1. 小学三年级奥数题及答案
1.一条路长100米,从头到尾每隔10米栽1棵梧桐树,共栽多少棵树?
路分成100÷10=10段,共栽树10+1=11棵。
12棵柳树排成一排,在每两棵柳树中间种3棵桃树,共种多少棵桃树?
3×(12-1)=33棵。
一根200厘米长的木条,要锯成10厘米长的小段,需要锯几次?
200÷10=20段,20-1=19次。
4.蚂蚁爬树枝,每上一节需要10秒钟,从第一节爬到第13节需要多少分钟?
从第一节到第13节需10×(13-1)=120秒,120÷60=2分。
5.在花圃的周围方式菊花,每隔1米放1盆花。花圃周围共20米长。需放多少盆菊花?
20÷1×1=20盆
6.从发电厂到闹市区一共有250根电线杆,每相邻两根电线杆之间是30米。从发电厂到闹市区有多远?
30×(250-1)=7470米。
7.王老师把月收入的一半又20元留做生活费,又把剩余钱的一半又50元储蓄起来,这时还剩40元给孩子交学费书本费。他这个月收入多少元?
[(40+50) ×2+20] ×2=400(元)答:他这个月收入400元。
8.一个人沿着大提走了全长的一半后,又走了剩下的一半,还剩下1千米,问:大提全长多少千米?
1×2×2=4千米
9.甲在加工一批零件,第一天加工了这堆零件的一半又10个,第二天又加工了剩下的一半又10个,还剩下25个没有加工。问:这批零件有多少个?
(25+10)×2=70个,(70+10)×2=160个。综合算式:【(25+10)×2+10】×2=160个
10.一条毛毛虫由幼虫长到成虫,每天长一倍,16天能长到16厘米。问它几天可以长到4厘米?
16÷2÷2=4(厘米),16-1-1=14(天)
11.一桶水,第一次倒出一半,然后倒回桶里30千克,第二次倒出桶中剩下水的一半,第三次倒出180千克,桶中还剩下80千克。桶里原来有水多少千克?
180+80=260(千克),260×2-30=490(千克),490×2=980(千克)。
12.甲、乙两书架共有图书200本,甲书架的图书数比乙书架的3倍少16本。甲、乙两书架上各有图书多少本?
答案:乙:(200+16)÷(3+1)=54(本);甲:54×3-16=146(本)。
13.小燕买一套衣服用去185元,问上衣和裤子各多少元?
裤子:(185-5)÷(2+1)=60(元);
上衣:60×2+5=125(元)。
14.甲、乙、丙三人年龄之和是94岁,且甲的2倍比丙多5岁,乙2倍比丙多19岁,问:甲、乙、丙三人各多大?
如果每个人的年龄都扩大到2倍,那么三人年龄的和是94×2=188。如果甲再减少5岁,乙再减少19岁,那么三人的年龄的和是188-5-19=164(岁),这时甲的年龄是丙的一半,即丙的年龄是甲的两倍。同样,这时丙的年龄也是乙两倍。所以这时甲、乙的年龄都是164÷(1+1+2)=41(岁),即原来丙的年龄是41岁。甲原来的年龄是(41+5)÷2=23(岁),乙原来的年龄是(41+19)÷2=30(岁)。
15.小明、小华捉完鱼。小明说:“如果你把你捉的鱼给我1条,我的鱼就是你的2倍。如果我给你1条,咱们就一样多了。“请算出两个各捉了多少条鱼。
小明比小华多1×2=2(条)。如果小华给小明1条鱼,那么小明比小华多2+1×2=4(条),这时小华有鱼4÷(2-1)=4(条)。原来小华有鱼4+1=5(条),原来小明有鱼5+2=7(条)。
16.小芳去文具店买了13本语文书,8本算术书,共用去10元。已知6本语文本的价钱与4本算术本的价钱相等。问:1本语文本、1本算术本各多少钱?
8÷4×6=12,即8本算术本与12本语文体价钱相等。所以1本语文本值10×100÷(13+12)=40(分),1本算术本值40×6÷4=60(分),即1本语文本4角,1本算术本6角。
17.找规律,在括号内填入适当的数. 75,3,74,3,73,3,(),()。
答案:72,3。
18找规律,在括号内填入适当的数. 1,4,5,4,9,4,(),()。
奇数项构成数列1,5,9……,每一项比前一项多4;偶数项都是4,所以应填13,4
19.找规律,在括号内填入适当的数. 3,2,6,2,12,2,(),()。
24,2。
20.找规律,在括号内填入适当的数. 76,2,75,3,74,4,(),()。
答案:将原数列拆分成两列,应填:73,5。
21.找规律,在括号内填入适当的数. 2,3,4,5,8,7,(),()。
答案:将原数列拆分成两列,应填:16,9。
22.找规律,在括号内填入适当的数. 3,6,8,16,18,(),()。
答案:6=3×2,16=8×2,即偶数项是它前面的奇数项的2倍;又8=6+2,18=16+2,即从第三项起,奇数项比它前面的偶数项多2.所以应填:36,38。
23.找规律,在括号内填入适当的数. 1,6,7,12,13,18,19,(),()。
答案:将原数列拆分成两列,应填:24,25。
24.找规律,在括号内填入适当的数. 1,4,3,8,5,12,7,()。
答案:奇数项构成数列1,3,5,7,…,每一项比前一项多2;偶数项构成数列4,8,12,…,每一项比前一项多4,所以应填:16。
25.找规律,在括号内填入适当的数. 0,1,3,8,21,55,(),()。
答案:144,377。
26.A、B、C、D四人在一场比赛中得了前4名。已知D的名次不是最高,但它比B、C都高,而C的名次也不比B高。问:他们各是第几名?
答案:D名次不是最高,但比B、C高,所以它是第2名,A是第1名。C的名次不比B高,所以B是第3名,C是第4名。
27.一头象的重量等于4头牛的重量,一头牛的重量等于3匹小马的重量,一匹小马的重量等于3头小猪的重量。问:一头象的重量等于几头小猪的重量?
答案:4×3×3=36,所以一头象的重量等于36头小猪的重量。
28.甲、乙、丙三人,一个人喜欢看足球,一个人喜欢看拳击,一个人喜欢看篮球。已知甲不爱看篮球,丙既不喜欢看篮球又不喜欢看足球。现有足球、拳击、篮球比赛的入场券各一张。请根据他们的爱好,把票分给他们。
答案:丙不喜欢看篮球与足球,应将拳击入场券给丙。甲不喜欢看篮球,应将足球入场券给甲。最后,应将篮球入场券给乙。
29.有一堆铁块和铜块,每块铁块重量完全一样,每块铜块的重量也完全一样。3块铁快和5块铜块共重210克。4块铁块和10块铜块共重380克。问:每一块铁块、每一块铜块各重多少?
答案:4块铁块和10块铜块共重380克,所以2块铁块和5块铜块共重380÷2=190(克)。而3块铁块和5块铜块共重210克,所以1块铁块重210-190=20(克)。1铜块重(190-20×2)÷5=30(克)。
30.甲、乙、丙三人中有一人做了一件好事。他们各自都说了一句话,而其中只有一句是真的。甲说:“是乙做的。” 乙说:“不是我做的。” 丙说:“也不是我做的。” 问:到底是谁做的好事?
答案:如果是甲做的好事,那么乙、丙的话都是真的,与只有一句是真的矛盾。如果是乙做的好事,那么甲、丙的话都是真的,也产生矛盾。好事是丙做的,这时甲、丙的话都是错的,只有乙的话是真的,所以好事是丙做的。
31.一张长8分米、宽3分米的长方形纸板,在四个角落上各截去一个边长为2分米的正方形,所剩下的部分的周长是多少?
