导航:首页 > 考试分析 > 小学奥数计算题及答案

小学奥数计算题及答案

发布时间:2020-12-09 09:21:15

Ⅰ 五年级上册奥数计算题及答案,在线等。

1. 765×213÷27+765×327÷27

2.(9999+9997+…+9001)-(1+3+…+999)

3.19981999×19991998-19981998×19991999

1. 765×213÷27+765×327÷27

解:原式=765÷27×(213+327)= 765÷27×540=765×20=15300

2. (9999+9997+…+9001)-(1+3+…+999)

解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1)

=9000+9000+…….+9000 (500个9000)

=4500000

3.19981999×19991998-19981998×19991999

解:(19981998+1)×19991998-19981998×19991999

=19981998×19991998-19981998×19991999+19991998

=19991998-19981998

=10000

4计算:20×20-19×19+18×18-17×17+…+2×2-1×1

答案:

原式=(20+19)(20-19)+(18+17)(18-17)+…+(2+1)(2-1)

=20+19+18+17+…+2+1

=210

5计算1994.5×79+0.24×790+7.9×31

解答:原式=1994.5×79+2.4×79+79×3.1
=(1994.5+2.4+3.1)×79
=2000×79
=158000
6计算:38765432-3876542×3876544
解答:本题一看好大的数字,肯定有绝招,我们发现
3876542=3876543-1
3876544=3876543+1
原式=38765432-(3876543-1)×(3876543+1)
=38765432-(38765432-1)
=1
7计算2010×2009-2009×2008+2008×2007-2007×2006+…+2×1
解答:原式=2009×(2010-2008)+2007×(2008-2006)+…+3×(4-2)+2×1
=(2009+2007+…+3+1)×2
=1010025×2
=2020050

一、轻松填一填:

1.1~20的自然数中,奇数有个,偶数有个,质数有个,合数有个。

2.327至少加上,才是2的倍数,至少减去,才是5的倍数。

3.在15、18、20、30、45这五个数中,是3的倍数是。有因数

5的数是,既是3的倍数,又是5的倍数有。

4.在三位数4□2的“ □ ”中分别填上、、和后组成的数、都是3的倍数。

5.两个完全一样的三角形,拼成一个面积是8.2平方厘米的平行四边形,其中一个三角形的面积是平方厘米。

6.一个平行四边形面积是38平方厘米,底是9.5厘米,高是。

7.把3吨煤平均分成3堆,每堆煤重吨,每堆煤是3吨煤的。

8.3/4的分数单位是,再加上个这样的单位就是最小的质数。

9.3620平方厘米=()平方分米=()平方米

0.15公顷=()平方米500米=()千米

10.自然数a和b,当a()b时,b/a是真分数,当a()b时,b/a是假分数,当a()b时,b/a=1。

11、一个数的倍数的个数是,其中最小的是。

二、判断。

1.三角形的面积等于平行四边形面积的一半。

2.两个连续奇数的积一定是合数。

3.一个数的倍数总比这个数的因数大。

4.5是因数,15是倍数。

5.在献爱心活动中,笑笑捐了自己零花钱的1/5,淘气捐了自己零花钱的3/5, 淘气捐的钱比笑笑多。

6、假分数都比1大。

三、选择。

1.既是2的倍数,又是5的倍数的最大三位数是

A、999 B、995 C、990 D、950

2.一个质数

A、没有因数B、只有一个因数 C、只有2个因数 D、有3个因数

3.下面各组数中,三个连续自然数都是合数的是

A、14、15、16 B、7、8、9 C、13、15、16

4.分数的分母与除法算式中的除数

A、可以是任何数B、不能是0C、可以是0

5.一个梯形的上底、下底都不变,高扩大为原来的2倍,它的面积

A、不变 B、扩大为原来的2倍C、缩小为原来的4倍

四、计算。

1、直接写出得数。

4.1×0.5=7.6×2.5×4= 2.88÷0.4=

1.35÷5= 7a-0.2a+a=2.5-1.37=

2、解方程。

2X+3X=50 m-0.85m=3

7(X-1)=6.3 3X+7X+2.6=74

五、生活中的数学。

1、五(2)班学生在为灾区献爱心活动中捐书129本,其中男生捐书78本,剩下的是女生捐的。男生捐书的本数占全班捐书总数的几分之几?女生捐书的本数占全班捐书总数的几分之几?

2、甲、乙两地相距460千米,客车与货车同时从甲、乙两地出发,相向而行,客车每小时行60千米,货车每小时行55千米。

(1)经过多久两车可能相遇?(用方程解)

(2)相遇时客车比货车多行多少千米?

3、小明家的菜地是梯形的,上底是6米,下底是10米,高12米,如果每平方米收西红柿7千克,这块菜地可以收西红柿多少千克?

4、一批零件平均分给3个,5个,7个师傅做都剩1个,这批零件在100—110个之间。请问这批零件有多少个?

5、甲5小时行24千米,乙7小时行32千米。他们两人谁的速度快?

6、同学们去游览自然风景区,门票如下:学生票每人30元,成人票每人60人,团体20人以上(含20人)每人40元;有40名学生和5位教师。

怎样购票最省钱,共需多少元?

一、每空1分,共28分。

1、10,10,8,11; 2、1,7; 3、15,18,30,45;

15,20,30,45;15,30,45; 4、0,3,6,9;

5、4.1平方厘米;6、4厘米; 7、1,1/3;

8、1/4,5;9、36.2,0.362,1500,0.5;10、>,<,=;

11、有限的,它本身;

二、判断:每题2分,共12分。

1、 ×2、√ 3、×4× 5、× 6、×

三、每题2分,共10分。

1、 C 2、C 3、 A4、 B 5、 B

四、计算:共18分

1、每题1分,共6分。

2.05;76;7.2;0.27;7.8a;1.13;;

3、每题3分,共12分。

X=10;X= 20 ; X=1.9;X=4.8

六、生活中的数学:1、3、4、5、6每题6分,2题7分;共26分。

1、26/43,17/43; 2、4小时,20千米;3、672千克; 4、106个;

5、甲的速度快

6、买40张学生票,5张成人票;共1500元

Ⅱ 分数计算奥数题及答案

设 S=2/1+(3/1+3/2)+(4/1+4/2+4/3)+(5/1+5/2+5/3+5/4)+....+(50/1+50/2+...50/48+50/49)
S=2/1+(3/2+3/1)抄+(4/3+4/2+4/1)+。。。。+(50/49+50/48+...50/2+50/1)

式子反过来后,与原来的相加,你会发现,每个分数与上个式子对应位置的分数相加后,都得1
所以
2S=1+(1+1)+。。。+(1+1+。。+1+1)
=1+2+3+4+。。。+49
=(1+49)*49/2
=1225

小学数学奥数计算题

53.3除以0.82得65。
65乘16.1得1046.5
0.23乘以0.19得0.0437.
最后得数23947.4(无限小数)
计算已经谨慎,最后一步才保留,题目真的可以用简便方法?
难道是题意理解的问题?

