导航:首页 > 考试分析 > 小学的奥数题及答案

小学的奥数题及答案

发布时间:2020-11-28 17:26:56

1. 小学五年级奥数题,及答案

1、某班有40名学生,其中有15人参加数学小组,18人参加航模小组,有10人两个小组都参加。那么有多少人两个小组都不参加?

2、某班45个学生参加期末考试,成绩公布后,数学得满分的有10人,数学及语文成绩均得满分的有3人,这两科都没有得满分的有29人。那么语文成绩得满分的有多少人?

3、50名同学面向老师站成一行。老师先让大家从左至右按1,2,3,……,49,50依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转。问:现在面向老师的同学还有多少名?

4、在游艺会上,有100名同学抽到了标签分别为1至100的奖券。按奖券标签号发放奖品的规则如下:(1)标签号为2的倍数,奖2支铅笔;(2)标签号为3的倍数,奖3支铅笔;(3)标签号既是2的倍数,又是3的倍数可重复领奖;(4)其他标签号均奖1支铅笔。那么游艺会为该项活动准备的奖品铅笔共有多少支?

5、有一根长为180厘米的绳子,从一端开始每隔3厘米作一记号,每隔4厘米也作一记号,然后将标有记号的地方剪断。问绳子共被剪成了多少段?
五年级试题三答案

1,因为10人2组都参加,所以只参加数学的5人,只参加航模的8人,加上那10人就是23人,40-23=17,2个小组都不参加的17人

2,同理,数学满分10人,2科都满分的3人,于是只是数学满分的7人,45-7-29=9,这个就是语文满分的人(如果说只是语文满分的则需要减去3)

3,50÷4取整12,50÷6取整8,但是要注意,报4倍数的同时可能是6的倍数,所以还要算出4和6的公倍数,有50÷12(4和6的最小公倍数)=4(取整),所以,应该是50-12-8+4=34

4,100÷2=50,100÷3=33(取整),还是算出2和3的公倍数100÷6=16(取整),然后找出即没不被2整除,也不被3整除的数的个数100-50-33+16=28,所以,准备铅笔为50X2+33X3+28=227

5,180÷3=60,180÷4=45,但是可能2个划线划在一起,也就是要算出他们的公倍数,180÷3÷4=15,所以应该为60+45-15=90

2. 小学五六年级奥数题30道带答案!!