答:(8+3)×2=22(分米)
32.计算 :18+19+20+21+22+23
原式=(18+23)×6÷2=123
33.计算 :100+102+104+106+108+110+112+114
原式=(100+114) ×8÷2=856
34.995+996+997+998+999
原式=(995+999) ×5÷2=4985
35.:(1999+1997+1995+…+13+11)-(12+14+16+…+1996+1998)
第一个括号内的项数为(1999-11)÷2+1=995,所以原式=(1999-1998)+(1997-1996)+…+(13-12)+11=1×994+11=1005
满意请采纳。
2. 小学四年级奥数题及答案50题
小学四年级奥数题及答案和题目分析
一、按规律填数。
1)64,48,40,36,34,( ) 2)8,15,10,13,12,11,( )
3)1、4、5、8、9、( )、13、( )、( ) 4)2、4、5、10、11、( )、( ) 5)5,9,13,17,21,( ),( ) 二、等差数列
1.在等差数列3,12,21,30,39,48,…中912是第几个数?
2.求1至100内所有不能被5或9整除的整数和
3.把210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5,那么,第1个数与第6个数分别是多少?
4.把从1开始的所有奇数进行分组,其中每组的第一个数都等于此组中所有数的个数,如(1),(3、5、7),(9、11、13、15、17、19、21、23、25),(27、29、……79),(81、……),求第5组中所有数的和
三、 平均数问题
1.已知9个数的平均数是72,去掉一个数后,余下的数平均数为78,去掉的数是______ . 2.某班有40名学生,期中数学考试,有两名同学因故缺考,这时班级平均分为89分,缺考的同学补考各得99分,这个班级中考平均分是_______ .
3.今年前5个月,小明每月平均存钱4.2元,从6月起他每月储蓄6元,那么从哪个月起小明的平均储蓄超过5元?
4.A、B、C、D四个数,每次去掉一个数,将其余下的三个数求平均数,这样计算了4次,得到下面4个数. 23, 26, 30, 33
A、B、C、D 4个数的平均数是多少?
5 A、B、C、D4个数,每次去掉一个数,将其余3个数求平均数,这样计算了4次得到下面4个数23、26、30、33,A、B、C、D4个数的和是 。
四、加减乘除的简便运算
1)100-98+96-94+92-90+……+8-6+4-2=( ) 2)1976+1977+……2000-1975-1976-……-1999=( ) 3)26×99 =( )
4)67×12+67×35+67×52+67=( )
5)(14+28+39)×(28+39+15)-(14+28+39+15)×(28+39)
五、数阵图
1、△、□、〇分别代表三个不同的数,并且;
△+△+△=〇+〇;〇+〇+〇+〇=□+□+□; △+〇+〇+□=60 求:△= 〇= □=
2.将九个连续自然数填入3行3列的九个空格中,使每一横行及每一竖列的三个数之和都等于60.
3.将从1开始的九个连续奇数填入3行3列的九个空格中,使每一横行、每一竖列及两条对角线上的三个数之和都相等.
4 用1至9这9个数编制一个三阶幻方,写出所有可能的结果。所谓幻方是指在正方形的方格表的每个方格内填入不同的数,使得每行、每列和两条对角线上的各数之和相等;而阶数是指每行、每列所包含的方格的数。
六、和差倍问题
1.果园里一共种340棵桃树和杏树,其中桃树的棵数比杏树的3倍多20棵,两种树各种了多少棵?
2.一个长方形,周长是30厘米,长是宽的2倍,求这个长方形的面积。
3.甲、乙两个数,如果甲数加上320就等于乙数了.如果乙数加上460就等于甲数的3倍,两个数各是多少?
4.有两块同样长的布,第一块卖出25米,第二块卖出14米,剩下的布第二块是第一块的2倍,求每块布原有多少米?
5.果园里有桃树和梨树共150棵,桃树比梨树多20棵,两种果树各有多少棵?
6.甲、乙两桶油共重30千克,如果把甲桶中6千克油倒入乙桶,那么两桶油重量相等,问甲、乙两桶原有多少油?
七、年龄问题
1.兄弟俩今年的年龄和是30岁,当哥哥像弟弟现在这样大时,弟弟的年龄恰好是哥哥年龄的一半,哥哥今年几岁?
2.母女的年龄和是64岁,女儿年龄的3倍比母亲大8岁,求母女二人的年龄各是多少岁?
3.哥哥今年比小丽大12岁,8年前哥哥的年龄是小丽的4倍,今年二人各几岁?
4.爷爷今年72岁,孙子今年12岁,几年后爷爷的年龄是孙子的5倍?几年前爷爷的年龄是孙子的13倍?
八、假设问题
1、有42个同学参加植树,男生平均每人种3棵,女生平均每人种2棵,男生比女生多种56棵.男、女生各多少人?
2.某小学举行一次数学竞赛,共15道题,每做对一题得8分,每做错一题倒扣4分,小明共得了72分,他做对了多少道题?
3.一张试卷有25道题,答对一题得4分,答错或不答均倒扣1分,某同学共得60分,他答对了多少道题?
4.小华解答数学判断题,答对一题给4分,答错一题要倒扣4分,她答了20个判断题,结果只得了56分,她答错了多少道题?
5. 育才小学五年级举行数学竞赛,共10道题,每做对一道题得8分,错一题倒扣
5分,张小灵最终得分为41分,她做对了多少道题?
自己做吧,有了答案就不会好好做,对不起
3. 小学一年级数学题目大全及答案
1、同学们要做10个灯笼,已做好8个,还要做多少个?
2、从花上飞走了6只蝴蝶,又飞走了5只,两次飞走了多少只?
3、飞机场上有15架飞机,飞走了3架,现在机场上有飞机多少架?
4、小苹种7盆红花,又种了同样多的黄花,两种花共多少盆?
5、学校原有5瓶胶水,又买回9瓶,现在有多少瓶?
6、小强家有10个苹果,吃了7个,还有多少个?
7、汽车总站有13辆汽车,开走了3辆,还有几辆?
8、小朋友做剪纸 ,用了8张红纸,又用了同样多的黄纸,他们用了多少张纸?
9、马场上有9匹马,又来了5匹,现在马场上有多少匹?
10、商店有15把扇,卖去5把,现在有多少把?
11、学校有兰花和菊花共15盆,兰花有6盆,菊花有几盆?
12、小青两次画了17个 ,第一次画了9个,第二次画了多少个?
13、小红家有苹果和梨子共13个,苹果有4个,梨子有多少个?
14、学校要把12箱文具送给山区小学,已送去7箱,还要送几箱?
15、家有11棵白菜,吃了5棵,还有几棵?
16、一条马路两旁各种上48棵树,一共种树多少棵?
17、从车场开走8辆汽车,还剩24辆,车场原来有多少汽车?
18、从车场开走8辆大汽车,又开走同样多的小汽车,两次开走多少辆汽车?
19、学校体育室有6个足球 ,又买来20个,现在有多少个?
20、学雷锋小组上午修了8张椅,下午修了9张,一天修了多少张椅?
21、明明上午算了12道数学题,下午算了8道,上午比下午多算多少道题?
22、图书室里有20个女同学,有10个男同学,男同学比女同学少多少个?
23、动物园里有大猴20只,有小猴30只,小猴比大猴多多少只?
24、学校有10个足球,16个篮球,足球比篮球少多少个?
