Ⅰ 有没有免费小学数学试题网站
有,有一个叫做“小学数学试题网”,其网址是 http://www.4t123.com/
Ⅱ 小学数学试题
是要问孩子吗?给孩子做数学题应该是孩子的数学不好吧?其实不好是因为还没有培养好孩子的兴趣,可以让孩子先爱上数学,这样数学便会慢慢的提高了。如果不是,题目给你:
1.学校建校舍计划投资45万元,实际投资40万元。实际投资节约了百分之几?(浙江诸暨市)
2.学校五月份计划用电480度,实际少用60度。实际用电节省百分之几?(福建云宵实验小学)
3.某厂计划三月份生产电视机400台,实际上半个月生产了250台,下半个月生产了230台,实际超额完成计划的百分之几?(南昌市青云谱区)
4.现有甲、乙、丙三个水管,甲水管以每秒4克的流量流出含盐20%的盐水,乙水管以每秒6克的流量流出含盐15%的盐水,丙水管以每秒10克的流量流出水,丙管打开后开始2秒不流,接着流5秒,然后又停2秒,再流5秒……三管同时打开,1分钟后都关上,这时流出的混合液含盐百分之几?(武汉大学附属外国语学校)
5.新光小学书画班有75人,舞蹈班有48人,书画班人数比舞蹈班多百分之几?(南宁市)
6.小明用一包绿豆做实验,其中发芽的种子有100粒,没有发芽的种子有25粒,求这包绿豆的发芽率。(浙江温岭市)
看4页,第二天看了全书的几分之几?(江苏无锡市)
8.为灾区捐款,小华捐4.2元,比小丽多捐了0.4元,小华比小丽多捐几分之几?(河南安阳市)
9.一件衣服打八折出售卖100元,实际90元卖出。实际几折卖出?(浙江仙居县)
10.食堂运来600千克大米,已经吃了4天,每天吃50千克。剩下的5天吃完,平均每天吃多少千克?(南京市建邺区)
11.3箱橘子比3筐苹果少24千克。平均每箱橘子重20千克,每筐苹果重多少千克?(浙江台州市市区)
12.在绿化祖国采集树种的活动中,某校四年级5个班级,每班采集树种20千克,五年级3个班共采集60千克,平均每班采集树种多少千克?(上海市)
13.大桥乡修一条长2100米的水渠,已修了5天,平均每天修240米。余下的任务要在3天内完成,平均每天应修多少米?(南京市秦淮区)
14.小明到商店买了3个小型足球付出20元,找回1.85元,每个足球多少元?(银川市实验小学)
15.某班有4个小队,每个小队有12名少先队员,在“希望工程”捐款活动中,共捐款240元。平均每个少先队员捐款多少元?(上海市)
16.育才小学买来2个小足球和25根长绳,共用去408.5元,每个小足球的价钱是48元,每根长绳的售价是多少元?(江苏无锡市南长区)
17.王华买《趣味数学》和《故事大王》各5本,一共用了20元。每本《趣味数学》2.6元,每本《故事大王》多少元?(西安市雁塔区)
18.运输队要运走89吨货物,前三次每次运走10.5吨。其余的分5次运完,平均每次要运走多少吨?(上海市)
19.4个同学在一张乒乓球台上单打60分钟,平均每人打了多少分钟?(福建建瓯市)
20.期末考试语文、数学、常识三门功课的平均分是95分,语文、数学两门功课的平均分是93分,问:常识考了多少分?(浙江江山市)
21.五(1)班同学植树,26个男生平均每人植6棵,24个女生平均每人植5棵。男、女生平均每人植树多少棵?(南昌市东湖区)
22.李东拿5元钱买文具。他买铅笔已用去1.5元,剩下的钱买练习簿,每本0.35元。他可以买多少本练习簿?(上海市长青学校)
23.一批苹果,若平分给幼儿园大班的小朋友,每人可分得6个;若平分给幼儿园小班的小朋友,每人可分得3个;若平分给大、小两个班的小朋友,每人可分得多少个?(南京市建邺区)
24.时新手表厂原计划每天生产75块手表,12天完成任务。实际10天完成任务,实际平均每天生产多少块?(武汉市青山学校)
25.实验小学开展“环保周种盆花”活动,前3天平均每天种114盆,后4天共种750盆,“环保周”内平均每天栽种盆花多少盆?(长沙市实验小学)
剩下的7.5小时要耕完,平均每小时要耕地多少?(湖北阳新县)
27.一台织布机7小时织布105米,照这样的速度,再织8小时,一共可以织布多少米?(浙江临安市)
28.一辆汽车3小时行135千米,照这样计算,8小时行多少千米?(广西桂林市)
29.120千克大豆可榨出豆油16.2千克,2000千克大豆可榨出豆油多少千克?(用比例解)(浙江泰顺县)
30.某加工厂2台磨粉机3小时能磨面粉14.4吨。照这样计算,6台磨粉机8小时一共能磨面粉多少吨?(福建建瓯市)
31.某服装厂接到生产1200件衬衫任务,前3天完成了40%,照这样计算,完成任务还需要多少天?(写出两种不同解法)(合肥市中市区寿春学校)
32.某工程队要铺建一条公路,前20天已铺建了2.8千米,照这样计算,剩下的4.2千米的路段,还需要多少天才能铺建完成?(用比例方法解)(浙江临海市)
33.丰收农具厂制造一批镰刀。原计划每天制造360把,18天完成。实际每天多制造72把,照这样计算,多少天就能完成任务?(武汉市青山区)
34.长风电扇厂计划生产2800台电扇。前6天已经生产了672台,照这样计算,还要生产多少天才能完成任务?(南京市白下区)
35.育民小学校办厂,原计划12天装订21600本练习本,实际每天比原计划多装订360本。实际完成生产任务用了多少天?(天津市红桥区)
36.小青看一本260页的故事书,前3天每天看20页,如果剩下的每天看25页,还要几天看完?(西宁市城中区)
37.学校买来塑料绳342米做短跳绳,先剪下同样长的5根,一共用去9米,照这样计算,买来的塑料绳可以做短跳绳多少根?(南京市鼓楼区)
38.两筐苹果单价相同,甲筐苹果重64千克,乙筐苹果重48千克,两筐都卖出一部分后,剩下的苹果重量相等,已知乙筐比甲筐少卖了56元,甲筐苹果可卖多少元?(合肥市中市区寿春学校)
39.时新手表厂原计划25天生产1000块手表,实际每天生产了50块,实际比计划提前几天完成任务?(河南开封市)
40.电视机厂计划30天生产电视机1200台,实际每天比计划多生产10台,实际多少天完成任务?(浙江东阳市)
41.服装厂要加工一批校服,原计划每天生产250套,30天可以完成,实际每天生产300套,实际多少天完成?(用比例解答)(江西景德镇市)
