3-2.4 =12.6÷3-2.4 =4.2-2.4 =1.8(元)
答:每千克梨1.8元。
45.甲乙两人同时从相距135千米的两地相对而行,经过3小时相遇。甲的速度是乙的2倍,甲乙两人每小时各行多少千米?
解:135÷3÷(2+1)=15(千米)
15×2=30(千米)
答:甲乙每小时分别行30千米、15千米。
46.盒子里有同样数目的黑球和白球。每次取出8个黑球和5个白球,取出几次以后,黑球没有了,白球还剩12个。一共取了几次?盒子里共有多少个球?
解:12÷(8-5)=4(次)
8×4+5×4+12=64(个)
或8×4×2=64(个)
答:一共取了4次,盒子里共有64个球。
47.上午6时从汽车站同时发出1路和2路公共汽车,1路车每隔12分钟发一次,2路车每隔18分钟发一次,求下次同时发车时间。
解:12和18的最小公倍数是36
6时+36分=6时36分
答:下次同时发车时间是上午6时36分。
48.父亲今年45岁,儿子今年15岁,多少年前父亲的年龄是儿子年龄的11倍?
解:(45-15)÷(11-1)=3(岁)
15-3=12(年)
答:12年前父亲的年龄是儿子年龄的11倍。
49.王老师有一盒铅笔,如平均分给2名同学余1支,平均分给3名同学余2支,平均分给4名同学余3支,平均分给5名同学余4支。问这盒铅笔最少有多少支?
解:2、3、4、5的最小公倍数是60
60-1=59(支)
答:这盒铅笔最少有59支。
50. 一块平行四边形地,如果只把底增加8米,或只把高增加5米,它的面积都增加40平方米。求这块平行四边形地原来的面积?
解:(40÷5)×(40÷8)=40(平方米)
答:平行四边形地原来的面积是40平方米。
Ⅳ 这4道小学试题,难倒了很多家长,你会解答吗
大部分人心里都认为小学考试是一件很容易的事情,在考试作答中不需要怎么动脑筋,不用花费太多的精力就能轻松的完成考试,但是事实却不是如此,现在的小学生已经不像我们读书那会了,只需要学习语文和数学这两门功课,如今的小学增加了英语、科学等等的课程,压力非常大,每天都需要面对很多的作业,而且还要应付各学科的考试,相信许多家长平时在辅导孩子作业的时候也会被一些题目难住,连小学的题目都做不出来,真得不得不怀疑自己的智商,小学生的考试,并不像高考那样具有很强的“深奥性”和“学术性”,但是其难度却一点都不小,甚至有的可以与高考试题一较高低!
接下来我们一起来看看4道高深莫测的小学试题,难倒了很多家长,连大学生都直言:能做出来的都是天才!
1、第一道小学考试题目:小学入学考试数学题
对于这一道小学数学题目,考察的是要求学生们把这些图像转换成数字,这样的题目应该是小学四年级、五年级的试卷才会出现的,很多人第一眼看到这道题目,都会容易被忽悠进去,难度真的不一般,如果没有仔细观察,是很难算出正确的答案。
以上这4道小学试题高深莫测,难倒了很多家长,连大学生都被折服,直言:能答出来的都是天才!对此,你能答对几道呢?可以在下方留言,一起分享哦!