25、花园里有兰花40盆,菊花60盆,兰花再种多少盆就和菊花同样多?
26、妈妈买红扣子18个,白扣子10个,黑扣子8个。
(1)红扣子比白扣子多多少个?
(2)黑扣子比白扣子少多少个?
27、小华做了20个信封,小亮比小华多做6个,小亮做了多少个?
28、有两层书架,第一层有16本书,第二层比第一层多8 本,第二层有多少本?
29、妈妈买苹果6个,买梨子比苹果多4个,买梨子多少个?
30、饲养组有30只公鸡,母鸡比公鸡多48只,有母鸡多少只?
4. 小学三年级奥数题及答案
1.一条路长100米,从头到尾每隔10米栽1棵梧桐树,共栽多少棵树?
路分成100÷10=10段,共栽树10+1=11棵。
12棵柳树排成一排,在每两棵柳树中间种3棵桃树,共种多少棵桃树?
3×(12-1)=33棵。
一根200厘米长的木条,要锯成10厘米长的小段,需要锯几次?
200÷10=20段,20-1=19次。
4.蚂蚁爬树枝,每上一节需要10秒钟,从第一节爬到第13节需要多少分钟?
从第一节到第13节需10×(13-1)=120秒,120÷60=2分。
5.在花圃的周围方式菊花,每隔1米放1盆花。花圃周围共20米长。需放多少盆菊花?
20÷1×1=20盆
6.从发电厂到闹市区一共有250根电线杆,每相邻两根电线杆之间是30米。从发电厂到闹市区有多远?
30×(250-1)=7470米。
7.王老师把月收入的一半又20元留做生活费,又把剩余钱的一半又50元储蓄起来,这时还剩40元给孩子交学费书本费。他这个月收入多少元?
[(40+50) ×2+20] ×2=400(元)答:他这个月收入400元。
8.一个人沿着大提走了全长的一半后,又走了剩下的一半,还剩下1千米,问:大提全长多少千米?
1×2×2=4千米
9.甲在加工一批零件,第一天加工了这堆零件的一半又10个,第二天又加工了剩下的一半又10个,还剩下25个没有加工。问:这批零件有多少个?
(25+10)×2=70个,(70+10)×2=160个。综合算式:【(25+10)×2+10】×2=160个
10.一条毛毛虫由幼虫长到成虫,每天长一倍,16天能长到16厘米。问它几天可以长到4厘米?
16÷2÷2=4(厘米),16-1-1=14(天)
11.一桶水,第一次倒出一半,然后倒回桶里30千克,第二次倒出桶中剩下水的一半,第三次倒出180千克,桶中还剩下80千克。桶里原来有水多少千克?
180+80=260(千克),260×2-30=490(千克),490×2=980(千克)。
12.甲、乙两书架共有图书200本,甲书架的图书数比乙书架的3倍少16本。甲、乙两书架上各有图书多少本?
答案:乙:(200+16)÷(3+1)=54(本);甲:54×3-16=146(本)。
13.小燕买一套衣服用去185元,问上衣和裤子各多少元?
裤子:(185-5)÷(2+1)=60(元);
上衣:60×2+5=125(元)。
14.甲、乙、丙三人年龄之和是94岁,且甲的2倍比丙多5岁,乙2倍比丙多19岁,问:甲、乙、丙三人各多大?
如果每个人的年龄都扩大到2倍,那么三人年龄的和是94×2=188。如果甲再减少5岁,乙再减少19岁,那么三人的年龄的和是188-5-19=164(岁),这时甲的年龄是丙的一半,即丙的年龄是甲的两倍。同样,这时丙的年龄也是乙两倍。所以这时甲、乙的年龄都是164÷(1+1+2)=41(岁),即原来丙的年龄是41岁。甲原来的年龄是(41+5)÷2=23(岁),乙原来的年龄是(41+19)÷2=30(岁)。
15.小明、小华捉完鱼。小明说:“如果你把你捉的鱼给我1条,我的鱼就是你的2倍。如果我给你1条,咱们就一样多了。“请算出两个各捉了多少条鱼。
小明比小华多1×2=2(条)。如果小华给小明1条鱼,那么小明比小华多2+1×2=4(条),这时小华有鱼4÷(2-1)=4(条)。原来小华有鱼4+1=5(条),原来小明有鱼5+2=7(条)。
16.小芳去文具店买了13本语文书,8本算术书,共用去10元。已知6本语文本的价钱与4本算术本的价钱相等。问:1本语文本、1本算术本各多少钱?
8÷4×6=12,即8本算术本与12本语文体价钱相等。所以1本语文本值10×100÷(13+12)=40(分),1本算术本值40×6÷4=60(分),即1本语文本4角,1本算术本6角。
17.找规律,在括号内填入适当的数. 75,3,74,3,73,3,(),()。
答案:72,3。
18找规律,在括号内填入适当的数. 1,4,5,4,9,4,(),()。
奇数项构成数列1,5,9……,每一项比前一项多4;偶数项都是4,所以应填13,4
19.找规律,在括号内填入适当的数. 3,2,6,2,12,2,(),()。
24,2。
20.找规律,在括号内填入适当的数. 76,2,75,3,74,4,(),()。
答案:将原数列拆分成两列,应填:73,5。
21.找规律,在括号内填入适当的数. 2,3,4,5,8,7,(),()。
答案:将原数列拆分成两列,应填:16,9。
22.找规律,在括号内填入适当的数. 3,6,8,16,18,(),()。
答案:6=3×2,16=8×2,即偶数项是它前面的奇数项的2倍;又8=6+2,18=16+2,即从第三项起,奇数项比它前面的偶数项多2.所以应填:36,38。
23.找规律,在括号内填入适当的数. 1,6,7,12,13,18,19,(),()。
答案:将原数列拆分成两列,应填:24,25。
24.找规律,在括号内填入适当的数. 1,4,3,8,5,12,7,()。
答案:奇数项构成数列1,3,5,7,…,每一项比前一项多2;偶数项构成数列4,8,12,…,每一项比前一项多4,所以应填:16。
25.找规律,在括号内填入适当的数. 0,1,3,8,21,55,(),()。
答案:144,377。
26.A、B、C、D四人在一场比赛中得了前4名。已知D的名次不是最高,但它比B、C都高,而C的名次也不比B高。问:他们各是第几名?
答案:D名次不是最高,但比B、C高,所以它是第2名,A是第1名。C的名次不比B高,所以B是第3名,C是第4名。
27.一头象的重量等于4头牛的重量,一头牛的重量等于3匹小马的重量,一匹小马的重量等于3头小猪的重量。问:一头象的重量等于几头小猪的重量?
答案:4×3×3=36,所以一头象的重量等于36头小猪的重量。
28.甲、乙、丙三人,一个人喜欢看足球,一个人喜欢看拳击,一个人喜欢看篮球。已知甲不爱看篮球,丙既不喜欢看篮球又不喜欢看足球。现有足球、拳击、篮球比赛的入场券各一张。请根据他们的爱好,把票分给他们。
答案:丙不喜欢看篮球与足球,应将拳击入场券给丙。甲不喜欢看篮球,应将足球入场券给甲。最后,应将篮球入场券给乙。
29.有一堆铁块和铜块,每块铁块重量完全一样,每块铜块的重量也完全一样。3块铁快和5块铜块共重210克。4块铁块和10块铜块共重380克。问:每一块铁块、每一块铜块各重多少?