42.一批货物,原计划每天运走18吨,84天运完,实际每天运21吨,实际要几天运完?(用比例解)(银川市二十一小学)
43.装配小组要装配一批洗衣机,计划每天装配27台,20天完成任务。实际每天装配了30台,只需几天就可以完成任务?(江苏无锡市北塘区)
44.大庆小学食堂运来24吨煤,计划烧50天。实际每天节约0.08吨,实际烧了多少天?(浙江乐清市)
45.车间生产一批零件,每天生产65套,生产12天后还差130套,这批零件一共有多少套?(武汉市江汉区滑坡路小学)
46.希望小学装修多媒体教室。计划用边长30厘米的釉面方砖铺地,需要900块,实际用边长50厘米的方大理石铺地,需要多少块?(用比例知识解答)(南昌市东湖区)
47.装订一批同样的练习本,原计划每本装16页,可以装订250本,如果要装订成200本,每本应装多少页?(用比例解)(广西桂林市)
48.服装厂原计划做120套西服,每套西服用布4.8米,改进裁剪方法后,每套节约用布0.3米。节约下来的布,可以做多少套西服?(上海市长青学校)
49.师傅比徒弟多加工192个零件,已知师傅加工的零件个数是徒弟的4倍,师徒二人各加工多少个零件?(用方程解)(银川市二十一小学)
50.红光农具厂五月份生产农具600件,比四月份多生产25%,四月份生产农具多少件?(武汉市青山区)
51.红星纺织厂有女职工174人,比男职工人数的3倍少6人,全厂共有职工多少人?(浙江绍兴县)
两种方法解)(银川市实验小学)
53.蓓蕾小学三年级有学生86人,比二年级学生人数的2倍少4人,二年级有学生多少人?(长沙市实验小学)
54.某校有男生630人,男、女生人数的比是7∶8,这个学校女生有多少人?(杭州市上城区)
55.张华看一本故事书,第一天看了全书的15%少4页,这时已看的页数与剩下页数的比是1∶7。这本故事书共有多少页?(浙江平阳县)
56.一个书架有两层,上层放书的本数是下层的3倍;如果把上层的书取30本放到下层,那么两层书的本数正好相等。原来两层书架上各有书多少本?(上海市虹口区)
57.第一层书架放有89本书,比第二层少放了16本,第三层书架上放有的书是一、二两层和的1.5倍,第三层放有多少本书?(南昌市青云谱区)
艺书的本数与其他两种书的本数的比是1∶5,工具书和文艺书共有180本。图书箱里共有图书多少本?(江苏无锡市)
59.有甲、乙两个同学,甲同学积蓄了27元钱,两人各为灾区人民捐款15元后,甲、乙两个同学剩下的钱的数量比是3∶4,乙同学原来有积蓄多少元?(江西景德镇市)
60.小红和小芳都积攒了一些零用钱。她们所攒钱的比是5∶3,在“支援灾区”捐款活动中小红捐26元,小芳捐10元,这时她们剩下的钱数相等。小红原来有多少钱?(武汉市青山区)
61.学校买回315棵树苗,计划按3∶4分给中、高年级种植,高年级比中年级多植树多少棵?(石家庄市长安区)
62.三、四、五年级共植树180棵,三、四、五年级植树的棵树比是3∶5∶7。那么三个年级各植树多少棵?(浙江常山县)
63.学校计划把植树任务按5∶3分给六年级和其它年级。结果六年级植树的棵数占全校的75%,比计划多栽了20棵。学校原计划栽树多少棵?(西安市雁塔区)
64.一杯80克的盐水中,有盐4克,现在要使这杯盐水中盐与水的比变为1∶9,需加多少克盐或蒸发多少克水?(浙江德清县)
65.水果店运来苹果和梨共540千克,苹果和梨重量的比是12∶15。运来梨多少千克?(南京市白下区)
66.水果店运来橘子300千克,运来的葡萄比橘子多50千克,运来苹果的重量是葡萄的2倍,苹果比橘子多运来多少千克?(上海市虹口区)
67.把960千克的饲料按7∶5分给甲、乙两个养鸡专业户。甲专业户比乙专业户多分得饲料多少千克?(南京市秦淮区)
68.甲、乙两个仓库原存放的稻谷相等。现在甲仓运出稻谷14吨,乙仓运出稻谷26吨,这时甲仓剩下的稻谷比乙仓剩下的稻谷多40%。甲、乙两个仓库原来各存放稻谷多少吨?(浙江嘉兴市)
69.学校操场是一个长方形,周长是280米,长、宽的比是4∶3,这个操场的长、宽各是多少米?(湖北松滋市)
70.碧波幼儿园内有一块巧而美的长方形花坛,周长是64米,长与宽的比是5∶3,这块花坛占地多少平方米?(长沙市实验小学)
71.在一幅比例尺是 的地图上,量得甲、乙两地的距离是5厘米,甲、乙两地的实际距离是多少千米?(南昌市东湖区)
72.某玩具厂生产一批儿童玩具,原计划每天生产120件,75天完成。为了迎接“六一”儿童节,实际只用60天就完成了任务。实际每天生产玩具多少件?(用两种方法解答)(浙江温岭市)
73.甲、乙两个家具厂生产同一规格的单人课桌、椅,由于甲、乙两厂特
可生产1500套课桌椅。现在两厂联合生产,经过合理安排,尽量发挥各自特长。现在两厂每月比过去可多生产课桌椅多少套?(武汉市外国语学校)
74.建筑工地要运122吨水泥,用一辆载重4吨的汽车运了18次后,余下的用一辆载重2.5吨的汽车运,还要运多少次?(浙江诸暨市)
75.空调机厂四月份生产空调机1800台,五月份比四月份增产10%。四、五月份共生产空调机多少台?(江苏无锡市北塘区)
76.师徒两人合作生产一批零件,师傅每小时生产40个,徒弟每小时生产30个,如完成任务时徒弟正好生产了450个,这批零件共几个?(武汉市青山区)
77.甲每小时加工48个零件,乙每小时加工 36个零件,两人共同工作 8小时后,检验出64个废品。两人平均每小时共加工多少个合格的零件?(上海市)
弟生产了540个,这批零件有多少个?(浙江慈溪市)
79.要生产350个零件,甲、乙两人共同生产3.5小时后,完成了任务的80%。已知甲每小时做42个,乙每小时做几个?(浙江宁海县)
80.甲、乙两人同时加工同样多的零件,甲每小时加 提高工作效率,又用了7.5小时完成了全部加工任务。这时甲还剩下20个零件没完成。求乙提高工效后,每小时加工零件多少个。(浙江宁波市江东区)
81.师徒加工一批零件,徒弟已经加工了总数的20%,师傅加工了总数 谱区)
82.某化肥厂第一季度平均每月生产化肥2.4万吨,前两个月生产化肥的总量比三月份多0.8万吨,三月份生产化肥多少万吨?(浙江临安市)