Ⅵ 小学生数学题
先看长,第一层很明显是1个长度,也就是4cm
第二层是2个方块,盖住了一个,露出来的也是1个长度,4cm
第三层是3个方块,盖住了2个,露出来的也是1个长度,4cm
第四层是4个方块,盖住了3个,露出来的也是1个长度,4cm
第四层底面是4个长度,4X4=16cm
高度单侧4层,双侧就是4x2=8cm
边长就是4x(4+4)+4x2=40cm
Ⅶ 小学生数学练习题
有理数测试题
一、 选择题(每题3分,共30分)
1、1999年国家财政收入达到11377亿元,用四舍五入法保留两个有效数字的近似值为( )亿元
(A) (B) (C) (D)
2、大于–3.5,小于2.5的整数共有( )个。
(A)6 (B)5 (C)4 (D)3
3、已知数 在数轴上对应的点在原点两侧,并且到原点的位置相等;数 是互为倒数,那么 的值等于( )
(A)2 (B)–2 (C)1 (D)–1
4、如果两个有理数的积是正数,和也是正数,那么这两个有理数( )
(A)同号,且均为负数 (B)异号,且正数的绝对值比负数的绝对值大
(C)同号,且均为正数 (D)异号,且负数的绝对值比正数的绝对值大
5、在下列说法中,正确的个数是( )
⑴任何一个有理数都可以用数轴上的一个点来表示
⑵数轴上的每一个点都表示一个有理数
⑶任何有理数的绝对值都不可能是负数
⑷每个有理数都有相反数
A、1 B、2 C、3 D、4
6、如果一个数的相反数比它本身大,那么这个数为( )
A、正数 B、负数
C、整数 D、不等于零的有理数
7、下列说法正确的是( )
A、几个有理数相乘,当因数有奇数个时,积为负;
B、几个有理数相乘,当正因数有奇数个时,积为负;
C、几个有理数相乘,当负因数有奇数个时,积为负;
D、几个有理数相乘,当积为负数时,负因数有奇数个;
8、在有理数中,绝对值等于它本身的数有()
A.1个 B.2个 C. 3个 D.无穷多个
9、下列计算正确的是()
A.-22=-4 B.-(-2)2=4 C.(-3)2=6 D.(-1)3=1
10、如果a<0,那么a和它的相反数的差的绝对值等于( )
A.a B.0 C.-a D.-2a
二、填空题:(每题2分,共42分)
1、 。
2、小明与小刚规定了一种新运算*:若a、b是有理数,则a*b = 。小明计算出2*5=-4,请你帮小刚计算2*(-5)= 。
3、若 ,则 = ;
4、大于-2而小于3的整数分别是_________________、
5、(-3.2)3中底数是______,乘方的结果符号为______。
6、甲乙两数的和为-23.4,乙数为-8.1,甲比乙大
7、在数轴上表示两个数, 的数总比 的大。(用“左边”“右边”填空)
8、仔细观察、思考下面一列数有哪些规律:-2 ,4 ,-8 ,16 ,-32 ,64 ,…………然后填出下面两空:(1)第7个数是 ;(2)第 n 个 数是 。
9、若│-a│=5,则a=________.
10、已知: 若 (a,b均为整数)则a+b= .
11、写出三个有理数数,使它们满足:①是负数;②是整数;③能被2、3、5 整除。答:____________。
12、数轴上原点右边4.8厘米处的点表示的有理数是32,那么,数轴左边18厘米处的点表示的有理数是____________。
13、已知 ,则a是__________数;已知 ,那么a是_________数。
14、计算: =_________。
15、已知 ,则 =_________。
16、____________________范围内的有理数经过四舍五入得到的近似数3.142。
17、: = 。
18、数5的绝对值是5,是它的本身;数–5的绝对值是5,是它的相反数;以上由定理非负数的绝对值等于它本身,非正数的绝对值等于它的相反数而来。由这句话,正数–a的绝对值为__________;负数–b的绝对值为________;负数1+a的绝对值为________,正数–a+1的绝对值___________。
19、已知|a|=3,|b|=5,且a<b,则a-b的值为 。
20、观察下列等式,你会发现什么规律: , , ,。。。请将你发现的规律用只含一个字母n(n为正整数)的等式表示出来
21 、观察下列各式 ,。。。请你将猜到的规律用n(n≥1)表示出来 .