答案:4块铁块和10块铜块共重380克,所以2块铁块和5块铜块共重380÷2=190(克)。而3块铁块和5块铜块共重210克,所以1块铁块重210-190=20(克)。1铜块重(190-20×2)÷5=30(克)。
30.甲、乙、丙三人中有一人做了一件好事。他们各自都说了一句话,而其中只有一句是真的。甲说:“是乙做的。” 乙说:“不是我做的。” 丙说:“也不是我做的。” 问:到底是谁做的好事?
答案:如果是甲做的好事,那么乙、丙的话都是真的,与只有一句是真的矛盾。如果是乙做的好事,那么甲、丙的话都是真的,也产生矛盾。好事是丙做的,这时甲、丙的话都是错的,只有乙的话是真的,所以好事是丙做的。
31.一张长8分米、宽3分米的长方形纸板,在四个角落上各截去一个边长为2分米的正方形,所剩下的部分的周长是多少?
答:(8+3)×2=22(分米)
32.计算 :18+19+20+21+22+23
原式=(18+23)×6÷2=123
33.计算 :100+102+104+106+108+110+112+114
原式=(100+114) ×8÷2=856
34.995+996+997+998+999
原式=(995+999) ×5÷2=4985
35.:(1999+1997+1995+…+13+11)-(12+14+16+…+1996+1998)
第一个括号内的项数为(1999-11)÷2+1=995,所以原式=(1999-1998)+(1997-1996)+…+(13-12)+11=1×994+11=1005
5. 求小学6年级计算题100道(带答案)
没有答案
(一)
3.375+5.75+2.25+6.625
72 ÷9
1001-9036÷18
3.8×5.25+14.5
50减去12.5的差,除以2.5商是多少?
某数的6倍与4 的和等于19.25,求某数。(方程解)
(二)
15.36-3
2.1×4.3+5.7×2.1
(
102×45-328
2.8×3.1+17.6÷8
19.2减去8.5与4.3的和,差是多少?
7. 一个数的30%比18少6,求这个数。
(方程解)
(三)
6110×47+639
3.5×2.7-52.2÷18
18
3.375×0.97+0.97×6.625
(2
5减去2 与1 的积,在除以5 ,商是多少?
某数的 比70多10,求某数?
(方程解)
(四)
6.54+2.4+3.46+0.6
95.6×1.8+95.6×8.2
600-420÷12
7.344÷3.6-5.4×0.25
(2
15.6÷[16×(0.25+0.125)]
158减去80的差除以13,商是多少?
7.5减去一个数的 ,差是6,求这个数。(方程解)
(五)
3001-1998
3.9+
5000-105×34
0.15÷0.25+0.75×1.2
( )×0.24
309除以41.25与5.75的和,商是多少?
一个数的 加上1.2等于10,求这个数。(方程解)
(六)
(25+ )×4
300-4263÷21
0.81÷0.25+5.96
2.6-1÷( )×
5个 除以 与 的和,商是多少?
一个数的 比它的 多4.5,求这个数。(方程解)
(七)
12
6.6+2
1.8×3
403÷13×27
1.5×4.2-0.75÷0.25
54的 减去3 除以0.5得商,差是多少?
一个数的65%与 的和是1.5求这个数。(方程解)
(八)
14
3.27×4 +3.27×5.7
(1.2+ )×4.5÷
1025-768÷32
0.25×80-0.45÷0.9
比47大13的数乘以5减去4.25的差,积是多少?
一个数的3倍减去4.5的差是1.5,求这个数。(方程解)
(九)
1. 0.25×2.69×4
4.125×
2348+275×16
2.4+2.4×(5.375-3.375)
(1
比一个数的 少2.4的数是1.8,求这个数。(方程解)
姓名______学号______
4.5减去1.5乘以2.5的积,差是多少?
(十)
1. 645-45×12
(
0.15+1.2÷0.24-0.45
3.75-(2.35+0.25÷1.25)
76× +23×25%+0.25
10-2.87-7.13
0.96+9.6×9.9
从7.5里减去5.7的 ,差是多少?
一个数的40%减去9.6等于6.4,求这个数。(方程解)
(十一)
1. 12.37-3.25-6.75
16×6.8+2.2×16+16
401×19+284
58.7-16.65÷3.7
0.4×4.7×2.5+(2.3+5.3)
3.6除以2.5的商加上12.1的和是多少?
一个数的0.4比0.9多0.5,求这个数。(方程解)
(十二)
1. 9.31-1.125-7.875
2. ( )×18
640+128×45
8.2×1.6-0.336÷4.2
(
400乘以0.62与0.08的和,积是多少?
一个数的2.5倍等于37与8的和,求这个数。(方程解)
(一)
3.375+5.75+2.25+6.625
72 ÷9
1001-9036÷18
3.8×5.25+14.5
50减去12.5的差,除以2.5商是多少?
某数的6倍与4 的和等于19.25,求某数。(方程解)
(二)
15.36-3
2.1×4.3+5.7×2.1
(
102×45-328
2.8×3.1+17.6÷8
19.2减去8.5与4.3的和,差是多少?
7. 一个数的30%比18少6,求这个数。
(方程解)
(三)
6110×47+639
3.5×2.7-52.2÷18
18
3.375×0.97+0.97×6.625
(2
5减去2 与1 的积,在除以5 ,商是多少?
某数的 比70多10,求某数?
(方程解)
(四)
6.54+2.4+3.46+0.6
95.6×1.8+95.6×8.2
600-420÷12
7.344÷3.6-5.4×0.25
(2
15.6÷[16×(0.25+0.125)]
158减去80的差除以13,商是多少?
7.5减去一个数的 ,差是6,求这个数。(方程解)
(五)
3001-1998
3.9+
5000-105×34
0.15÷0.25+0.75×1.2
( )×0.24
309除以41.25与5.75的和,商是多少?
一个数的 加上1.2等于10,求这个数。(方程解)
(六)
(25+ )×4
300-4263÷21
0.81÷0.25+5.96
2.6-1÷( )×
5个 除以 与 的和,商是多少?
一个数的 比它的 多4.5,求这个数。(方程解)
(七)
12
6.6+2
1.8×3
403÷13×27
1.5×4.2-0.75÷0.25
54的 减去3 除以0.5得商,差是多少?
一个数的65%与 的和是1.5求这个数。(方程解)
(八)
14
3.27×4 +3.27×5.7
(1.2+ )×4.5÷
1025-768÷32
0.25×80-0.45÷0.9
比47大13的数乘以5减去4.25的差,积是多少?
一个数的3倍减去4.5的差是1.5,求这个数。(方程解)
(九)
1. 0.25×2.69×4
4.125×
2348+275×16
2.4+2.4×(5.375-3.375)
(1
比一个数的 少2.4的数是1.8,求这个数。(方程解)
姓名______学号______
4.5减去1.5乘以2.5的积,差是多少?
(十)
1. 645-45×12
(
0.15+1.2÷0.24-0.45
3.75-(2.35+0.25÷1.25)
76× +23×25%+0.25
10-2.87-7.13
0.96+9.6×9.9
从7.5里减去5.7的 ,差是多少?
一个数的40%减去9.6等于6.4,求这个数。(方程解)
(十一)
1. 12.37-3.25-6.75
16×6.8+2.2×16+16
401×19+284
58.7-16.65÷3.7
0.4×4.7×2.5+(2.3+5.3)
3.6除以2.5的商加上12.1的和是多少?
一个数的0.4比0.9多0.5,求这个数。(方程解)
(十二)
1. 9.31-1.125-7.875
2. ( )×18
640+128×45
8.2×1.6-0.336÷4.2
(
400乘以0.62与0.08的和,积是多少?