Ⅳ 奥数简便计算题及答案6年级

1、根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简,化难为易。
计算4.75-9.63+(8.25-1.37)
原式=4.75+8.25-9.63-1.37
=13-(9.63+1.37)
=13-11
=2
2、这道题与给书编页码所用数字问题类似。从206788这个数字看来,数应写到了很大位置,至少是10000以后,这样相当于问用了大约206788个数字来编书页码,书一共有多少页的问题,求出了最后的页数,相对应的数字也就可以求。
将所有自然数自1开始写下去,得到:1234567891011……试确定在206788个位置上出现的数字。
答案与解析:7 从1写到9用了9个数字;
从10到99用了2×90=180个数字;
从100到999用了3×900=2700个数字;
从1000到9999用了4×9000=36000个数字;
即从1写到9999共写了9+180+2700+36000=38889个数字。
从10000写到99999用了450000个数字,而450000大于206788,因此206788个位数位置上对应数字所在的自然数在10000与99999之间。因此从10000开始还写了206788——38889=167899个数字。由于10000与99999之间每个自然数占5个数字,因此写到完整自然数应用去5的倍数个数字。考虑到从10000开始一共用到了167899+1=167900个数字。这样一共写了167900÷5=33580个数字,即从10000写到了45579,于是第206789个数字为9,第206788个数字为7。

Ⅳ 5.6年级100道奥数应用题 10道奥数计算题 要带答案!!!

靠!!!
小学数学应用题综合训练(01)

1. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵。已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树。两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?

2. 有三块草地,面积分别是5,15,24亩。草地上的草一样厚,而且长得一样快。第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?

3. 某工程,由甲、乙两队承包,2。4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元。在保证一星期内完成的前提下,选择哪个队单独承包费用最少?

4. 一个圆柱形容器内放有一个长方形铁块。现打开水龙头往容器中灌水。3分钟时水面恰好没过长方体的顶面。再过18分钟水已灌满容器。已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比。

5. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售。两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?

6. 有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5。经过2+1/3小时,A,B两池中注入的水之和恰好是一池。这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?

7. 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校。小明从家到学校全部步行需要多少时间?

8. 甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离。乙车的速度是甲车速度的80%。已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地。最后乙车比甲车迟4分钟到C地。那么乙车出发后几分钟时,甲车就超过乙车。

9. 甲、乙两辆清洁车执行东、西城间的公路清扫任务。甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?

10. 今有重量为3吨的集装箱4个,重量为2。5吨的集装箱5个,重量为1。5吨的集装箱14个,重量为1吨的集装箱7个。那么最少需要用多少辆载重量为4。5吨的汽车可以一次全部运走集装箱?

小学数学应用题综合训练(02)

11. 师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?

12. 一辆大轿车与一辆小轿车都从甲地驶往乙地。大轿车的速度是小轿车速度的80%。已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地。又知大轿车是上午10时从甲地出发的。那么小轿车是在上午什么时候追上大轿车的。

13. 一部书稿,甲单独打字要14小时完成,,乙单独打字要20小时完成。如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时。。。。。。。两人如此交替工作。那么打完这部书稿时,甲乙两人共用多少小时?

14. 黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多?

15. 一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米?

16. 甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨?

17. 甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478。那么甲、乙丙三数之和是几?

18. 一辆车从甲地开往乙地。如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达。甲、乙两地之间的距离是多少千米?

19. 某校参加军训队列表演比赛,组织一个方阵队伍。如果每班60人,这个方阵至少要有4个班的同学参加,如果每班70人,这个方阵至少要有3个班的同学参加。那么组成这个方阵的人数应为几人?

20. 甲、乙、丙三台车床加工方形和圆形的两种零件,已知甲车床每加工3个零件中有2个是圆形的;乙车床每加工4个零件中有3个是圆形的;丙车床每加工5个零件中有4个是圆形的。这天三台车床共加工了58个圆形零件,而加工的方形零件个数的比为4:3:3,那么这天三台车床共加工零件几个?

小学数学应用题综合训练(03)

21. 圈金属线长30米,截取长度为A的金属线3根,长度为B的金属线5根,剩下的金属线如果再截取2根长度为B的金属线还差0。4米,如果再截取2根长度为A的金属线则还差2米,长度为A的等于几米?

22. 某公司要往工地运送甲、乙两种建筑材料。甲种建筑材料每件重700千克,共有120件,乙种建筑材料每件重900千克,共有80件,已知一辆汽车每次最多能运载4吨,那么5辆相同的汽车同时运送,至少要几次?

23. 从王力家到学校的路程比到体育馆的路程长1/4,一天王力在体育馆看完球赛后用17分钟的时间走到家,稍稍休息后,他又用了25分钟走到学校,其速度比从体育馆回来时每分钟慢15米,王力家到学校的距离是多少米?

24. 师徒两人合作完成一项工程,由于配合得好,师傅的工作效率比单独做时要提高1/10,徒弟的工作效率比单独做时提高1/5。两人合作6天,完成全部工程的2/5,接着徒弟又单独做6天,这时这项工程还有13/30未完成,如果这项工程由师傅一人做,几天完成?

25. 六年级五个班的同学共植树100棵。已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是一、二、三、四、五班。又知一班植的棵数是二、三班植的棵数之和,二班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵?

26. 甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米。乙总共跑了多少千米?

27. 有高度相等的A,B两个圆柱形容器,内口半径分别为6厘米和8厘米。容器A中装满水,容器B是空的,把容器A中的水全部倒入容器B中,测得容器B中的水深比容器高的7/8还低2厘米。容器的高度是多少厘米?

28. 有104吨的货物,用载重为9吨的汽车运送。已知汽车每次往返需要1小时,实际上汽车每次多装了1吨,那么可提前几小时完成。

29. 师、徒二人第一天共加工零件225个,第二天采用了新工艺,师傅加工的零件比第一天增加了24%,徒弟增加了45%,两人共加工零件300个,第二天师傅加工了多少个零件?徒弟加工了几个零件?

30. 奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米。去时用了4天,回来时用了3天,问学校距离百花山多少千米?

小学数学应用题综合训练(04)

31. 某地收取电费的标准是:每月用电量不超过50度,每度收5角;如果超出50度,超出部分按每度8角收费。每月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?

32. 王师傅计划用2小时加工一批零件,当还剩160个零件时,机器出现故障,效率比原来降低1/5,结果比原计划推迟20分钟完成任务,这批零件有多少个?

33. 妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张1。20元。用这些钱买甲种卡要比买乙种卡多8张,买乙种卡要比买丙种卡多买6张。妈妈给了红红多少钱?乙种卡每张多少钱?

34. 一位老人有五个儿子和三间房子,临终前立下遗嘱,将三间房子分给三个儿子各一间。作为补偿,分到房子的三个儿子每人拿出1200元,平分给没分到房子的两个儿子。大家都说这样的分配公平合理,那么每间房子的价值是多少元?

35. 小明和小燕的画册都不足20本,如果小明给小燕A本,则小明的画册就是小燕的2倍;如果小燕给小明A本,则小明的画册就是小燕的3倍。原来小明和小燕各有多少本画册?

36. 有红、黄、白三种球共160个。如果取出红球的1/3,黄球的1/4,白球的1/5,则还剩120个;如果取出红球的1/5,黄球的1/4,白球的1/3,则剩116个,问(1)原有黄球几个?(2)原有红球、白球各几个?

37. 爸爸、哥哥、妹妹三人现在的年龄和是64岁,当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁。当哥哥的年龄是妹妹年龄的2倍时,爸爸是34岁。现在三人的年龄各是多少岁?

38. B在A,C两地之间。甲从B地到A地去送信,出发10分钟后,乙从B地出发去送另一封信。乙出发后10分钟,丙发现甲乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来。已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间?

39. 甲、乙两个车间共有94个工人,每天共加工1998竹椅。由于设备和技术的不同,甲车间平均每个工人每天只能生产15把竹椅,而乙车间平均每个工人每天可以生产43把竹椅。甲车间每天竹椅产量比乙车间多几把?

40. 甲放学回家需走10分钟,乙放学回家需走14分钟。已知乙回家的路程比甲回家的路程多1/6,甲每分钟比乙多走12米,那么乙回家的路程是几米?