吨。这批水泥共有多少吨?(湖北当阳市)
84.红星乡今年收玉米3600吨,比去年增产二成,去年收玉米多少吨?(广州市黄埔区)
85.买6个排球和8个篮球共用去249.6元。已知排球的单价是15.6元。篮球的单价是多少元?(浙江鄞县)
的和没修的就同样多。这段公路长多少米?(武汉市青山区)
87.筑路队第一天筑路55米,第二天筑的路是第一天的3倍,第三天筑的比前两天的总数少30米,第三天筑路多少米?(江苏无锡市北塘区)
4700米没有铺。这条公路全长多少米?(浙江乐清市)
89.工程队铺运动场,4天铺了200平方米。照这样的进度,32天铺好了运动场,求这运动场的面积。(两种方法解答,其中一种用比例解)(浙江东阳市)
90.时新手表厂原计划每天生产75块手表,12天完成任务。实际比计划每天多生产15块,实际多少天完成任务?(武汉市青山区)
91.装配小组要装配一批洗衣机,计划每天装配20台,15天完成任务。实际每天装配30台,只需几天就可以完成任务?(用比例方法解)(西安市城中区)
92.机械厂制造一批零件,原计划每天生产250个,12天完成,实际每天生产的个数是原来的1.5倍。完成这批零件,实际用了多少天?(上海市长青学校)
93.筑路队修一条路,原计划每天修3.2千米,45天可以修完,实际每天修3.6千米,多少天可以修完?(广西桂林市)
94.一项工程,甲队独做要12小时完成,乙队独做要15小时完成,现在两队合做几小时完成工程的一半?(广州市黄埔区)
95.加工一批零件,师傅单独加工要30小时完成,如果徒弟先加工了9小时,其余的再由师傅加工,还要24小时,那么徒弟单独加工要多少小时完成?(江西景德镇市)
独打,10小时可以打完。求如果由小张单独打,几小时可以打完。(湖北当阳市)
97.一批货物,由大、小卡车同时运送,6小时可运完,如果用大卡车单独运,10小时可运完。用小卡车单独运,要几小时运完?(浙江常山县)
甲休息了3天,乙休息了2天,丙没有休息。如果甲一天的工作量是丙一天工作量的3倍,乙一天的工作量是丙一天的工作量的2倍,那么这项工作,从开始计算起,是第几天完成的?(南昌市外国语学校)
99.一项工程,甲单独做16天可以完成,乙单独做12天可以完成。现在由乙先做3天,剩下的由甲来做,还需要多少天能完成这项工程?(石家庄市长安区)
如果乙队单独完成要24天,甲队单独做几天完成?(武汉市青山区)
2天后,余下的乙还要做几天?(银川市二十一小学)
102.一项工程,甲队独做15天完成,乙队独做12天完成。现在甲、乙合作4天后,剩下的工程由丙队8天完成。如果这项工程由丙队独做,需几天完成?(浙江德清县)
现由两队合做,多少天可以完成?(湖北阳新县)
如果两队合修,多少天可以修完?(浙江象山县)
105.一条公路长1500米,单独修好甲要15天,乙要10天,两队合修需几天才能完成?(浙江江山市)
江东区)
107.一件工作,甲单独完成需要8天,乙的工作效率是甲的2倍,两人同时合作,几天能完成这件工作?(天津市红桥区)
108.师徒共同完成一件工作,徒弟独做20天完成,比师傅多用4天完成,如果师徒合作需几天完成?(银川市实验小学)
110.一项工作,甲单独做要10天完成,乙单独做要15天完成。甲、乙合做几天可以完成这项工作的80%?(浙江温岭市)
111.甲、乙两地相距6千米,张明骑车从甲地到乙地办事,55分钟内必须赶回。若办事需5分钟,张明骑车平均速度至少应是多少?(浙江仙居县)
112.小明从家到学校,步行需要35分钟,骑自行车只要10分钟。他骑自行车从家出发,行了8分钟自行车发生故障,即改步行,小明从家到学校共用了多少分钟?(浙江台州市市区)
113.张华从家到学校,步行需要15分钟,骑车需要5分钟。他从家骑车出发,3分钟后车子发生故障,改为步行,他到达学校步行了多少分钟?(河南开封市)
114.甲、乙两地相距240千米,一辆汽车从甲地开往乙地,2小时行了80千米,照这样计算,行完全程需要几小时?(石家庄长安区)
115.一辆汽车从甲地开往乙地,每小时行50千米,6小时到达;返回时,每小时行60千米,几小时可以到达?(上海市虹口区)
116.从甲城到乙城的铁路长760千米,一列火车3小时行285千米,照这样计算,从甲城到乙城需行多少小时?(用两种方法解答,其中一种要用比例解)(浙江上虞市)
117.科学考察船计划每小时行驶25千米,48小时到达预定海域进行科学实验。如果要提前8小时到达,每小时需行驶多少千米?(浙江嘉兴市)
118.两列火车同时从相距432千米的两地相对开出,4小时后两车相遇。快车每小时行60千米,求慢车每小时行多少千米。(列方程解)(湖北当阳市)
119.甲、乙两车同时从相距520千米的两地相向而行,5小时相遇,已知甲车每小时比乙车每小时多行6千米。甲、乙两车每小时各行多少千米?(上海市)
千米,乙车每小时行多少千米?(武汉市江汉区滑坡路小学)
121.甲、乙两列火车分别从A、B两地同时相对开出,经过6小时相遇,相遇后两车按原来的速度继续行驶,又经过4小时,甲车到达B地。已知甲车每小时比乙车多行12千米,求甲车每小时行多少千米。(南京市鼓楼区)
122.一列货车早晨6时从甲地开往乙地,平均每小时行45千米,一列客车从乙地开往甲地,平均每小时比货车快15千米,已知客车比货车迟发2小时,中午12时两车同时经过途中某站,然后仍继续前进,问当客车到达甲地时,货车离乙地还有多少千米?(南昌市外国语学校)
123.同学们去参观展览馆,一部分同学骑自行车,他们的时速是24千米;一部分同学步行,他们的时速是6千米。从学校同时出发,15分钟后骑自行车的同学到了展览馆,步行的同学离展览馆还有多远?(江苏无锡市南长区)
124.甲、乙两辆汽车同时从两地相向而行。相遇时,甲车行的路程比乙
125.甲、乙两车同时由A点出发向不同方向开出,4小时后乙车到达C点,这时甲车比乙车多行30千米,已知甲车7小时可绕长方形环路一周,这条环路全长多少千米?(浙江象山县)
126.甲、乙两人绕环形跑道竞走一圈,他俩同时从A点同向行走。在甲 程的比为4∶5,求这个环形跑道的全长。(福建建瓯市)