一个数的2.5倍等于37与8的和,求这个数。(方程解)
3.375+5.75+2.25+6.625
72 ÷9
1001-9036÷18
3.8×5.25+14.5
50减去12.5的差,除以2.5商是多少?
某数的6倍与4 的和等于19.25,求某数。(方程解)
(二)
15.36-3
2.1×4.3+5.7×2.1
(
102×45-328
2.8×3.1+17.6÷8
19.2减去8.5与4.3的和,差是多少?
7. 一个数的30%比18少6,求这个数。
(方程解)
(三)
6110×47+639
3.5×2.7-52.2÷18
18
3.375×0.97+0.97×6.625
(2
5减去2 与1 的积,在除以5 ,商是多少?
某数的 比70多10,求某数?
(方程解)
(四)
6.54+2.4+3.46+0.6
95.6×1.8+95.6×8.2
600-420÷12
7.344÷3.6-5.4×0.25
(2
15.6÷[16×(0.25+0.125)]
158减去80的差除以13,商是多少?
7.5减去一个数的 ,差是6,求这个数。(方程解)
(五)
3001-1998
3.9+
5000-105×34
0.15÷0.25+0.75×1.2
( )×0.24
309除以41.25与5.75的和,商是多少?
一个数的 加上1.2等于10,求这个数。(方程解)
(六)
(25+ )×4
300-4263÷21
0.81÷0.25+5.96
2.6-1÷( )×
5个 除以 与 的和,商是多少?
一个数的 比它的 多4.5,求这个数。(方程解)
(七)
12
6.6+2
1.8×3
403÷13×27
1.5×4.2-0.75÷0.25
54的 减去3 除以0.5得商,差是多少?
一个数的65%与 的和是1.5求这个数。(方程解)
(八)
14
3.27×4 +3.27×5.7
(1.2+ )×4.5÷
1025-768÷32
0.25×80-0.45÷0.9
比47大13的数乘以5减去4.25的差,积是多少?
一个数的3倍减去4.5的差是1.5,求这个数。(方程解)
(九)
1. 0.25×2.69×4
4.125×
2348+275×16
2.4+2.4×(5.375-3.375)
(1
比一个数的 少2.4的数是1.8,求这个数。(方程解)
姓名______学号______
4.5减去1.5乘以2.5的积,差是多少?
(十)
1. 645-45×12
(
0.15+1.2÷0.24-0.45
3.75-(2.35+0.25÷1.25)
76× +23×25%+0.25
10-2.87-7.13
0.96+9.6×9.9
从7.5里减去5.7的 ,差是多少?
一个数的40%减去9.6等于6.4,求这个数。(方程解)
(十一)
1. 12.37-3.25-6.75
16×6.8+2.2×16+16
401×19+284
58.7-16.65÷3.7
0.4×4.7×2.5+(2.3+5.3)
3.6除以2.5的商加上12.1的和是多少?
一个数的0.4比0.9多0.5,求这个数。(方程解)
(十二)
1. 9.31-1.125-7.875
2. ( )×18
640+128×45
8.2×1.6-0.336÷4.2
(
400乘以0.62与0.08的和,积是多少?
一个数的2.5倍等于37与8的和,求这个数。(方程解)
6. 小学五六年级奥数题30道带答案!!
过桥问题(1)
1. 一列火车经过南京长江大桥,大桥长6700米,这列火车长140米,火车每分钟行400米,这列火车通过长江大桥需要多少分钟?
分析:这道题求的是通过时间.根据数量关系式,我们知道要想求通过时间,就要知道路程和速度.路程是用桥长加上车长.火车的速度是已知条件.
总路程: (米)
通过时间: (分钟)
答:这列火车通过长江大桥需要17.1分钟.
2. 一列火车长200米,全车通过长700米的桥需要30秒钟,这列火车每秒行多少米?
分析与这是一道求车速的过桥问题.我们知道,要想求车速,我们就要知道路程和通过时间这两个条件.可以用已知条件桥长和车长求出路程,通过时间也是已知条件,所以车速可以很方便求出.
总路程: (米)
火车速度: (米)
答:这列火车每秒行30米.
3. 一列火车长240米,这列火车每秒行15米,从车头进山洞到全车出山洞共用20秒,山洞长多少米?
分析与火车过山洞和火车过桥的思路是一样的.火车头进山洞就相当于火车头上桥;全车出洞就相当于车尾下桥.这道题求山洞的长度也就相当于求桥长,我们就必须知道总路程和车长,车长是已知条件,那么我们就要利用题中所给的车速和通过时间求出总路程.
总路程:
山洞长: (米)
答:这个山洞长60米.
和倍问题
1. 秦奋和妈妈的年龄加在一起是40岁,妈妈的年龄是秦奋年龄的4倍,问秦奋和妈妈各是多少岁?
我们把秦奋的年龄作为1倍,“妈妈的年龄是秦奋的4倍”,这样秦奋和妈妈年龄的和就相当于秦奋年龄的5倍是40岁,也就是(4+1)倍,也可以理解为5份是40岁,那么求1倍是多少,接着再求4倍是多少?
(1)秦奋和妈妈年龄倍数和是:4+1=5(倍)
(2)秦奋的年龄:40÷5=8岁
(3)妈妈的年龄:8×4=32岁
综合:40÷(4+1)=8岁 8×4=32岁
为了保证此题的正确,验证
(1)8+32=40岁 (2)32÷8=4(倍)
计算结果符合条件,所以解题正确.
2. 甲乙两架飞机同时从机场向相反方向飞行,3小时共飞行3600千米,甲的速度是乙的2倍,求它们的速度各是多少?
已知两架飞机3小时共飞行3600千米,就可以求出两架飞机每小时飞行的航程,也就是两架飞机的速度和.看图可知,这个速度和相当于乙飞机速度的3倍,这样就可以求出乙飞机的速度,再根据乙飞机的速度求出甲飞机的速度.
甲乙飞机的速度分别每小时行800千米、400千米.
3. 弟弟有课外书20本,哥哥有课外书25本,哥哥给弟弟多少本后,弟弟的课外书是哥哥的2倍?
思考:(1)哥哥在给弟弟课外书前后,题目中不变的数量是什么?
(2)要想求哥哥给弟弟多少本课外书,需要知道什么条件?
(3)如果把哥哥剩下的课外书看作1倍,那么这时(哥哥给弟弟课外书后)弟弟的课外书可看作是哥哥剩下的课外书的几倍?
思考以上几个问题的基础上,再求哥哥应该给弟弟多少本课外书.根据条件需要先求出哥哥剩下多少本课外书.如果我们把哥哥剩下的课外书看作1倍,那么这时弟弟的课外书可看作是哥哥剩下的课外书的2倍,也就是兄弟俩共有的倍数相当于哥哥剩下的课外书的3倍,而兄弟俩人课外书的总数始终是不变的数量.
(1)兄弟俩共有课外书的数量是20+25=45.
(2)哥哥给弟弟若干本课外书后,兄弟俩共有的倍数是2+1=3.
(3)哥哥剩下的课外书的本数是45÷3=15.
(4)哥哥给弟弟课外书的本数是25-15=10.
试着列出综合算式:
4. 甲乙两个粮库原来共存粮170吨,后来从甲库运出30吨,给乙库运进10吨,这时甲库存粮是乙库存粮的2倍,两个粮库原来各存粮多少吨?