小学数学应用题综合训练(05)

41. 某商品每件成本72元,原来按定价出售,每天可售出100件,每件利润为成本的25%,后来按定价的90%出售,每天销售量提高到原来的2。5倍,照这样计算,每天的利润比原来增加几元?

42. 甲、乙两列火车的速度比是5:4。乙车先发,从B站开往A站,当走到离B站72千米的地方时,甲车从A站发车往B站,两列火车相遇的地方离A,B两站距离的比是3:4,那么A,B两站之间的距离为多少千米?

43. 大、小猴子共35只,它们一起去采摘水蜜桃。猴王不在的时候,一只大猴子一小时可采摘15千克,一只小猴子一小时可采摘11千克。猴王在场监督的时候,每只猴子不论大小每小时都可以采摘12千克。一天,采摘了8小时,其中只有第一小时和最后一小时有猴王在场监督,结果共采摘4400千克水蜜桃。在这个猴群中,共有小猴子几只?

44. 某次数学竞赛设一、二等奖。已知(1)甲、乙两校获奖的人数比为6:5。(2)甲、乙来年感校获二等奖的人数总和占两校获奖人数总和的60%。(3)甲、乙两校获二等奖的人数之比为5:6。问甲校获二等奖的人数占该校获奖总人数的百分数是几?

45. 已知小明与小强步行的速度比是2:3,小强与小刚步行的速度比是4:5。已知小刚10分钟比小明多走420米,那么小明在20分钟里比小强少走几米?

46. 加工一批零件,原计划每天加工15个,若干天可以完成。当完成加工任务的3/5时,采用新技术,效率提高20%。结果,完成任务的时间提前10天,这批零件共有几个?

47. 甲、乙二人在400米的圆形跑道上进行10000米比赛。两人从起点同时同向出发,开始时甲的速度为8米/秒,乙的速度为6米/秒,当甲每次追上乙以后,甲的速度每秒减少2米,乙的速度每秒减少0。5米。这样下去,直到甲发现乙第一次从后面追上自己开始,两人都把自己的速度每秒增加0。5米,直到终点。那么领先者到达终点时,另一人距离终点多少米?

48. 小明从家去学校,如果他每小时比原来多走1。5千米,他走这段路只需原来时间的4/5;如果他每小时比原来少走1。5千米,那么他走这段路的时间就比原来时间多几分几之?

49. 甲、乙、丙、丁现在的年龄和是64岁。甲21岁时,乙17岁;甲18岁时,丙的年龄是丁的3倍。丁现在的年龄是几岁?

50. 加工一批零件,原计划每天加工30个。当加工完1/3时,由于改进了技术,工作效率提高了10%,结果提前了4天完成任务。问这批零件共有几个?

小学数学应用题综合训练(06)

51. 自动扶梯以均匀的速度向上行驶,一男孩与一女孩同时从自动扶梯向上走,男孩的速度是女孩的2倍,已知男孩走了27级到达扶梯的顶部,而女孩走了18级到达顶部。问扶梯露在外面的部分有多少级?

52. 两堆苹果一样重,第一堆卖出2/3,第二堆卖出50千克,如果第一堆剩下的苹果比第二堆剩下的苹果少,那么两堆剩下的苹果至少有多少千克?

53. 甲、乙两车同时从A地出发,不停的往返行驶于A、B两地之间。已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都杂途中C地,甲车的速度是乙车的几倍?

54. 一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行8千米,因此第二小时比第一小时多行6千米。求甲、乙两地的距离。

55. 甲、乙两车分别从A、B两地出发,并在A,B两地间不断往返行驶。已知甲车的速度是15千米/小时,甲、乙两车第三次相遇地点与第四次相遇地点相差100千米。求A、B两地的距离。

56. 某人沿着向上移动的自动扶梯从顶部朝底下用了7分30秒,而他沿着自动扶梯从底朝上走到顶部只用了1分30秒。如果此人不走,那么乘着扶梯从底到顶要多少时间?如果停电,那么此人沿扶梯从底走到顶要多少时间?

57. 甲、乙两个圆柱体容器,底面积比为5:3,甲容器水深20厘米,乙容器水深10厘米。再往两个容器中注入同样多的水,使得两个容器中的水深相等。这时水深多少厘米?

58. A、B两地相距207千米,甲、乙两车8:00同时从A地出发到B地,速度分别为60千米/小时,54千米/小时,丙车8:30从B地出发到A地,速度为48千米/小时。丙车与甲、乙两车距离相等时是几点几分?

59. 一个长方形的周长是130厘米,如果它的宽增加1/5,长减少1/8,就得到一个相同周长的新长方形。求原长方形的面积。

60. 有一长方形,它的长与宽的比是5:2,对角线长29厘米,求这个长方形的面积。

小学数学应用题综合训练(07)

61. 有一个果园,去年结果的果树比不结果的果树的2倍还多60棵,今年又有160棵果树结了果,这时结果的果树正好是不结果的果树的5倍。果园里共有多少棵果树?

62. 小明步行从甲地出发到乙地,李刚骑摩托车同时从乙地出发到甲地。48分钟后两人相遇,李刚到达甲地后马上返回乙地,在第一次相遇后16分钟追上小明。如果李刚不停地往返于甲、乙两地,那么当小明到达乙地时,李刚共追上小明几次?

63. 同样走100米,小明要走180步,父亲要走120步。父子同时同方向从同一地点出发,如果每走一步所用的时间相同,那么父亲走出450米后往回走,还要走多少步才能遇到小明?

64. 一艘轮船在两个港口间航行,水速为6千米/小时,顺水航行需要4小时,逆水航行需要7小时,求两个港口之间的距离。

65. 有甲、乙、丙三辆汽车,各以一定的速度从A地开往B地,乙比丙晚出发10分钟,出发后40分钟追上丙;甲比乙又晚出发10分钟,出发后60分钟追上丙,问甲出发后几分钟追上乙?

66. 甲、乙合作完成一项工作,由于配合的好,甲的工作效率比单独做时提高1/10,乙的工作效率比单独做时提高1/5,甲、乙合作6小时完成了这项工作,如果甲单独做需要11小时,那么乙单独做需要几小时?

67. A、B、C、D、E五名学生站成一横排,他们的手中共拿着20面小旗。现知道,站在C右边的学生共拿着11面小旗,站在B左边的学生共拿着10面小旗,站在D左边的学生共拿着8面小旗,站在E左边的学生共拿着16面小旗。五名学生从左至右依次是谁?各拿几面小旗?

68. 小明在360米长的环行的跑道上跑了一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米,问他后一半路程用了多少时间?

69. 小英和小明为了测量飞驶而过的火车的长度和速度,他们拿了两块秒表,小英用一块表记下火车从他面前通过所花的时间是15秒,小明用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是18秒,已知两根电线杆之间的距离是60米,求火车的全长和速度。

70. 小明从家到学校时,前一半路程步行,后一半路程乘车;他从学校到家时,前1/3时间乘车,后2/3时间步行。结果去学校的时间比回家的时间多20分钟,已知小明从家到学校的路程是多少千米?

小学数学应用题综合训练(08)

71. 数学练习共举行了20次,共出试题374道,每次出的题数是16,21,24问出16,21,24题的分别有多少次?

72. 一个整数除以2余1,用所得的商除以5余4,再用所得的商除以6余1。用这个整数除以60,余数是多少?

73. 少先队员在校园里栽的苹果树苗是梨树苗的2倍。如果每人栽3棵梨树苗,则余2棵;如果每人栽7棵苹果树苗,则少6棵。问共有多少名少先队员?苹果和梨树苗共有多少棵?