127.两辆汽车分别从甲、乙两地同时相对开出。已知甲车每小时行70 少千米?(广州市黄埔区)
128.客车和货车同时从甲、乙两地相向开出,客车行完全程需10小时,货车每小时行42千米,3小时后,两车行驶的路程之和与剩下路程相等,甲、乙两地相距多少千米?(南昌市青云谱区)
129.甲、乙两列火车从两站同时相向开出,甲车平均每小时行90千米, 的距离是多少千米?(浙江泰顺县)
130.一条步行街上甲、乙两处相距600米,张华每小时走4千米,王伟每小时走5千米。8时整他们两人从甲、乙两处同时出发相向而行,1分钟后他们调头,反向而行,再过3分钟,他们又调头相向而行,依次按照1、3、5、7……(连续奇数)分钟调头行走。那么张华、王伟两人相遇时间是8时多少分?(武汉大学附属外国语学校)
131.从A地到B地,甲车需6小时,乙车需10小时。两车同时从A地出发到B地,甲车到达B地后立即返回。两车出发后几小时相遇?(湖北松滋县)
132.甲、乙两地相距210千米,A车和B车分别从甲、乙两地同时出发 可以相遇?(武汉市青山区)
如果两车同时从这条公路两端相向而行,几小时相遇?(合肥市中市区寿春学校)
米的方砖铺地,需用多少块?(福建云霄实验小学)
135.一只内直径为8厘米的圆柱形量杯,内装药水的高度为16厘米,恰 小学)
136.一个没有盖的圆柱形铁皮水桶,高是24厘米,底面半径是10厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)(西宁市城中区)
137.一只木箱长9分米,宽6分米,高4分米,做这样的木箱10只(有盖),至少需用木板多少平方米?(浙江上虞市)
138.一个装满小麦的圆柱形粮囤,底面积是3.5平方米,高是1.8米。如果把这些小麦堆成高是1.5米的圆锥形麦堆,占地面积是多少平方米?(江苏无锡市南长区)
体的体积是多少立方分米?(西安市雁塔区)
140.一个圆柱形水桶,底面直径和高都是6分米,这个水桶可盛水多少立方分米?(河南安阳市)
141.一个长方形的游泳池,长50米,宽25米,深2米。
Ⅲ 小学数学试题大全
姓名 班级 分数
一、判断题.对的在括号里打“√”,错的打“×”。(5分)
1.85乘23与77的和,积是多少?正确列式是:85×23+77 ( )
2.24×5×76×5=(24+76)×5 ( )
3.25×4÷25×4=100÷100=l ( )
4.56×17+43×17十17的简便算法是(56+43+l)×17 ( )
5.35×99=35×100+35=3535。 ( )
二、选择题,选择正确答案的序号填在括号里。(8分)
1.在学校团体操表演中,男女生分开站,男生有400人,女生有340人,每行站20人,女生比男生少站多少行?正确列式是( )。
①340÷20-400÷20 ②20×(400-340) ③(400-340)÷20
2.学校食堂买了8套不锈钢碗,每套里装9只,共花去216元钱,( )式子可用于计算每只碗多少元钱?( )
①216÷9×8 ②216÷8×9 ③216÷(9×8) ④2l6×9×8
3.小军在计算60÷(4+2)时,把算式抄成60÷4+2,这样两题的计算结果相差( )。
① 8 ② 7 ③ 5
4.用简便方法计算76×96是根据( )。
①乘法交换律 ②乘法结合律 ③乘法分配律 ④乘法交换律和结合律
三、直接写出得数。(12分)
650÷50= 98+17= 103×40=
380+320= 546—299= 90×70=
27×ll= 37十68×0= 25×14-25×10=
56×78×0= 1000÷125= 523+497=
四、下列算式漏了括号,请你补上。(6分)
160÷20+15×2 160÷20—15×2
=(8+15)×2 =160÷5×2
=23×2 =32×2
=46 =64
五、先想好运算顺序,再计算。(18分)
25 + 75 – 25
Ⅳ 小学数学毕业考试试卷
一、填空题
1、(1+1/2)×(1+1/4)×(1+1/6)×(1+1/8)×(1+1/3)×(1+1/5)×(1+1/7)×(1+1/9)=( ) 2、如果规定a*b=5×a-1/2×b,其中ab是自然数,那么10*6=( )
3、在下列方框种填两个相邻的整数,使不等式成立 □ <1+1/2+1/3+1/4+1/5+1/6+1/7+1/8+1/9+1/10<□
4、一个最简分数,它的分子除以2,分母乘以3,化简后得3/29,这个最简分数是( )
5、一个数的5倍,加上2减去10,乘以2得44,那么这个数是( )。
6、如图是一个圆心角45度的扇形,其中等腰直角三角形的直角边为6厘米,则阴影部分的面积是( )平方厘米。
7、有两个圆柱形的油桶。形体相似(即地面半径与高的比值相同),尺寸如图,两个油桶都装满了油,若小的一个装了2千克,那么,大的一个装( )千克油。
8、大中小三个圆共同部分的面积是大圆面积的1/10,使中圆面积的1/6,小圆面积的1/2,则三圆的面积比为( )。
9、一个数学测验只有两道题,结果全班有10人全对,第一题有25人做对,第二题有18人做错,那么两题都做错的有( )人。
10、一项工程,甲单独做需要14天,乙队单独做需要7天,丙队单独做需要6天。现在乙、丙两队合作3天后,剩下的由甲队单独做,还要( )天才能完成。
二、选择题
1、一把钥匙只能打开一把锁,现在有4把钥匙。但不知哪把钥匙开哪把锁。最多要试()次才能打开所有的锁。 A、16 B、12 C、10 D、6
2、在1—2000这些整数里,是3的倍数但不是5的倍数的数有( )个。 A、532 B、533 C、534 D、535
3、有一种最简分数,它们的分子与分母的乘积都是140,如果把所有选择的分数从小到大排列,那么,第三个分数是( ) A、4/35 B、7/20 C5/28
4、3/4:3/20的比值是( )。 A、5 B、1:5 C、
5:1 D、9/80
三、 解决问题
1、五位裁判员给一名体操运动员评分后去掉一个最高分和一个最低分,平均得分9.85分;只去掉一个最高分,平均得分9.46分;只去掉一个最低分,平均得分9.66分。这名运动员的最高分与最低分向差多少分?