根据甲乙两个粮库原来共存粮170吨,后来从甲库运出30吨,给乙库运进10吨,可求出这时甲、乙两库共存粮多少吨.根据“这时甲库存粮是乙库存粮的2倍”,如果这时把乙库存粮作为1倍,那么甲、乙库所存粮就相当于乙存粮的3倍.于是求出这时乙库存粮多少吨,进而可求出乙库原来存粮多少吨.最后就可求出甲库原来存粮多少吨.
甲库原存粮130吨,乙库原存粮40吨.
列方程组解应用题(一)
1. 用白铁皮做罐头盒,每张铁皮可制盒身16个,或制盒底43个,一个盒身和两个盒底配成一个罐头盒,现有150张铁皮,用多少张制盒身,多少张制盒底,才能使盒身与盒底正好配套?
依据题意可知这个题有两个未知量,一个是制盒身的铁皮张数,一个是制盒底的铁皮张数,这样就可以用两个未知数表示,要求出这两个未知数,就要从题目中找出两个等量关系,列出两个方程,组在一起,就是方程组.
两个等量关系是:A做盒身张数+做盒底的张数=铁皮总张数
B制出的盒身数×2=制出的盒底数
用86张白铁皮做盒身,64张白铁皮做盒底.
奇数与偶数(一)
其实,在日常生活中同学们就已经接触了很多的奇数、偶数.
凡是能被2整除的数叫偶数,大于零的偶数又叫双数;凡是不能被2整除的数叫奇数,大于零的奇数又叫单数.
因为偶数是2的倍数,所以通常用 这个式子来表示偶数(这里 是整数).因为任何奇数除以2其余数都是1,所以通常用式子 来表示奇数(这里 是整数).
奇数和偶数有许多性质,常用的有:
性质1 两个偶数的和或者差仍然是偶数.
例如:8+4=12,8-4=4等.
两个奇数的和或差也是偶数.
例如:9+3=12,9-3=6等.
奇数与偶数的和或差是奇数.
例如:9+4=13,9-4=5等.
单数个奇数的和是奇,双数个奇数的和是偶数,几个偶数的和仍是偶数.
性质2 奇数与奇数的积是奇数.
偶数与整数的积是偶数.
性质3 任何一个奇数一定不等于任何一个偶数.
1. 有5张扑克牌,画面向上.小明每次翻转其中的4张,那么,他能在翻动若干次后,使5张牌的画面都向下吗?
同学们可以试验一下,只有将一张牌翻动奇数次,才能使它的画面由向上变为向下.要想使5张牌的画面都向下,那么每张牌都要翻动奇数次.
5个奇数的和是奇数,所以翻动的总张数为奇数时才能使5张牌的牌面都向下.而小明每次翻动4张,不管翻多少次,翻动的总张数都是偶数.
所以无论他翻动多少次,都不能使5张牌画面都向下.
2. 甲盒中放有180个白色围棋子和181个黑色围棋子,乙盒中放有181个白色围棋子,李平每次任意从甲盒中摸出两个棋子,如果两个棋子同色,他就从乙盒中拿出一个白子放入甲盒;如果两个棋子不同色,他就把黑子放回甲盒.那么他拿多少后,甲盒中只剩下一个棋子,这个棋子是什么颜色的?
不论李平从甲盒中拿出两个什么样的棋子,他总会把一个棋子放入甲盒.所以他每拿一次,甲盒子中的棋子数就减少一个,所以他拿180+181-1=360次后,甲盒里只剩下一个棋子.
如果他拿出的是两个黑子,那么甲盒中的黑子数就减少两个.否则甲盒子中的黑子数不变.也就是说,李平每次从甲盒子拿出的黑子数都是偶数.由于181是奇数,奇数减偶数等于奇数.所以,甲盒中剩下的黑子数应是奇数,而不大于1的奇数只有1,所以甲盒里剩下的一个棋子应该是黑子.
奥赛专题 -- 称球问题
例1 有4堆外表上一样的球,每堆4个.已知其中三堆是正品、一堆是次品,正品球每个重10克,次品球每个重11克,请你用天平只称一次,把是次品的那堆找出来.
解 :依次从第一、二、三、四堆球中,各取1、2、3、4个球,这10个球一起放到天平上去称,总重量比100克多几克,第几堆就是次品球.
2 有27个外表上一样的球,其中只有一个是次品,重量比正品轻,请你用天平只称三次(不用砝码),把次品球找出来.
解 :第一次:把27个球分为三堆,每堆9个,取其中两堆分别放在天平的两个盘上.若天平不平衡,可找到较轻的一堆;若天平平衡,则剩下来称的一堆必定较轻,次品必在较轻的一堆中.
第二次:把第一次判定为较轻的一堆又分成三堆,每堆3个球,按上法称其中两堆,又可找出次品在其中较轻的那一堆.
第三次:从第二次找出的较轻的一堆3个球中取出2个称一次,若天平不平衡,则较轻的就是次品,若天平平衡,则剩下一个未称的就是次品.
例3 把10个外表上一样的球,其中只有一个是次品,请你用天平只称三次,把次品找出来.
把10个球分成3个、3个、3个、1个四组,将四组球及其重量分别用A、B、C、D表示.把A、B两组分别放在天平的两个盘上去称,则
(1)若A=B,则A、B中都是正品,再称B、C.如B=C,显然D中的那个球是次品;如B>C,则次品在C中且次品比正品轻,再在C中取出2个球来称,便可得出结论.如B<C,仿照B>C的情况也可得出结论.
(2)若A>B,则C、D中都是正品,再称B、C,则有B=C,或B<C(B>C不可能,为什么?)如B=C,则次品在A中且次品比正品重,再在A中取出2个球来称,便可得出结论;如B<C,仿前也可得出结论.
(3)若A<B,类似于A>B的情况,可分析得出结论.
奥赛专题 -- 抽屉原理
【例1】一个小组共有13名同学,其中至少有2名同学同一个月过生日.为什么?
【分析】每年里共有12个月,任何一个人的生日,一定在其中的某一个月.如果把这12个月看成12个“抽屉”,把13名同学的生日看成13只“苹果”,把13只苹果放进12个抽屉里,一定有一个抽屉里至少放2个苹果,也就是说,至少有2名同学在同一个月过生日.
【例 2】任意4个自然数,其中至少有两个数的差是3的倍数.这是为什么?
【分析与解】首先我们要弄清这样一条规律:如果两个自然数除以3的余数相同,那么这两个自然数的差是3的倍数.而任何一个自然数被3除的余数,或者是0,或者是1,或者是2,根据这三种情况,可以把自然数分成3类,这3种类型就是我们要制造的3个“抽屉”.我们把4个数看作“苹果”,根据抽屉原理,必定有一个抽屉里至少有2个数.换句话说,4个自然数分成3类,至少有两个是同一类.既然是同一类,那么这两个数被3除的余数就一定相同.所以,任意4个自然数,至少有2个自然数的差是3的倍数.
【例3】有规格尺寸相同的5种颜色的袜子各15只混装在箱内,试问不论如何取,从箱中至少取出多少只就能保证有3双袜子(袜子无左、右之分)?
【分析与解】试想一下,从箱中取出6只、9只袜子,能配成3双袜子吗?回答是否定的.
按5种颜色制作5个抽屉,根据抽屉原理1,只要取出6只袜子就总有一只抽屉里装2只,这2只就可配成一双.拿走这一双,尚剩4只,如果再补进2只又成6只,再根据抽屉原理1,又可配成一双拿走.如果再补进2只,又可取得第3双.所以,至少要取6+2+2=10只袜子,就一定会配成3双.
思考:1.能用抽屉原理2,直接得到结果吗?