74. 某人开汽车从A城到B城要行200千米,开始时他以56千米/小时的速度行驶,但途中因汽车故障停车修理用去半小时,为了按时到达,他必须把速度增加14千米/小时,跑完以后的路程,他修车的地方距离A 城多少千米?

75. 甲、乙两人分别从A、B两地同时出发,相向而行,乙的速度是甲的2/3,两人相遇后继续前进,甲到达B地,乙到达A地立即返回,已知两人第二次相遇的地点距离第一次相遇的地点是3000米,求A、B两地的距离。

76. 一条船往返于甲、乙两港之间,已知船在静水中的速度为9千米/小时,平时逆行与顺行所用时间的比为2:1。一天因下雨,水流速度为原来的2倍,这条船往返共用10小时,问甲、乙两港相距多少千米?

77. 某学校入学考试,确定了录取分数线,报考的学生中,只有1/3被录取,录取者平均分比录取分数线高6分,没有被录取的同学其平均分比录取分数线低15分,所有考生的平均分是80分,问录取分数线是多少分?

78. 一群学生搬砖,如果有12人每人各搬7块,其余的每人搬5块,那么最后余下148块;如果有30人每人各搬8块,其余的每人搬7块,那么最后余下20块。问学生共有多少人?砖有多少块?

79. 甲、乙两车分别从A、B两地同时相向而行,已知甲车速度与乙车速度之比为4:3,C地在A、B之间,甲、乙两车到达C地的时间分别是上午8点和下午3点,问甲、乙两车相遇是什么时间?

80. 一次棋赛,记分方法是,胜者得2分,负者得0分,和棋两人各得1分,每位选手都与其他选手各对局一次,现知道选手中男生是女生的10倍,但其总得分只为女生得分的4。5倍,问共有几名女生参赛?女生共得几分?

小学数学应用题综合训练(09)

81. 有若干个自然数,它们的算术平均数是10,如果从这些数中去掉最大的一个,则余下的算术平均数为9;如果去掉最小的一个,则余下的算术平均数为11,这些数最多有多少个?这些数中最大的数最大值是几?

82. 某班有少先队员35人,这个班有男生23人,这个班女生少先队员比男生非少先队员多几人?

83. 小东计划到周口店参观猿人遗址。如果他坐汽车以40千米/小时的速度行驶,那么比骑车去早到3小时,如果他以8千米/小时的速度步行去,那么比骑车晚到5小时,小东的出发点到周口店有多少千米?

84. 甲、乙两船在相距90千米的河上航行,如果相向而行,3小时相遇,如果同向而行则15小时甲船追上乙船。求在静水中甲、乙两船的速度。

85. 二年级两个班共有学生90人,其中少先队员有71人,一班少先队员占本班人数的75%,二班少先队员占本班人数的5/6。一班少先队员人数比二班少先队员人数多几人?

86. 一个容器中已注满水,有大、中、小三个球。第一次把小球沉入水中,第二次把小球取出,把中球沉入水中,第三次把中球取出,把小球和大球一起沉入水中,现知道每次从容器中溢出水量的情况是:第一次是第二次的1/2,第三次是第二次的1。5倍。求三个球的体积之比。

87. 某人翻越一座山用了2小时,返回用了2。5小时,他上山的速度是3000米/小时,下山的速度是4500米/小时。问翻越这座山要走多少米?

88. 钢筋原材料每根长7。3米,每套钢筋架子用长2。4米、2。1米和1。5米的钢筋各一段。现需要绑好钢筋架子100套,至少要用去原材料多少根?

89. 有一块铜锌合金,其中铜和锌的比2:3。现知道再加入6克锌,熔化后共得新合金36克,新合金中铜和锌的比是多少?

90. 小明通常总是步行上学,有一天他想锻炼身体,前1/3路程快跑,速度是步行速度的4倍,后一段的路程慢跑,速度是步行速度的2倍。这样小明比平时早35分到校,小明步行上学需要多少分钟?

小学数学应用题综合训练(10)

91. 甲、乙、丙三人,甲的年龄比乙的年龄的2倍还大3岁,乙的年龄比丙的年龄的2倍小2岁,三个人的年龄之和是109岁,分别求出甲、乙、丙的年龄。

92. 快车以60千米/小时的速度从甲站向乙站开出,1。5小时后,慢车以40千米/小时的速度从乙站行甲站开出,。两车相遇时,相遇点离两站的中点70千米。甲、乙两站相距多少千米?

93. 甲、乙两车先后离开学校以相同的速度开往博物馆,已知8:32分甲车与学校的距离是乙车与学校距离的3倍,8:39分甲车与学校的距离是乙车与学校距离的2倍,求甲车离开学校的时间。

94. 有一个工作小组,当每个工人在各自的工作岗位上工作时,7小时可生产一批零件,如果交换工人甲、乙的岗位,其他人不变,那么可提前1小时,完成这批零件,如果交换工人丙、丁的岗位,其他人不变,也可提前1小时,问如果同时交换甲与乙、丙与丁的岗位,其他人不变,那么完成这批零件需多长的时间。

95. 用10块长7厘米、宽5厘米、高3厘米的长方体积木,拼成一个长方体,这个长方体的表面积最小是多少?

96. 公圆只售两种门票:个人票每张5元,10人一张的团体票每张30元,购买10张以上的团体票的可优惠10%。(1)甲单位45人逛公园,按以上规定买票,最少应付多少钱?(2)乙单位208人逛公园,按以上的规定买票,最少应付多少钱?

97. 甲、乙、丙三人,参加一次考试,共得260分,已知甲得分的1/3,乙得分的1/4与丙得分的一半减去22分都相等,那么丙得分多少?

98. 一项工程,甲、、乙两人合作4天后,再由乙单独做5天完成,已知甲比乙每天多完成这项工程的1/30。甲、乙单独做这项工程各需要几天?

99. 有长短两支蜡烛,(相同时间中燃烧长度相同),它们的长度之和为56厘米,将它们同时点燃一段时间后,长蜡烛同短蜡烛点燃前一样长,这时短蜡烛的长度又恰好是长蜡烛的2/3。点燃前长蜡烛有多长?

100. 一批苹果平均分装在20个筐中,如果每筐多装1/9,可省下几只筐?

小学六年级奥数计算题和答案50道

六年级奥数题及答案
1
电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?
解:设一张电影票价x元
(x-3)×(1+1/2)=(1+1/5)x
(1+1/5)x这一步是什么意思,为什么这么做
(x-3){现在电影票的单价}×(1+1/2){假如原来观众总数为整体1,则现在的观众人数为(1+2/1)}
左边算式求出了总收入
(1+1/5)x{其实这个算式应该是:1x*(1+5/1) 把原观众人数看成整体1,则原来应收入1x元,而现在增加了原来的五分之一,就应该再*(1+5/1),减缩后得到(1+1/5x)}
如此计算后得到总收入,使方程左右相等
2
甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。这时两人钱相等,求 乙的存款
答案
取40%后,存款有
9600×(1-40%)=5760(元)
这时,乙有:5760÷2+120=3000(元)
乙原来有:3000÷(1-40%)=5000(元)

3
由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?
答案
加10颗奶糖,巧克力占总数的60%,说明此时奶糖占40%,
巧克力是奶糖的60/40=1。5倍

再增加30颗巧克力,巧克力占75%,奶糖占25%,巧克力是奶糖的3倍
增加了3-1.5=1.5倍,说明30颗占1.5倍
奶糖=30/1.5=20颗

巧克力=1.5*20=30颗
奶糖=20-10=10颗

小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。”小明原有玻璃球多少个?
答案
小明说:“你有球的个数比我少1/4!”,则想成小明的球的个数为4份,则小亮的球的个数为3份
4*1/6=2/3 (小明要给小亮2/3份玻璃球)
小明还剩:4-2/3=3又1/3(份)
小亮现有:3+2/3=3又2/3(份)
这多出来的1/3份对应的量为2,则一份里有:3*2=6(个)
小明原有4份玻璃球,又知每份玻璃球为6个,则小明原有玻璃球4*6=24(个)

搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?
解:设搬运一个仓库的货物的工作量是1.现在相当于三人共同完成工作量2,所需时间是



答:丙帮助甲搬运3小时,帮助乙搬运5小时
解本题的关键,是先算出三人共同搬运两个仓库的时间.本题计算当然也可以整数化,设搬运一个仓库全部工作量为 60.甲每小时搬运 6,乙每小时搬运 5,丙每小时搬运4
三人共同搬完,需要
60 × 2÷(6+ 5+ 4)= 8(小时)
甲需丙帮助搬运
(60- 6× 8)÷ 4= 3(小时)
乙需丙帮助搬运
(60- 5× 8)÷4= 5(小时)
一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?