2、把210写成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差是5。第一个数与第七个数分别是多少?
3、一辆汽车从甲地开往乙地,每分钟行750米,预计50分钟到达。但汽车行驶到3/5路程时,出了故障,用5分钟修理完毕。如果仍需在预定时间内到达乙地,汽车在余下的路程里,每分钟必须比原来快多少米?
4、新新商贸服务公司,为客户出售货物收取3%的服务费。代客户购物品收取2%的服务费。今有一客户委托该客户出售自产的某种物品和代为购置新设备。已知该公司扣取了客户服务费264元,客户恰好收支平衡,问所购的新设备花费(价钱)是多少元?
Ⅳ 小学数学试题
1 归一问题
【含义】 在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。
【数量关系】 总量÷份数=1份数量 1份数量×所占份数=所求几份的数量
另一总量÷(总量÷份数)=所求份数
【解题思路和方法】 先求出单一量,以单一量为标准,求出所要求的数量。
例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?
解(1)买1支铅笔多少钱? 0.6÷5=0.12(元)
(2)买16支铅笔需要多少钱?0.12×16=1.92(元)
列成综合算式 0.6÷5×16=0.12×16=1.92(元)
答:需要1.92元。
例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?
解(1)1台拖拉机1天耕地多少公顷? 90÷3÷3=10(公顷)
(2)5台拖拉机6天耕地多少公顷? 10×5×6=300(公顷)
列成综合算式 90÷3÷3×5×6=10×30=300(公顷)
答:5台拖拉机6 天耕地300公顷。
例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?
解 (1)1辆汽车1次能运多少吨钢材? 100÷5÷4=5(吨)
(2)7辆汽车1次能运多少吨钢材? 5×7=35(吨)
(3)105吨钢材7辆汽车需要运几次? 105÷35=3(次)
列成综合算式 105÷(100÷5÷4×7)=3(次)
答:需要运3次。
2 归总问题
【含义】 解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
【数量关系】 1份数量×份数=总量 总量÷1份数量=份数
总量÷另一份数=另一每份数量
【解题思路和方法】 先求出总数量,再根据题意得出所求的数量。
例1 服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。原来做791套衣服的布,现在可以做多少套?
解 (1)这批布总共有多少米? 3.2×791=2531.2(米)
(2)现在可以做多少套? 2531.2÷2.8=904(套)
列成综合算式 3.2×791÷2.8=904(套)
答:现在可以做904套。
例2 小华每天读24页书,12天读完了《红岩》一书。小明每天读36页书,几天可以读完《红岩》?
解 (1)《红岩》这本书总共多少页? 24×12=288(页)
(2)小明几天可以读完《红岩》? 288÷36=8(天)
列成综合算式 24×12÷36=8(天)
答:小明8天可以读完《红岩》。
例3 食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?
解 (1)这批蔬菜共有多少千克? 50×30=1500(千克)
(2)这批蔬菜可以吃多少天? 1500÷(50+10)=25(天)
列成综合算式 50×30÷(50+10)=1500÷60=25(天)
答:这批蔬菜可以吃25天。
3 和差问题
【含义】 已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。
【数量关系】 大数=(和+差)÷ 2 小数=(和-差)÷ 2
【解题思路和方法】 简单的题目可以直接套用公式;复杂的题目变通后再用公式。
例1 甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?
解 甲班人数=(98+6)÷2=52(人)
乙班人数=(98-6)÷2=46(人)
答:甲班有52人,乙班有46人。
例2 长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。
解 长=(18+2)÷2=10(厘米) 宽=(18-2)÷2=8(厘米)
长方形的面积 =10×8=80(平方厘米)
答:长方形的面积为80平方厘米。
例3 有甲乙丙三袋化肥,甲乙两袋共重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三袋化肥各重多少千克。
解 甲乙两袋、乙丙两袋都含有乙,从中可以看出甲比丙多(32-30)=2千克,且甲是大数,丙是小数。由此可知
甲袋化肥重量=(22+2)÷2=12(千克)
丙袋化肥重量=(22-2)÷2=10(千克)
乙袋化肥重量=32-12=20(千克)
答:甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克。
例4 甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐?
解 “从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐”,这说明甲车是大数,乙车是小数,甲与乙的差是(14×2+3),甲与乙的和是97,因此 甲车筐数=(97+14×2+3)÷2=64(筐)
乙车筐数=97-64=33(筐)
答:甲车原来装苹果64筐,乙车原来装苹果33筐。
4 和倍问题
【含义】 已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。
【数量关系】 总和 ÷(几倍+1)=较小的数 总和 - 较小的数 = 较大的数
较小的数 ×几倍 = 较大的数
【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。
例1 果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?