22、已知 ,则 ___________。
23、当 时,化简 的结果是
24、已知 是整数, 是一个偶数,则a是 (奇,偶)
25、当 时,化简 的结果为 。
三、计算下列各题(要求写出解题关键步骤):
1、 2、
3、
4、(-81)÷2 ×(- )÷(-16) 5、
6、 7、
四、我们已经学过:任意两个有理数的和仍是有理数,在数学上就称有理数集合对加法运算是封闭的。同样,有理数集合对减法、乘法、除法(除数不为0)也是封闭的。请你判断整数集合对加、减、乘、除四则运算是否具有封闭性?(4分)
利用你的结论,解答:
若a、b、c为整数,且 ,求 的值。
答案:一、1、A 2 A 3 B 4 C 5 C 6 B 7 D 8 D 9 A 10 D
二、1±8,2,16,3,11,4,-1、0、1、2,5,-3.2,6,-7.2,7、右、左,8,
9,±5 10,109,11,-30,-60,-90 12,-120,13,a≥0,正数,14,0,15,-8,16,大于或等于3.1415且小于3.1425,17, 18、-a,b,-1-a,-a+1,19、-2或-8,20, ,21,
22,-1,23, ,24,奇数,25,-a-6
三、1、24 2、-1/5 3、-30 4、-1 5、-47 6、23 7、-96
四、加减乘封闭,除不封闭。
五、2
Ⅷ 这4道小学考试题目,你能解答出来吗
现在的社会读小学压力都非常大,每天都需要完成很多作业,除了课本上的作业,还要完成手机上的一些相关录音作业,压力真的很大,而且一些小学考试题目设计得也是高深莫测,其难度可以高考试题相互比较,难倒了很多家长,让家长们束手无措,如今的小学生需要学习的课程不只是语文数学这两科学科这么简单了,还增加了英语、科学、外教口语等,每天背去学校的书包都能达到七八斤重,除此之外,每天放学后还要上一些相关的补习班,真的是压力山大!
接下来我们一起来看看难到逆天的4道小学考试题目,难倒了无数家长,连大学生看后都直言:这些题目只有天才才会做,到底是什么题目难度这么高呢?下面我们一起来了解一下吧!
一、小学数学题:苹果加葡萄加香蕉=?
这道小学数学题目也是击败了很多人,要求学生们写出来的答案需要用这整事来表示,很多大学生都解答不出来这道题目,很多家长调侃称这道小学数学应用题的设计真的是高深莫测,一山比一山高,小编也认为能解答出这道题目的学生绝对是一等一的人才!你们能答出来吗?
以上这4道高深莫测的小学数学题目,难度真的不一般,难倒了无数的家长,大学生直言:只有天才才能答出来,你们能答对几道呢?可以把答案写在评论中,一起探讨!
Ⅸ 最适合小学生数学竞赛的题目,附答案!
小学数学竞赛试题(六年级)
1.一个三位数除以9余7,除以5余2,除以4余3。这样的三位数共有________个。
2.每千克价分别为2元、3元、2元4角、4元的桔子、苹果、香蕉、柿子四种水果共买了83千克,用去228元。已知买桔子用去的前与买苹果用去的钱一样多,买柿子用去的钱是买香蕉所用的钱的2倍。那么桔子买了________千克,苹果买了________千克,香蕉买了________千克,柿子买了________千克。
3.税法规定,一次性劳务收入若低于800原,免交所得税。若超过800元,需教所得税,具体标准为:800~2000的部分按10%计,2000~5000元部分按15%计,5000~10000元部分安20%计。某人一次劳务收入上税1300元,他在这次劳务中税后的净收入为________元。
4.八进制加法是逢八进一,例如:13+6=21,77+4=103。在下面的八进制加法竖式中,a、b、c、d、e、f这六个数恰好由1、2、3、4、5、6这六个数组成,那么满足题中条件的加法式子共有________个。
6.1到2000这2000个数中,最大可取出________个数,使得这些数中任意三个数的和都不能被7整除。
7.面积分别为1、2、3、4、5、6的六个长方形如下图排列,阴影部分的面积是________。
8.某商品成本为每个80原,如果按每个100卖,可卖出1000个。当这种商品每个涨价1元,销售量就减少20个。为了赚取最多的利润,售价应定为每个________元。
9.一只小虫从A处爬到B处。如果它的速度每分增加1米,可提前15分到达。如果它的速度每分再增加2米,则又可提前15分到达。A处到B处之间的路程是________米。
10.甲瓶中酒精浓度为70%,乙瓶中酒精的浓度为60%,两瓶酒精混合后的浓度为66%。如果两瓶酒精各用去5升后再混合,则混合后的浓度为66.25%。问:原来甲、乙两瓶酒精分别有________升与________升。
11.用1、2、3、4、5、6、7、8、9这9个数字排成一个最小的能被11整除的九位数,这个九位数是________。
12.把1~625这625个自然数按顺时针方向依次排列成一个圆圈。从1开始顺时针方向擦去1,保留2,再擦去3、4,保留5,擦去6,保留7,再擦去8、9,保留10……这样擦去一个数,保留一个数,擦去两个数,保留一个数;再擦去一个数,保留下一个数,擦去两个数,保留一个数……一直转圈擦下去,最后剩下的数是________。