答案
甲乙丙3人8天完成 :5/6-1/3=1/2
甲乙丙3人每天完成 :1/2÷8=1/16,
甲乙丙3人4天完成 :1/16×4=1/4
则甲做一天后乙做2天要做 :1/3-1/4=1/12
那么乙一天做 :[1/12-1/72×3]/2=1/48
则丙一天做 :1/16-1/72-1/48=1/36
则余下的由丙做要 :[1-5/6]÷1/36=6天
答:还需要6天

股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。老王10月8日以股票10.65元的价格买进一种科技股票3000股,6月26日以每月13.86元的价格将这些股票全部卖出,老王卖出这种股票一共赚了多少钱?
答案
10.65*1%=0.1065(元) 10.65*2%=0.213(元)
10.1065+0.213=0.3195(元) 0.3195+10.65=10.9695(元)
13.86*1%=0.1386(元) 13.86*2%=0.2772(元)
0.1386+0.2772=0.4158 13.86+0.4158=14.2758(元)
14.2758-10.9695=3.3063(元)
答:老王卖出这种股票一共赚了3.3063元.

某书店老板去图书批发市场购买某种图书,第一次购书用100元,按该书定价2.8元出售,很快售完。第二次购书时,每本的批发价比第一次增多了0.5元,用去150元,所购数量比第一次多10本,当这批书售出4/5时出现滞销,便以定价的5折售完剩余图书。试问该老板第二次售书是赔钱还是赚钱,若赔,赔多少,若赚,赚多少
答案
(100+40)/2.8=50本 100/50=2 150/(2+0.5)=60本 60*80%=48本 48*2.8+2.8*50*12-150=1.2 盈利1.2元
一件工程原计划40人做,15天完成.如果要提前3天完成,需要增加多少人
解: 设需要增加x人
(40+x)(15-3)=40*15
x=10
所以需要增加10了
仓库有一批货物,运走的货物与剩下的货物的质量比为2:7.如果又运走64吨,那么剩下的货物只有仓库原有货物的五分之三。仓库原有货物多少吨?
解:第1次运走:2/(2+7)=2/9.
64/(1-2/9-3/5)=360吨。
答:原仓库有360吨货物。

育才小学原来体育达标人数与未达标人数比是3:5,后来又有60名同学达标,这时达标人数是未达标人数的9/11,育才小学共有学生多少人?
答案
原来达标人数占总人数的
3÷(3+5)=3/8
现在达标人数占总人数的
9/11÷(1+9/11)=9/20
育才小学共有学生
60÷(9/20-3/8)=800人

小王,小李,小张三人做数学练习题,小王做的题数的一半等于小李的1/3,等于小张的1/8,而且小张比小王多做了72道,小王,小张,小李各做多少道?
答案
设小王做了a道,小李做了b道,小张做了c道
由题意1/2a=1/3b=1/8c
c-a=72
解得a=24 b=36 c=96

甲乙二人共同完成242个机器零件。甲做一个零件要6分钟,乙做一个零件要5分钟。完成这批零件时,两人各做了多少个零件?
答案
设甲做了X个,则乙做了(242-X)个
6X=5(242-X)
X=110
242-110=132(个)
答:甲做了110个,乙做了132个
某工会男女会员的人数之比是3:2,分为甲乙丙三组,已知甲乙丙三组人数之比是10:8:7,甲组中男女比是3:1,乙组中男女比是5:3。求丙组男女人数之比
答案
设男会员是3N,则女会员是2N,总人是:5N
甲组有:5N*10/[10+8+7]=2N,其中:男:2N*3/4=3N/2,女:2N*1/4=N/2
乙级有:5N*8/25=8/5N,其中男:8/5N*5/8=N,女:8/5N*3/8=3/5N
丙级有:5N*7/25=7/5N
丙级中男有:3N-3N/2-N=N/2,女有:2N-N/2-3/5N=9/10N
那么丙组中男女之比是:N/2:9/10N=5:9
甲乙丙三个村合修一条水渠,修完后,甲乙丙村可灌溉的面积比是8:7:5原来三个村计划按可灌溉的面积比派出劳力,后来因为丙村抽不出劳力,经协商,丙村应抽出的劳力由甲乙两村分担,丙村付给甲乙两村工钱1350元,结果,甲村共派出60人,乙村共派出40人,问甲乙两村各应分得工钱多少元?
答案
根据甲乙丙村可灌溉的面积比算出总份数:8+7+5=20份
每份需要的人数:(60+40)÷20=5人
甲村需要的人数:8×5=40人,多出劳力人数:60-40=20人
乙村需要的人数:7×5=35人,多出劳力人数:40-35=5人
丙村需要的人数:5×5=25人 或 20+5=25人
每人应得的钱数:1350÷25=54元
甲村应得的工钱:54×20=1080元
乙村应得的工钱: 54×5=270元

p166
19题
李明的爸爸经营已个水果店,按开始的定价,每买出1千克水果,可获利0.2元。后来李明建议爸爸降价销售,结果降价后每天的销量增加了1倍,每天获利比原来增加了50%。问:每千克水果降价多少元?
答案
设以前卖出X 降价a 那么0.2X * (1+0.5)=(0.2-a) * 2x
则0.1X=2aX a=0.05

.哈利.波特参加数学竞赛,他一共得了68分。评分的标准是:每做对一道得20分,每做错一道倒扣6分。已知他做对题的数量是做错题的两倍,并且所有的题他都做了,请问这套试卷共有多少道题?
解:设哈利波特答对2X题,答错X题
20×2X-6X=68
40X-6X=68
34X=68
X=2
答对:2×2=4题
共有:4+2=6题
爸爸妈妈和奶奶乘飞机去旅行,三人所带行李的质量都超过了可免费携带行李的质量,要另付行李费,三人共付了4元,而三人行李共重150千克,如果这些行李让一个人带,那么除了免费部分,应另付行李费8元,求每人可免费携带行李的质量。
答案
设可免费携带的重量为x kg,则:
(150-3x)/4=(150-x)/8 //等式两边非免费部分单价相同;
解方程:x=30

一队少先队员乘船过河,如果每船坐15人,还剩9人,如果每船坐18人,刚好剩余1只船,求有多少只船?
答案
解法一:

设船数为X,则
(15X+9)/18=X-1
15X+9=18X-18
27=3X
X=9
答:有9只船。

解法二:

(15+9)÷(18-15)=8只船 --每船坐18人时坐了8只船
8+1=9只船

建筑工地有两堆沙子,一堆比2堆多85吨,两堆沙子各用去30吨后,一堆剩的是2堆的2倍,两堆沙子原来各有多少吨?
答案
设2堆为X吨,则一堆为X+85吨
X+85-30=2(X-30)
x=115(2堆)
x+85=115+85=200(1堆)

自然数1-100排列,用长方形框出二行六个数,六个数和为432,问这六个数最小的是几
答案
六个数分别是46 47 48 96 97 98

甲乙两地相距420千米,其中一段路面铺了柏油,另一段是泥土路.一辆汽车从甲地驶到乙地用了8小时,已知在柏油路上行驶的速度是每小时60千米,而在泥土路上的行驶速度是每小时40千米.泥土路长多少千米?