解 (1)杏树有多少棵? 248÷(3+1)=62(棵)
(2)桃树有多少棵? 62×3=186(棵)
答:杏树有62棵,桃树有186棵。
例2 东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1.4倍,求两库各存粮多少吨?
解 (1)西库存粮数=480÷(1.4+1)=200(吨)
(2)东库存粮数=480-200=280(吨)
答:东库存粮280吨,西库存粮200吨。
例3 甲站原有车52辆,乙站原有车32辆,若每天从甲站开往乙站28辆,从乙站开往甲站24辆,几天后乙站车辆数是甲站的2倍?
解 每天从甲站开往乙站28辆,从乙站开往甲站24辆,相当于每天从甲站开往乙站(28-24)辆。把几天以后甲站的车辆数当作1倍量,这时乙站的车辆数就是2倍量,两站的车辆总数(52+32)就相当于(2+1)倍,那么,几天以后甲站的车辆数减少为 (52+32)÷(2+1)=28(辆)
所求天数为 (52-28)÷(28-24)=6(天)
答:6天以后乙站车辆数是甲站的2倍。
例4 甲乙丙三数之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三数各是多少?
解 乙丙两数都与甲数有直接关系,因此把甲数作为1倍量。
因为乙比甲的2倍少4,所以给乙加上4,乙数就变成甲数的2倍;
又因为丙比甲的3倍多6,所以丙数减去6就变为甲数的3倍;
这时(170+4-6)就相当于(1+2+3)倍。那么,
甲数=(170+4-6)÷(1+2+3)=28
乙数=28×2-4=52
丙数=28×3+6=90
答:甲数是28,乙数是52,丙数是90。
5 差倍问题
【含义】 已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。
【数量关系】 两个数的差÷(几倍-1)=较小的数
较小的数×几倍=较大的数
【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。
例1 果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵。求杏树、桃树各多少棵?
解 (1)杏树有多少棵? 124÷(3-1)=62(棵)
(2)桃树有多少棵? 62×3=186(棵)
答:果园里杏树是62棵,桃树是186棵。
例2 爸爸比儿子大27岁,今年,爸爸的年龄是儿子年龄的4倍,求父子二人今年各是多少岁?
解 (1)儿子年龄=27÷(4-1)=9(岁)
(2)爸爸年龄=9×4=36(岁)
答:父子二人今年的年龄分别是36岁和9岁。
例3 商场改革经营管理办法后,本月盈利比上月盈利的2倍还多12万元,又知本月盈利比上月盈利多30万元,求这两个月盈利各是多少万元?
解 如果把上月盈利作为1倍量,则(30-12)万元就相当于上月盈利的(2-1)倍,因此 上月盈利=(30-12)÷(2-1)=18(万元)
本月盈利=18+30=48(万元)
答:上月盈利是18万元,本月盈利是48万元。
例4 粮库有94吨小麦和138吨玉米,如果每天运出小麦和玉米各是9吨,问几天后剩下的玉米是小麦的3倍?
解 由于每天运出的小麦和玉米的数量相等,所以剩下的数量差等于原来的数量差(138-94)。把几天后剩下的小麦看作1倍量,则几天后剩下的玉米就是3倍量,那么,(138-94)就相当于(3-1)倍,因此
剩下的小麦数量=(138-94)÷(3-1)=22(吨)
运出的小麦数量=94-22=72(吨)
运粮的天数=72÷9=8(天)
答:8天以后剩下的玉米是小麦的3倍。
6 倍比问题
【含义】 有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。
【数量关系】 总量÷一个数量=倍数 另一个数量×倍数=另一总量
【解题思路和方法】 先求出倍数,再用倍比关系求出要求的数。
例1 100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少?
解 (1)3700千克是100千克的多少倍? 3700÷100=37(倍)
(2)可以榨油多少千克? 40×37=1480(千克)
列成综合算式 40×(3700÷100)=1480(千克)
答:可以榨油1480千克。
例2 今年植树节这天,某小学300名师生共植树400棵,照这样计算,全县48000名师生共植树多少棵?
解 (1)48000名是300名的多少倍? 48000÷300=160(倍)
(2)共植树多少棵? 400×160=64000(棵)
列成综合算式 400×(48000÷300)=64000(棵)
答:全县48000名师生共植树64000棵。
例3 凤翔县今年苹果大丰收,田家庄一户人家4亩果园收入11111元,照这样计算,全乡800亩果园共收入多少元?全县16000亩果园共收入多少元?
解 (1)800亩是4亩的几倍? 800÷4=200(倍)
(2)800亩收入多少元? 11111×200=2222200(元)
(3)16000亩是800亩的几倍?16000÷800=20(倍)
(4)16000亩收入多少元? 2222200×20=44444000(元)
答:全乡800亩果园共收入2222200元,全县16000亩果园共收入
44444000元。
7 相遇问题
【含义】 两个运动的物体同时由两地出发相向而行,在途中相遇。这类应用题叫做相遇问题。
【数量关系】 相遇时间=总路程÷(甲速+乙速)
总路程=(甲速+乙速)×相遇时间
【解题思路和方法】 简单的题目可直接利用公式,复杂的题目变通后再利用公式。
例1 南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?
解 392÷(28+21)=8(小时)
答:经过8小时两船相遇。
例2 小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?
解 “第二次相遇”可以理解为二人跑了两圈。因此总路程为400×2
相遇时间=(400×2)÷(5+3)=100(秒)
答:二人从出发到第二次相遇需100秒时间。
例3 甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。
解 “两人在距中点3千米处相遇”是正确理解本题题意的关键。从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(3×2)千米,因此,
相遇时间=(3×2)÷(15-13)=3(小时)
两地距离=(15+13)×3=84(千米)
答:两地距离是84千米。
8 追及问题
【含义】 两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。这类应用题就叫做追及问题。
【数量关系】 追及时间=追及路程÷(快速-慢速)
追及路程=(快速-慢速)×追及时间
【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。
例1 好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?