2.把题中的要求改为3双不同色袜子,至少应取出多少只?
3.把题中的要求改为3双同色袜子,又如何?
【例4】一个布袋中有35个同样大小的木球,其中白、黄、红三种颜色球各有10个,另外还有3个蓝色球、2个绿色球,试问一次至少取出多少个球,才能保证取出的球中至少有4个是同一颜色的球?
【分析与解】从最“不利”的取出情况入手.
最不利的情况是首先取出的5个球中,有3个是蓝色球、2个绿色球.
接下来,把白、黄、红三色看作三个抽屉,由于这三种颜色球相等均超过4个,所以,根据抽屉原理2,只要取出的球数多于(4-1)×3=9个,即至少应取出10个球,就可以保证取出的球至少有4个是同一抽屉(同一颜色)里的球.
故总共至少应取出10+5=15个球,才能符合要求.
思考:把题中要求改为4个不同色,或者是两两同色,情形又如何?
当我们遇到“判别具有某种事物的性质有没有,至少有几个”这样的问题时,想到它——抽屉原理,这是你的一条“决胜”之路.
奥赛专题 -- 还原问题
【例1】某人去银行取款,第一次取了存款的一半多50元,第二次取了余下的一半多100元.这时他的存折上还剩1250元.他原有存款多少元?
【分析】从上面那个“重新包装”的事例中,我们应受到启发:要想还原,就得反过来做(倒推).由“第二次取余下的一半多100元”可知,“余下的一半少100元”是1250元,从而“余下的一半”是 1250+100=1350(元)
余下的钱(余下一半钱的2倍)是: 1350×2=2700(元)
用同样道理可算出“存款的一半”和“原有存款”.综合算式是:
[(1250+100)×2+50]×2=5500(元)
还原问题的一般特点是:已知对某个数按照一定的顺序施行四则运算的结果,或把一定数量的物品增加或减少的结果,要求最初(运算前或增减变化前)的数量.解还原问题,通常应当按照与运算或增减变化相反的顺序,进行相应的逆运算.
【例2】有26块砖,兄弟2人争着去挑,弟弟抢在前面,刚摆好砖,哥哥赶来了.哥哥看弟弟挑得太多,就拿来一半给自己.弟弟觉得自己能行,又
从哥哥那里拿来一半.哥哥不让,弟弟只好给哥哥5块,这样哥哥比弟弟多挑2块.问最初弟弟准备挑多少块?
【分析】我们得先算出最后哥哥、弟弟各挑多少块.只要解一个“和差问题”就知道:哥哥挑“(26+2)÷2=14”块,弟弟挑“26-14=12”块.
提示:解还原问题所作的相应的“逆运算”是指:加法用减法还原,减法用加法还原,乘法用除法还原,除法用乘法还原,并且原来是加(减)几,还原时应为减(加)几,原来是乘(除)以几,还原时应为除(乘)以几.
对于一些比较复杂的还原问题,要学会列表,借助表格倒推,既能理清数量关系,又便于验算.
奥赛专题 -- 鸡兔同笼问题
例1 鸡兔同笼,头共46,足共128,鸡兔各几只?
[分析] :如果 46只都是兔,一共应有 4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚.如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚.那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了.所以,鸡的只数就是28,兔的只数是46-28=18.
①鸡有多少只?
(4×6-128)÷(4-2)
=(184-128)÷2
=56÷2
=28(只)
②免有多少只?
46-28=18(只)
答:鸡有28只,免有18只.
例2 鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?
[分析]: 这个例题与前面例题是有区别的,没有给出它们脚数的总和,而是给出了它们脚数的差.这又如何解答呢?
假设100只全是鸡,那么脚的总数是2×100=200(只)这时兔的脚数为0,鸡脚比兔脚多200只,而实际上鸡脚比兔脚多80只.因此,鸡脚与兔脚的差数比已知多了(200-80)=120(只),这是因为把其中的兔换成了鸡.每把一只兔换成鸡,鸡的脚数将增加2只,兔的脚数减少4只.那么,鸡脚与兔脚的差数增加(2+4)=6(只),所以换成鸡的兔子有120÷6=20(只).有鸡(100-20)=80(只).
(2×100-80)÷(2+4)=20(只).
100-20=80(只).
答:鸡与兔分别有80只和20只.
例3 红英小学三年级有3个班共135人,二班比一班多5人,三班比二班少7人,三个班各有多少人?
[分析1] 我们设想,如果条件中三个班人数同样多,那么,要求每班有多少人就很容易了.由此得到启示,是否可以通过假设三个班人数同样多来分析求解.
结合下图可以想,假设二班、三班人数和一班人数相同,以一班为标准,则二班人数要比实际人数少5人.三班人数要比实际人数多7-5=2(人).那么,请你算一算,假设二班、三班人数和一班人数同样多,三个班总人数应该是多少?
解法1:
一班:[135-5+(7-5)]÷3=132÷3
=44(人)
二班:44+5=49(人)
三班:49-7=42(人)
答:三年级一班、 二班、三班分别有44人、 49人和 42人.
[分析2] 假设一、三班人数和二班人数同样多,那么,一班人数比实际要多5人,而三班要比实际人数多7人.这时的总人数又该是多少?
解法2:(135+ 5+ 7)÷3 = 147÷3 = 49(人)
49-5=44(人),49-7=42(人)
答:三年级一班、二班、三班分别有44人、49人和42人.
例4 刘老师带了41名同学去北海公园划船,共租了10条船.每条大船坐6人,每条小船坐4人,问大船、小船各租几条?
[分析] 我们分步来考虑:
①假设租的 10条船都是大船,那么船上应该坐 6×10= 60(人).
②假设后的总人数比实际人数多了 60-(41+1)=18(人),多的原因是把小船坐的4人都假设成坐6人.
③一条小船当成大船多出2人,多出的18人是把18÷2=9(条)小船当成大船.
[6×10-(41+1)÷(6-4)
= 18÷2=9(条) 10-9=1(条)
答:有9条小船,1条大船.
例5 有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀),求蜻蜓有多少只?
[分析] 这是在鸡兔同笼基础上发展变化的问题.观察数字特点,蜻蜓、蝉都是6条腿,只有蜘蛛8条腿.因此,可先从腿数入手,求出蜘蛛的只数.我们假设三种动物都是6条腿,则总腿数为 6×18=108(条),所差 118-108=10(条),必然是由于少算了蜘蛛的腿数而造成的.所以,应有(118-108)÷(8-6)=5(只)蜘蛛.这样剩下的18-5=13(只)便是蜻蜓和蝉的只数.再从翅膀数入手,假设13只都是蝉,则总翅膀数1×13=13(对),比实际数少 20-13=7(对),这是由于蜻蜓有两对翅膀,而我们只按一对翅膀计算所差,这样蜻蜓只数可求7÷(2-1)=7(只).
①假设蜘蛛也是6条腿,三种动物共有多少条腿?
6×18=108(条)
②有蜘蛛多少只?
(118-108)÷(8-6)=5(只)
③蜻蜒、蝉共有多少只?
18-5=13(只)
④假设蜻蜒也是一对翅膀,共有多少对翅膀?1×13=13(对)
⑤蜻蜒多少只?
(20-13)÷ 2-1)= 7(只)
答:蜻蜒有7只.
7. 小学比例方面应用题解及答案
1. 有甲乙两堆粮食,甲堆粮食占总粮食的60%,如果从乙调运12吨粮食到甲堆,则甲乙两堆粮食的存粮吨数的比是3比1.原来甲乙两堆粮食各多少吨?