答案
两段路所用时间共8小时。

柏油路时间:(420-x)÷60

泥土路时间: x÷40

7-(x÷60)+(x÷40)=8
有x÷120=1
所以x=120

一少先队中队去野营,炊事员问多少人,中队长答: 一个人一个碗,两个人一只菜碗,三个人一只汤碗,放在你这儿有55只碗,你算算有多少人?
设有x个人
x+x/2+x/3=55
x=30

学校购买840本图书分给高、中、低三个年级段,高年级段分的是低年级段的2倍,中年级段分的是低年级段的3倍少120本。三个年级段各分得多少本图书?
设低年级段分得x本书,则高年级段分得2x本,中年级段分得(3x-120)本
x+2x+3x-120=840
6x-120=840
6x=840+120
6x=960
x=960/6
x=160
高年级段为:160*2=320( 本) 中年级段为:160*3-120=360(本)
答:低年级段分得图书160本,中年级段分得图书360本,高年级段分得图书320本.

学校田径组原来女生人数占1/3,后来又有6名女生参加进来,这样女生就占田径组总人数的4/9。现在田径组有女生多少人?
解 设 原来田径队男女生一共x人
1/3x+6= 4/9(x+6)
x=30
1/3x+6=30*1/3+6=16
女生16人

小华有连环画本数是小明6倍如果两人各再买2本那么小华所有本数是小明4倍两人原来各有连环画多少本?
解:设小华的有x本书
4(x+2)=6x+2
4x+8=6x+2
x=3
6x=18

小春一家四口人今年的年龄之和为147岁,爷爷比爸爸大38岁,妈妈比小春大27岁,爷爷的年龄是小春与妈妈年龄之和的2倍。小春一家四口人的年龄各是多少?
答案
1
设小春x岁,则妈妈x+27岁,爷爷(x+x+27)*2=4x+54岁,爸爸4x+54-38=4x+16岁
x+x+27+4x+54+4x+16=147,x=5
所以小春5岁,妈妈32岁,爷爷74岁,爸爸36岁。

2
爷爷+爸爸+(妈妈+小春)
=爷爷+(爷爷-38)+(爷爷/2)=147
爷爷=74岁
爸爸=36岁
妈妈+小春=小春+27+小春=74/2=37
小春=5岁
妈妈=5+27=32岁
小春一家四口人的年龄各是74,36,32,5岁

3
(147+38)÷(2×2+1)=37(岁)
36×2=74(岁) 爷爷的年龄
74-38=36(岁) 爸爸的年龄
(37+27)÷2=32(岁) 妈妈的年龄
32-27=5(岁) 小华的年龄
甲乙两校共有22人参加竞赛,甲校参加人数的5分之1比乙校参加人数的4分之1少1人,甲乙两校各多少人参赛?
解:设甲校有x人参加,则乙校有(22-x)人参加。
0.2 x=(22-x)×0.25-1
0.2x=5.5-0.25x-1
0.45x=4.5
x=10
22-10=12(人)
答: 甲校有10人参加,乙校有12人参加。

在浓度为40%的盐水中加入千克水,浓度变为30%,再加入多千克盐,浓度变为50%?
答案1

设原有盐水x千克,则有盐40%x千克,所以根据关系列出方程:
(40%x)/(x+1)=30% 得出x=3,再设须加入y千克盐,则有方程:

(1.2+y)/(4+y)=50%得出y=1.6

54比45多20%,算法,设所求为x,x(1+20%)=54 算出结果45

答案2
设原有溶液为x千克,加入y千克盐后,浓度变为50%
由题意,得溶质为40%x,则有
40%x/(x+5)=30%
解之得
x=15千克
则溶质有15*40%=6千克
由题意,得
(6+y)/(15+5+y)=50%
解之得
y=8千克
故再加入8千克盐,浓度变为50%

某人到商店买红蓝两种钢笔,红钢笔定价5元,蓝钢笔定价9元,由于购买量较多,商店给予优惠,红钢笔八五折,蓝钢笔八折,结果此人付的钱比原来节省的18%,已知他买了蓝钢笔30枝,那么。他买了几支红钢笔?
答案
红笔买了x支。
(5x+30×9)×(1-18%)=5x×0.85+30×9×0.8
x=36.

甲说:“我乙丙共有100元。”乙说:“如果甲的钱是现有的6倍,我的钱是现有的1/3,丙的钱不变,我们仍有钱100元。”丙说:“我的钱都没有30元。”三人原来各有多少钱?
答案
乙的话表明:甲钱5倍与乙钱2/3一样多
所以,乙钱是3*5=15的倍数,甲钱是偶数

丙钱不足30,所以,甲乙钱和多于70,
而乙多于甲的6倍,
所以,乙多于60

设乙=75,甲=75*2/3÷5=10,丙=100-10-75=15
设乙=90,甲=90*2/3÷5=12,90+12>100,不行

所以,三人原来:甲10元,乙75元,丙15元

某厂向银行申请甲乙两种贷款共30万,每年需支付利息4万元,甲种贷款年利率为12%,乙种贷款年利率为14%,该厂申请甲乙两种贷款金额各多少元?
答案
设:甲厂申请贷款金额x万元,则乙厂申请贷款金额(30-x)万元。
列式:x*0.12+(30-x)*0.14=4
化简:4.2-0.02x=4
0.02x=0.2
解得:x=10(万元)

某书店对顾客有一项优惠,凡购买同一种书100本以上,就按书价的90%收款。某学校到书店购买甲、乙两种书,其中乙种书的册数是甲种书册数的3/5只有甲种书得到了90%的优惠。其中买甲种书所付的钱数是买乙种书所付钱数的2倍。已知乙种书每本1.5元,那么甲种书每本定价多少元?
答案1
根据题意,
甲种超过了100本,乙种不到100 本
甲乙花的总钱数比为2:1
那么甲打折以前,和乙的总钱数比为:
(2÷0.9):1=20:9
甲乙册数比为5:3
甲乙单价比为(20÷5):(9÷3)=4:3
优惠前,甲种每本:1.5×4/3=2元

答案2
答案
设甲买了x本,则乙为3/5x,x>100
买乙共付了:3/5x*1.5=0.9x元
则甲共付了:0.9x*2=1.8x元
所以甲优惠后每本为:1.8x/x=1.8元
则优惠前:1.8/0.9=2元

两支成分不同的蜡烛,其中1支以均匀速度燃烧,2小时烧完,另一支可以燃烧3小时,傍晚6时半同时点燃蜡烛,到什么1支剩余部分正好是另一支剩余的2倍?
答案
两支蜡烛分别设为A蜡烛和B蜡烛,其中A蜡烛是那支烧得快点的
A蜡烛,两小时烧完,那么每小时燃烧1/2
B蜡烛,三小时烧完,那么每小时燃烧1/3
设过了x小时以后,B蜡烛剩余的部分是A的两倍
2(1—x/2)=1—x/3
解得x=1.5
由于是6点半开始的,所以到8点的时候刚刚好

学校组织春游,同学们下午1点从学校出发,走了一段平路,爬了一座山后按原路返回,下午七点回到学校。已知他们的步行速度平路4Km/小时,爬山3Km/小时,下山为6Km/小时,返回时间为2.5时。问:他们一共行了多少路
答案1
设走的平路是X公里 山路是Y公里
因为1点到七点共用时间6小时 返回为2.5小时 则去时用3.5小时
Y/3-Y/6=1小时
Y=6公里
去时共用3.5小时 则X/4+Y/3=3.5 X=6
所以总路程为2(6+6)=24km
答案2
解:春游共用时:7:00-1:00=6(小时)
上山用时:6-2.5=3.5(小时)
上山多用:3.5-2.5=1(小时)
山路:(6-3)×1÷(3÷6)=6(千米)
下山用时:6÷6=1(小时)
平路:(2.5-1)×4=6(千米)
单程走路:6+6=12(千米)
共走路:12×2=24(千米)
答:他们共走24千米。

Ⅶ 小学六年级奥数计算题,最好是所有类型全部写出。一定要有答案,有过程。拜托各位!!!!!!!!!