解 (1)劣马先走12天能走多少千米? 75×12=900(千米)
(2)好马几天追上劣马? 900÷(120-75)=20(天)
列成综合算式 75×12÷(120-75)=900÷45=20(天)
答:好马20天能追上劣马。
例2 小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑。小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。
解 小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了(500-200)米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间。又知小明跑200米用40秒,则跑500米用〔40×(500÷200)〕秒,所以小亮的速度是 (500-200)÷〔40×(500÷200)〕=300÷100=3(米)
答:小亮的速度是每秒3米。
例3 我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?
解 敌人逃跑时间与解放军追击时间的时差是(22-16)小时,这段时间敌人逃跑的路程是〔10×(22-6)〕千米,甲乙两地相距60千米。由此推知
追及时间=〔10×(22-6)+60〕÷(30-10)=220÷20=11(小时)
答:解放军在11小时后可以追上敌人。
例4 一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离。
解 这道题可以由相遇问题转化为追及问题来解决。从题中可知客车落后于货车(16×2)千米,客车追上货车的时间就是前面所说的相遇时间,
这个时间为 16×2÷(48-40)=4(小时)
所以两站间的距离为 (48+40)×4=352(千米)
列成综合算式 (48+40)×〔16×2÷(48-40)〕=88×4=352(千米)
答:甲乙两站的距离是352千米。
例5 兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。问他们家离学校有多远?
解 要求距离,速度已知,所以关键是求出相遇时间。从题中可知,在相同时间(从出发到相遇)内哥哥比妹妹多走(180×2)米,这是因为哥哥比妹妹每分钟多走(90-60)米,那么,二人从家出走到相遇所用时间为
180×2÷(90-60)=12(分钟)
家离学校的距离为 90×12-180=900(米)
答:家离学校有900米远。
例6 孙亮打算上课前5分钟到学校,他以每小时4千米的速度从家步行去学校,当他走了1千米时,发现手表慢了10分钟,因此立即跑步前进,到学校恰好准时上课。后来算了一下,如果孙亮从家一开始就跑步,可比原来步行早9分钟到学校。求孙亮跑步的速度。
解 手表慢了10分钟,就等于晚出发10分钟,如果按原速走下去,就要迟到(10-5)分钟,后段路程跑步恰准时到学校,说明后段路程跑比走少用了(10-5)分钟。如果从家一开始就跑步,可比步行少9分钟,由此可知,行1千米,跑步比步行少用〔9-(10-5)〕分钟。所以
步行1千米所用时间为 1÷〔9-(10-5)〕=0.25(小时)=15(分钟)
跑步1千米所用时间为 15-〔9-(10-5)〕=11(分钟)
跑步速度为每小时 1÷11/60=1×60/11=5.5(千米)
答:孙亮跑步速度为每小时5.5千米。
9 植树问题
【含义】 按相等的距离植树,在距离、棵距、棵数这三个量之间,已知其中的两个量,要求第三个量,这类应用题叫做植树问题。
【数量关系】 线形植树 棵数=距离÷棵距+1
环形植树 棵数=距离÷棵距
方形植树 棵数=距离÷棵距-4
三角形植树 棵数=距离÷棵距-3
面积植树 棵数=面积÷(棵距×行距)
【解题思路和方法】 先弄清楚植树问题的类型,然后可以利用公式。
例1 一条河堤136米,每隔2米栽一棵垂柳,头尾都栽,一共要栽多少棵垂柳?
解 136÷2+1=68+1=69(棵)
答:一共要栽69棵垂柳。
例2 一个圆形池塘周长为400米,在岸边每隔4米栽一棵白杨树,一共能栽多少棵白杨树?
解 400÷4=100(棵)
答:一共能栽100棵白杨树。
例3 一个正方形的运动场,每边长220米,每隔8米安装一个照明灯,一共可以安装多少个照明灯?
解 220×4÷8-4=110-4=106(个)
答:一共可以安装106个照明灯。
例4 给一个面积为96平方米的住宅铺设地板砖,所用地板砖的长和宽分别是60厘米和40厘米,问至少需要多少块地板砖?
解 96÷(0.6×0.4)=96÷0.24=400(块)
答:至少需要400块地板砖。
例5 一座大桥长500米,给桥两边的电杆上安装路灯,若每隔50米有一个电杆,每个电杆上安装2盏路灯,一共可以安装多少盏路灯?
解 (1)桥的一边有多少个电杆? 500÷50+1=11(个)
(2)桥的两边有多少个电杆? 11×2=22(个)
(3)大桥两边可安装多少盏路灯?22×2=44(盏)
答:大桥两边一共可以安装44盏路灯。
10 年龄问题
【含义】 这类问题是根据题目的内容而得名,它的主要特点是两人的年龄差不变,但是,两人年龄之间的倍数关系随着年龄的增长在发生变化。
【数量关系】年龄问题往往与和差、和倍、差倍问题有着密切联系,尤其与差倍问题的解题思路是一致的,要紧紧抓住“年龄差不变”这个特点。
【解题思路和方法】 可以利用“差倍问题”的解题思路和方法。
例1 爸爸今年35岁,亮亮今年5岁,今年爸爸的年龄是亮亮的几倍?明年呢?
解 35÷5=7(倍) (35+1)÷(5+1)=6(倍)
答:今年爸爸的年龄是亮亮的7倍,明年爸爸的年龄是亮亮的6倍。
例2 母亲今年37岁,女儿今年7岁,几年后母亲的年龄是女儿的4倍?
解 (1)母亲比女儿的年龄大多少岁? 37-7=30(岁)
(2)几年后母亲的年龄是女儿的4倍?30÷(4-1)-7=3(年)
列成综合算式 (37-7)÷(4-1)-7=3(年)
答:3年后母亲的年龄是女儿的4倍。
例3 3年前父子的年龄和是49岁,今年父亲的年龄是儿子年龄的4倍,父子今年各多少岁?
解 今年父子的年龄和应该比3年前增加(3×2)岁,今年二人的年龄和为 49+3×2=55(岁)
把今年儿子年龄作为1倍量,则今年父子年龄和相当于(4+1)倍,因此,今年儿子年龄为
55÷(4+1)=11(岁)
今年父亲年龄为 11×4=44(岁)
答:今年父亲年龄是44岁,儿子年龄是11岁。
例4 甲对乙说:“当我的岁数曾经是你现在的岁数时,你才4岁”。乙对甲说:“当我的岁数将来是你现在的岁数时,你将61岁”。求甲乙现在的岁数各是多少?