2.一块合金内铜和锌的比是2比3,现在再加入6克锌,共得合金36克,求新合金内铜和锌的比.(用比例的方法解答)
3.一对互相咬合的齿轮,主动轮每分钟120转,从动轮齿数是主动轮齿数的4分之三,从动轮每分钟转多少转?(用比例的方法解答)
4.六年级一班男同学与女同学之比是7:5,若再转进2名同学,则女同学人数是男同学的5分之1,这个班男、女同学各多少人?
5.有两个底面半径相等的圆柱,高的比是3:5.第一个圆柱的体积是48立方厘米,第二个圆柱的体积比第一个多多少立方厘米?
6.纺织厂的织布车间过去每人看16台织布机,每班需要42人,现在改进操作方法,每人看24台。每班可以节约几人?
7.某机器厂原计划每天生产机器48台,15天可以完成任务,现在要12天完成任务,每天应增产多少台?
8.修一条公路,甲队单独修要16天,乙队平均每天修2.7米,用同样的时间共同完成时,甲队与乙队修路千米树的比是5:3,这条公路长多少千米?
9.一种奶茶,奶与茶的比是2:3,现在加入奶120g,茶40g,可得奶茶660g,求新奶茶和奶与茶的比!
10.生产一批零件.原计划每天生产50个.12天可以完成.实际效率提高20%.实际多少天可以完成?
拿到应用题不要急于先做,要先读题,找出对应关系,判断是正比例还是反比例,就可以正确解答了。
8. 小学数学题(不要附答案)
小学数学总复习较难应用题(40题)
1.甲乙两人年龄的和为29岁,已知甲比乙小3岁,甲、乙两人各多少岁?
2.一个长方形的周长是240米,长是宽的1.4倍,求长方形的面积。
3.广水电影院原有座位32排,平均每排坐38人;扩建后增加到40排,可比原来多坐584人。扩建后平均每排可以坐多少人?
4.吉阳村有粮食作物84公顷,比经济作物的4倍多2公顷,经济作物有多少公顷?
5.粮店运来大米和面粉480包,大米的包数是面粉的3倍,运来大米和面粉各多少包?
6.爷爷今年71岁,比小华的6倍还多5岁,小华今年几岁? 7.甲乙两站距255千米,客车从甲站开出,货车从乙站开出,2.5时相遇。客车每时48千米,求货车速度8.一筐苹果,连筐重45.5千克,取出一半后,连筐还重24.5千克,筐重多少千克?
8.商店运来8筐苹果和10筐梨,一共重820千克。每筐苹果
重45千克,每筐梨重多少千克?
9.36米布,正好裁成10件大人衣服和8件儿童衣服。每件成人2人衣服用布2.4米,每件儿童衣服
10.李晖买了一支笔和一个本子,共花0.48元,本子的价钱是笔的2倍,笔和本子的单价各是多少钱?
11.小强妈妈的年龄是小强的4倍,小强比妈妈小27岁,他们两人的年龄各是多少?
12.甲袋大米的重是乙袋的3倍,若再往乙袋大米装5千克大米,两袋大米就一样重,原两袋大米各多少?
13.一辆双层巴士共有乘客51人,下层乘客人数是上层的2倍,上层有乘客多少人?
14.在一个笼子里,有鸡又有兔共8只,数一下它们的脚,共有20只。请问笼子里鸡、兔各有几只?
15.用一根长72cm的铁丝围成一个长方形,要使长是宽的2倍,围成的长方形的长和宽各是多少?
16.爷爷家种龙眼树的棵数是荔枝树的4倍,龙眼树比荔枝树多48棵。龙眼树有多少棵?
17.一幅长方形画的长是宽的2倍。小芳做画框用了1.8m木
条。这幅画的长、宽、面积分别是多少?
18. 一个长方形和一个正方形的面积相等,正方形的边长是6厘米,长方形的长是10厘米,宽是多少?
19.果园里种的桃树比杏树多90棵,桃树的棵数是杏树的3倍,桃树和杏树各多少棵?
20.有两筐苹果,甲筐的重量是甲筐的1.8倍,如果从甲筐拿出6千克放入乙筐,则两筐重量相等,甲、乙两筐苹果原来各重多少千克?
21.三个数的平均数是13.5,甲是乙的4倍,丙比甲多4.5,求三个数各是多少?
22、水结成冰时,体积增加十一分之一 ,当冰融成水后,体积要减少几分之几?
23、某商店同时卖出两件商品,每件各得30元,其中一件赚20%,另一件亏本20%,这个商店卖出这两件商品是赚钱还是亏本?
24人民机械厂加工一批零件,甲车间加工这批零件的20%,乙车间加工余下的25%,丙车间加工再余下的40%,还剩下3600个没加工,这批零件共有多少个?
25、四个孩子合买一只60元的小船。第一个孩子付的钱是其他孩子付的总钱数的一半,第二个孩子付的钱是其他孩子付的总钱数的三分之一,第三个孩子付的钱是其他孩子付的总钱数的四分之一,第四个孩子付多少钱?
26、有10千克蘑菇,它们的含水量是99%,稍经晾晒,含水量下降到98%,晾晒后的蘑菇多重?
27、有两只桶共装油44千克,若第一桶里倒出5% ,第二桶里倒进2.8千克,则两桶油重量相等,原来每只桶各装油多少千克
28、化肥厂用大、小两辆汽车运47吨化肥,大汽车运了8次,小汽车运了6次正好运完,大汽车每次运4吨,小汽车每次运多少吨?
29、甲车每小时行48千米,乙车每小时行56千米,两车从相距12千米的两地同时背向而行,几小时后两车相距272千米? 30、甲、乙两车同时从相距528千米的两地相向而行,6小时后相遇,甲车每小时比乙车快6千米,求甲、乙两车每小时各行多少千米?
31、购买的文艺书比科技书多156本,文艺书的本数比科技书
的3倍还多12本,文艺书和科技书各买了多少本? 32、一只两层书架,上层放的书是下层的3倍,如果把上层的书搬60本到下层,那么两层的书一样多,求上、下层原来各有书多少本.
33、熊猫电视机厂生产一批电视机,如果每天生产40台,要比原计划多生产6天,如果每天生产60台,可以比原计划提前4天完成,求原计划生产时间和这批电视机的总台数. 34、甲仓存粮32吨,乙仓存粮57吨,以后甲仓每天存人4吨,乙仓每天存人9吨.几天后,乙仓存粮是甲仓的2倍? 35、甲、乙两堆煤共100吨,如从甲堆运出10吨给乙堆,这时甲堆煤的质量正好是乙堆煤质量的1.5倍,求甲、乙两堆煤原来各有多少吨?
36、甲仓存粮32吨,乙仓存粮57吨,以后甲仓每天存人4吨,乙仓每天存人9吨,几天后乙仓存粮是甲仓的2倍? 37、一批香蕉,卖掉140千克后,原来香蕉的质量正好是剩下香蕉的5倍,这批香蕉共有多少千克?
38、师徒俩加工同一种零件,徒弟每小时加工12个,工作了3小时后,师傅开始工作,6小时后,两人加工的零件同样多,师傅每小时加工多少个零件.
39、甲、乙、丙三条铁路共长1191千米,甲铁路长比乙铁路的2倍少189千米,乙铁路长比丙铁路少8千米,求甲铁路的长.
40、电视机厂装配一批电视机,计划25天完成,如每天多装35台,24天能超额完成60台.求原计划每天装配多少台.
望采纳O(∩_∩)O