1/8+1/15+1/24+1/35+1/48+1/63+1/80+1/99+1/120+1/143
=1/2×(1/2-1/4)+1/2×(1/3-1/5)+1/2×(1/4-1/6)+1/2×(1/5-1/7)+1/2×(1/6-1/8)+1/2×(1/7-1/9)+1/2×(1/8-1/10)+1/2×(1/9-1/11)+1/2×(1/10-1/12)+1/2×(1/11-1/13)
=1/2×(1/2-1/4+1/3-1/5+1/4-1/6+1/5-1/7+1/6-1/8+1/7-1/9+1/8-1/10+1/9-1/11+1/10-1/12+1/11-1/13)
=1/2×(1/2+1/3-1/12-1/13)
=1/2×(78/156+52/156-13/156-12/156)
=1/2×35/52
=35/104
20062007*2006-20062006*2007+20062006
=20062007*2006-20062006*(2006+1)+20062006
=20062007*2006-20062006*2006
=2006*(20062007-20062006)
=2006
2^2/1*3+3^2/2*4+4^2/3*5+......+99^2/98*100
=(1+1/1*3)+(1+1/2*4)+(1+1/3*5)......+(1+1/98*100)
=1*98+(1/1*3+1/3*5+1/5*7+……+1/97*99)+(1/2*4+1/4*6+1/6*8+……+1/98*100)
=98+1/2*(1+1/3-1/5+1/5-1/7+……+1/97-1/99)+1/2*(1/2-1/4+1/4-1/6+1/6-1/8+……+1/98-1/100)
=98+1/2*(1-1/99+1/2-1/100)
=98+1/2*(9900+4950-100-99)
=98+14651/19800

小学五年级数学奥数题(带答案) 最好是计算题。应用...

1、某班有40名学生,其中有15人参加数学小组,18人参加航模小组,有10人两个小组都参加。那么有多少人两个小组都不参加?2、某班45个学生参加期末考试,成绩公布后,数学得满分的有10人,数学及语文成绩均得满分的有3人,这两科都没有得满分的有29人。那么语文成绩得满分的有多少人?3、50名同学面向老师站成一行。老师先让大家从左至右按1,2,3,……,49,50依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转。问:现在面向老师的同学还有多少名?4、在游艺会上,有100名同学抽到了标签分别为1至100的奖券。按奖券标签号发放奖品的规则如下:(1)标签号为2的倍数,奖2支铅笔;(2)标签号为3的倍数,奖3支铅笔;(3)标签号既是2的倍数,又是3的倍数可重复领奖;(4)其他标签号均奖1支铅笔。那么游艺会为该项活动准备的奖品铅笔共有多少支?5、有一根长为180厘米的绳子,从一端开始每隔3厘米作一记号,每隔4厘米也作一记号,然后将标有记号的地方剪断。问绳子共被剪成了多少段?五年级试题三答案1,因为10人2组都参加,所以只参加数学的5人,只参加航模的8人,加上那10人就是23人,40-23=17,2个小组都不参加的17人2,同理,数学满分10人,2科都满分的3人,于是只是数学满分的7人,45-7-29=9,这个就是语文满分的人(如果说只是语文满分的则需要减去3)3,50÷4取整12,50÷6取整8,但是要注意,报4倍数的同时可能是6的倍数,所以还要算出4和6的公倍数,有50÷12(4和6的最小公倍数)=4(取整),所以,应该是50-12-8+4=344,100÷2=50,100÷3=33(取整),还是算出2和3的公倍数100÷6=16(取整),然后找出即没不被2整除,也不被3整除的数的个数100-50-33+16=28,所以,准备铅笔为50X2+33X3+28=2275,180÷3=60,180÷4=45,但是可能2个划线划在一起,也就是要算出他们的公倍数,180÷3÷4=15,所以应该为60+45-15=901.一块长1米20厘米,宽90厘米的铝皮,剪成直径30厘米的圆片,最多可以剪几块?分析:此题不需求面积的。只需求长和宽各是圆的直径的几倍,然后求出长和宽的倍数的积。1米20厘米=120厘米120÷30=4 90÷30=34×3=12(块)答:最多可以剪12块。2.一个圆柱,底面半径1分米,它的侧面展开是一个正方形。这个圆柱的表面积和体积是多少?分析:从侧面展开图正方形入手,可知这个圆柱的高是圆柱的底面周长。圆柱的表面积:(3.14×1×2)×(3.14×1×2)+3.14×1×1×2=6.28×6.28+6.28=6.28×7.28=45.7184(平方分米)圆柱的体积:3.14×1×1×(3.14×1×2)=3.14×6.28=19.7192(平方分米)答:这个圆柱的表面积是45.7184平方分米,体积是19.7192平方分米。3.一列火车上午8时从甲站开出,到第二天的晚上9时到达乙站。已知火车平均每小时行98千米。甲乙两站间的铁路长多少千米?分析:这题的解题关键是要知道火车行驶的时间。24-8+9=25(小时)[或者:12-8+12+9=25(小时)]98×25=(100-2)×25=2500-50=2450(千米)答:甲乙两站间的铁路长2450千米。4.一个圆和一个扇形的半径相等。已知圆的面积是30平方厘米,扇形的圆心角是72度。求扇形的面积。分析:因为圆和扇形的半径相等,圆和扇形的面积存要在倍数关系。这个倍数就是它们圆心角之间的倍数关系。72÷360=1/5,30×1/5=6(平方厘米)答:扇形的面积是6平方厘米。第11题:一个半径3厘米的圆,在圆中画一个扇形,使它的面积占圆面积的20%,并且算出这个扇形的面积。分析:此题与上题的思路一样。3.14×3×3×20%=5.652(平方厘米)答:这个扇形的面积是5.652平方厘米。5.学校把植树任务按5:3分给六年级和五年级。六年级实际栽了108棵,超过原分配任务的20%。原计划五年级栽树多少棵?分析:六年级原计划栽树的棵数是解题的关键。1、六年级原计划栽树多少棵?108÷(1+20%)=108×5/6=90(棵)2、原计划五年级栽树多少棵?90÷5×3=54(棵)综合算式:108÷(1+20%)÷5×3=90÷5×3=54(棵)答:原计划五年级栽树54棵。6.甲乙两面个工程队全修一段公路,甲队的工作效率是乙队的3/5。两队合修6天正好完成这段公路的2/3,余下的由乙队单独修,还要几天才能修完?分析:求两队的工效是解题的关键。1、两队的工效和是多少?2/3÷6=1/92、乙队的工效是多少?1/9×[5÷(3+5)]=1/9×5/8=5/723、还要几天才能修完?(1-2/3)÷5/72=1/3×72/5=24/5(天)答:还要24/5天才能修完。7.某水泥厂去年生产水泥232400吨,今年头5个月的产量就等于去年全年的产量。照这样计算,这个水泥厂今年将比去年增产百分之几?解法一:分析,今年后7个月的产量就是增产的,因此我们要先求出后7个月生产量。232400÷5×(12-5)=46480×7=325360(吨)325360÷232400=1、4=140%解法二:把232400吨看作单位“1”,1、今年平均每月生产量是去年的几分之几?1÷5=1/52、今年比去年增产几分之几?1/5×(12-5)=7/53、今年比去年增产百分之几?7/5=1.4=140%综合算式:1÷5×(12-5)=1.4=140%答:这个厂今年比去年增产140%。8.幼儿园买进大小两种毛巾各40条,共用258.8元。大毛巾的单价比小毛巾单价的2倍多0.11元。这两种毛巾单价各是多少元?解:设小毛巾的单价是x元,则大毛巾的单价是(2x+0.11)元。[x+(2x+0.11)]×40=258.83x=6.47-0.11x=6.36÷3x=2.122x+0.11=2.12×2+0.11=4.35答:大毛巾的单价是每条4.35元,小毛巾的单价是每条2.12元。9. 一间长4、8米、宽3、6米的房间,用边长0、15米的正方形瓷砖铺地面,需要768块。在长6米、宽4、8米的房间里,如果用同样的瓷砖来铺,需要多少块?如果在第一个房间改铺边长0、2米的正方形瓷砖,要用多少块?(用比例解)分析:房间的面积是一定的,每块砖的面积和块数成反比例。解:设需要x块。0.15×0.15x =6×4.8x =6×4.8÷0.15÷0.15x =1280答:需要1280块。解:设需要y块。0.2×0.2y=4.8×3.6y=4.8×3.6÷0.2÷0.2y=432答:需要432块。10.一艘轮船所带的柴油最多可以用6小时。驶出时顺风,每小时行驶30千米。驶回时逆风,每小时行驶的路程是顺风时的4/5。这艘轮船最多驶出多远应往回驶?分析:轮船行驶的路程一定,每小时行驶的路程和时间成反比例。解:设这艘轮船逆风行驶了x小时。30×4/5x=30×(6-x)4/5x=6-x9/5x=6x=10/330×4/5×10/3=80(千米)答:这艘轮船最多驶出80千米就应往回驶。11. 一辆汽车从甲地开往乙地,第一小时行了全程的1/7,第二小时比第一小时多行了16千米,这时距离乙地还有94千米。甲乙两地的公路长多少千米?分析:“从第二小时比第一小时多行了16千米”可知第二小时行了全程的1/7和16千米。第一小时和第二小时共行全程的(1/7+1/7)和16千米。由此可知(96+16)占全程的(1-1/7-1/7)。根据上面的分析得:(96+16)÷(1-1/7-1/7)=112÷5/7=112×7/5=156、8(千米)答:甲乙两地的公路长156、8千米。或者用方程解:解:设甲乙两地的公路长x千米。(1-1/7-1/7)x=96+165/7x=112x=156、8答:甲乙两地的公路长156、8千米。题目改编:若这题中的一个条件改成“这时距离甲地96千米”,其它条件不变,问题也不变。如何解答?12.一个编织组,原来30人10天生产1500只花篮。现在增加到80人,按原来的工效,生产6000只花篮需要多少天?(用比例解答)分析:题中说“按原来的工效”,这说明这个纺织组的工作效率是一定的。工作效率一定,工作总量和工作时间成正比例。解:设需要x天。1500:(30×50)=6000:(80×x)1500×(80×x)=6000×(30×50)x=6000×30×50÷80÷1500x=6000÷80x=75答:需要75天。
终于打完了,行吗?我奥术书上的。