解
这里涉及到三个年份:过去某一年、今年、将来某一年。列表分析:
过去某一年 今 年 将来某一年
甲 □岁 △岁 61岁
乙 4岁 □岁 △岁
表中两个“□”表示同一个数,两个“△”表示同一个数。
因为两个人的年龄差总相等:□-4=△-□=61-△,也就是4,□,△,61成等差数列,所以,61应该比4大3个年龄差,因此二人年龄差为 (61-4)÷3=19(岁)
甲今年的岁数为 △=61-19=42(岁)
乙今年的岁数为 □=42-19=23(岁)
答:甲今年的岁数是42岁,乙今年的岁数是23岁。
11 行船问题
【含义】 行船问题也就是与航行有关的问题。解答这类问题要弄清船速与水速,船速是船只本身航行的速度,也就是船只在静水中航行的速度;水速是水流的速度,船只顺水航行的速度是船速与水速之和;船只逆水航行的速度是船速与水速之差。
【数量关系】 (顺水速度+逆水速度)÷2=船速
(顺水速度-逆水速度)÷2=水速
顺水速=船速×2-逆水速=逆水速+水速×2
逆水速=船速×2-顺水速=顺水速-水速×2
【解题思路和方法】 大多数情况可以直接利用数量关系的公式。
例1 一只船顺水行320千米需用8小时,水流速度为每小时15千米,这只船逆水行这段路程需用几小时?
解 由条件知,顺水速=船速+水速=320÷8,而水速为每小时15千米,所以,船速为每小时 320÷8-15=25(千米)
船的逆水速为 25-15=10(千米)
船逆水行这段路程的时间为 320÷10=32(小时)
答:这只船逆水行这段路程需用32小时。
例2 甲船逆水行360千米需18小时,返回原地需10小时;乙船逆水行同样一段距离需15小时,返回原地需多少时间?
解由题意得 甲船速+水速=360÷10=36
甲船速-水速=360÷18=20
可见 (36-20)相当于水速的2倍,
所以, 水速为每小时(36-20)÷2=8(千米)
又因为, 乙船速-水速=360÷15,
所以, 乙船速为 360÷15+8=32(千米)
乙船顺水速为 32+8=40(千米)
所以, 乙船顺水航行360千米需要 360÷40=9(小时)
答:乙船返回原地需要9小时。
例3 一架飞机飞行在两个城市之间,飞机的速度是每小时576千米,风速为每小时24千米,飞机逆风飞行3小时到达,顺风飞回需要几小时?
解 这道题可以按照流水问题来解答。
(1)两城相距多少千米? (576-24)×3=1656(千米)
(2)顺风飞回需要多少小时? 1656÷(576+24)=2.76(小时)
列成综合算式〔(576-24)×3〕÷(576+24)=2.76(小时)
答:飞机顺风飞回需要2.76小时。
应该够了吧...
Ⅵ 数学试卷 小学数学
1.一个书包打八折后是48.8元原价是多少元?
答:48.8/8*10=61元
2.一个挂钟的时针长5厘米,经过12小时,时针尖端移动了多少厘米?
答:2*5*3.14=31.4cm
3.两个圆的半径的比是3∶5周长的最简比是?面积最简比是?
答:周长比:3:5; 面积比3:5
4.一桶油分两次用完:第一次用去3分之2,第二次用去了3分之2千克。这桶油原有多少千克?
答:2千克
5.取400克小麦,烘干后还有342克。这种小麦的含水率是多少?
答:
6.实际造林面积比原计划多20%,实际造林面积是原计划的120%?
7.一个圆形水池的周长是15.7米,它的面积是多少平方米?
8.快餐店运来30箱豆浆,每箱10杯,按3∶7分给甲、乙两个部门。甲部门分的多少杯豆浆?乙部们分得多少杯?
9.益明小学全校共植树180棵。其中20%是五年级种的,25%是六年级种植的,五六年级一共植了多少棵树?
10.某校新建教学楼,实际投入25.8万元,比原计划节约了1.8万元,节约了百分之几?(得数保留百分号前面一位小数)
梯等式
8分之5÷3分之1+8分之5÷3分之2 12分之7×5分之3+12分之7×5分之2
求未知数χ
14×3+0.7χ=56 χ-15%χ=8.5
化简比
0.4∶1.2
求比值
125∶375 9分之4∶3分之2 8分之5∶0.75
输入内容已经达到长度限制
还能输入 9803 字插入图片删除图片插入地图删除地图插入视频视频地图1.一个书包打八折后是48.8元原价是多少元?
答:48.8/8*10=61元
2.一个挂钟的时针长5厘米,经过12小时,时针尖端移动了多少厘米?
答:2*5*3.14=31.4cm
3.两个圆的半径的比是3∶5周长的最简比是?面积最简比是?
答:周长比:3:5; 面积比3:5
4.一桶油分两次用完:第一次用去3分之2,第二次用去了3分之2千克。这桶油原有多少千克?
答:2千克
5.取400克小麦,烘干后还有342克。这种小麦的含水率是多少?
答:(400-342)/400=14.5%
6.实际造林面积比原计划多20%,实际造林面积是原计划的120%?
答:是的
7.一个圆形水池的周长是15.7米,它的面积是多少平方米?
答:r=15.7/3.14/2=2.5米 面积=2.5*2.5*3.14=19.625平方米
8.快餐店运来30箱豆浆,每箱10杯,按3∶7分给甲、乙两个部门。甲部门分的多少杯豆浆?乙部们分得多少杯?
答:甲方:30*10*0.3=90杯
乙方:30*10*0.7=210杯
9.益明小学全校共植树180棵。其中20%是五年级种的,25%是六年级种植的,五六年级一共植了多少棵树?
答:五年级植的树棵树180*20%=36(棵)
六年级植树的棵树180*25%=45(棵)
五六年级一共植了36+45=81棵
Ⅶ 小学数学试卷题目
6.64
7.6
8.梯形 101cm
9.30 18 32
10.多边形每多一条边,它的内角和就会多180°,1080°,(n-2)*180°
Ⅷ 小学数学试题及答案
倍又艇牢卧殴炊久务镣肆荔3瓷叹奈郁水沟芭航搪篮卡蹦满婶射
岗萝回恒