Ⅸ 5年级的数学奥数题要有答案要19道简便计算

1.被除数是3320,商是,余数是20,除数是( 22 )。
2.3998是4个连续自然数的和,其中最小的数是( 998 )。
3.有一个两位数,在它的某一位数字的前面加上一个小数点,再和这个两位数相加,得数是20.9。这个两位数是( 19 )
4.填一个最小的自然数,使225×525×( 16 )积的末尾四位数字都是0。
5.在下面的式子中填上括号,使等式成立。
5 × 8 + 16 ÷ 4 - 2 = 20
6.从1、2、3、4、5、6、7、8、9九个数中,任取3个数组成一组,使它的平均数是5,有( 8 )种取法。
7.某地的邮政编码可用ABCCDD表示,已知这六个数字的和是8,A与B的和等于2个D,A是最小的自然数。这个邮政编码是( 130022 )。
8.两个数之和是444,大数除以小数商11,且没有余数,大数是( 407 )
9.把5、11、14、15、21、22六个数填入下面的括号内,使等式成立。
( 5 )×( 21 )×( 22 )=( 15 )×( 11 )×( 14 )
10.正方体有6个面,每个面上分别写有1个数字,它们是1、2、3、4、5、6,而且每个相对面上两个数的和是7(1和6,2和5,3和4)。右图是正方体六个面的展开图,请填出空格内的数。46 53 12

二、判断。(对的在括号内画“√”,错的画“×”,共10分,每小题2分)
11.大于0.9997而小于0.9999的小数只有0.9998。( 错 )
12.一张长方形彩纸长21厘米,宽15厘米,先剪下一个最大的正方形,再从余下的纸上剪下一个最大的正方形。这时纸的长是6厘米。( 错 )
13.一个箱子里放着几顶帽子,除2顶以外都是红的,除2顶以外都是蓝的,除2顶以外都是黄的。箱子中一共有3顶帽子。( 对 )
14.一个占地1公顷的正方形苗圃,边长各加长100米,苗圃的面积增加3公顷。( 对 )
15.有铅笔180支,分成若干等份,每份不得少于7支,也不能多于25支,共有7种不同的分法。( 错 )

三、选择。(把正确答案的序号填在括号里,共10分,每小题2分)
16.5÷7的商用循环小数表示,这个小数的小数点后面第200位数字是( B )。
A、7 B、1 C、2 D、5
17.两根同样长的绳子,第一根剪去它的一半,第二根剪去0.5米,剩下的两段绳子( D )。
A、第一根长 B、第二根长 C、同样长 D、不一定哪根长
18.用一根长38厘米的铁丝围长方形,使它们的长和宽都是整厘米数,可以有( C )种围法。
A、7 B、8 C、9 D、10
19.一个数的小数点向右移动一位,比原数大59.94,这个数是( A )。
A、6.66 B.11.66 C.66.6 D.116.6

阅读全文

与小学奥数计算题及答案相关的资料

热点内容
小学读书计划表格模板 浏览:342
小学语文四年级感叹句 浏览:243
天通苑中山实验小学 浏览:596
小学三年级语文补习班内容 浏览:921
吉安师范附属小学作文 浏览:396
小学教师备课网站 浏览:1
私立美男学院 浏览:383
小学六年级上册语文第六单元试卷凉州岛 浏览:915
小学1年级手gong大全 浏览:459
小学生手抄报的图片大全图片大全 浏览:68
小学健康知识讲座 浏览:120
小学毕业季适合发老师的句子 浏览:451
汕尾凤山中心小学校长 浏览:606
小学生毕业汇演舞蹈 浏览:702
小学生抗击疫情的表演 浏览:107
私立华联大学本科 浏览:61
小学三年级作文我想谢谢你400 浏览:855
中小学生睡眠问题 浏览:174
小学生公共生活守规则教案 浏览:313
淮河私立学校 浏览:99