过桥问题(1)
1. 一列火车经过南京长江大桥,大桥长6700米,这列火车长140米,火车每分钟行400米,这列火车通过长江大桥需要多少分钟?
分析:这道题求的是通过时间.根据数量关系式,我们知道要想求通过时间,就要知道路程和速度.路程是用桥长加上车长.火车的速度是已知条件.
总路程: (米)
通过时间: (分钟)
答:这列火车通过长江大桥需要17.1分钟.
2. 一列火车长200米,全车通过长700米的桥需要30秒钟,这列火车每秒行多少米?
分析与这是一道求车速的过桥问题.我们知道,要想求车速,我们就要知道路程和通过时间这两个条件.可以用已知条件桥长和车长求出路程,通过时间也是已知条件,所以车速可以很方便求出.
总路程: (米)
火车速度: (米)
答:这列火车每秒行30米.
3. 一列火车长240米,这列火车每秒行15米,从车头进山洞到全车出山洞共用20秒,山洞长多少米?
分析与火车过山洞和火车过桥的思路是一样的.火车头进山洞就相当于火车头上桥;全车出洞就相当于车尾下桥.这道题求山洞的长度也就相当于求桥长,我们就必须知道总路程和车长,车长是已知条件,那么我们就要利用题中所给的车速和通过时间求出总路程.
总路程:
山洞长: (米)
答:这个山洞长60米.
和倍问题
1. 秦奋和妈妈的年龄加在一起是40岁,妈妈的年龄是秦奋年龄的4倍,问秦奋和妈妈各是多少岁?
我们把秦奋的年龄作为1倍,“妈妈的年龄是秦奋的4倍”,这样秦奋和妈妈年龄的和就相当于秦奋年龄的5倍是40岁,也就是(4+1)倍,也可以理解为5份是40岁,那么求1倍是多少,接着再求4倍是多少?
(1)秦奋和妈妈年龄倍数和是:4+1=5(倍)
(2)秦奋的年龄:40÷5=8岁
(3)妈妈的年龄:8×4=32岁
综合:40÷(4+1)=8岁 8×4=32岁
为了保证此题的正确,验证
(1)8+32=40岁 (2)32÷8=4(倍)
计算结果符合条件,所以解题正确.
2. 甲乙两架飞机同时从机场向相反方向飞行,3小时共飞行3600千米,甲的速度是乙的2倍,求它们的速度各是多少?
已知两架飞机3小时共飞行3600千米,就可以求出两架飞机每小时飞行的航程,也就是两架飞机的速度和.看图可知,这个速度和相当于乙飞机速度的3倍,这样就可以求出乙飞机的速度,再根据乙飞机的速度求出甲飞机的速度.
甲乙飞机的速度分别每小时行800千米、400千米.
3. 弟弟有课外书20本,哥哥有课外书25本,哥哥给弟弟多少本后,弟弟的课外书是哥哥的2倍?
思考:(1)哥哥在给弟弟课外书前后,题目中不变的数量是什么?
(2)要想求哥哥给弟弟多少本课外书,需要知道什么条件?
(3)如果把哥哥剩下的课外书看作1倍,那么这时(哥哥给弟弟课外书后)弟弟的课外书可看作是哥哥剩下的课外书的几倍?
思考以上几个问题的基础上,再求哥哥应该给弟弟多少本课外书.根据条件需要先求出哥哥剩下多少本课外书.如果我们把哥哥剩下的课外书看作1倍,那么这时弟弟的课外书可看作是哥哥剩下的课外书的2倍,也就是兄弟俩共有的倍数相当于哥哥剩下的课外书的3倍,而兄弟俩人课外书的总数始终是不变的数量.
(1)兄弟俩共有课外书的数量是20+25=45.
(2)哥哥给弟弟若干本课外书后,兄弟俩共有的倍数是2+1=3.
(3)哥哥剩下的课外书的本数是45÷3=15.
(4)哥哥给弟弟课外书的本数是25-15=10.
试着列出综合算式:
4. 甲乙两个粮库原来共存粮170吨,后来从甲库运出30吨,给乙库运进10吨,这时甲库存粮是乙库存粮的2倍,两个粮库原来各存粮多少吨?
根据甲乙两个粮库原来共存粮170吨,后来从甲库运出30吨,给乙库运进10吨,可求出这时甲、乙两库共存粮多少吨.根据“这时甲库存粮是乙库存粮的2倍”,如果这时把乙库存粮作为1倍,那么甲、乙库所存粮就相当于乙存粮的3倍.于是求出这时乙库存粮多少吨,进而可求出乙库原来存粮多少吨.最后就可求出甲库原来存粮多少吨.
甲库原存粮130吨,乙库原存粮40吨.
列方程组解应用题(一)
1. 用白铁皮做罐头盒,每张铁皮可制盒身16个,或制盒底43个,一个盒身和两个盒底配成一个罐头盒,现有150张铁皮,用多少张制盒身,多少张制盒底,才能使盒身与盒底正好配套?
依据题意可知这个题有两个未知量,一个是制盒身的铁皮张数,一个是制盒底的铁皮张数,这样就可以用两个未知数表示,要求出这两个未知数,就要从题目中找出两个等量关系,列出两个方程,组在一起,就是方程组.
两个等量关系是:A做盒身张数+做盒底的张数=铁皮总张数
B制出的盒身数×2=制出的盒底数
用86张白铁皮做盒身,64张白铁皮做盒底.
奇数与偶数(一)
其实,在日常生活中同学们就已经接触了很多的奇数、偶数.
凡是能被2整除的数叫偶数,大于零的偶数又叫双数;凡是不能被2整除的数叫奇数,大于零的奇数又叫单数.
因为偶数是2的倍数,所以通常用 这个式子来表示偶数(这里 是整数).因为任何奇数除以2其余数都是1,所以通常用式子 来表示奇数(这里 是整数).
奇数和偶数有许多性质,常用的有:
性质1 两个偶数的和或者差仍然是偶数.
例如:8+4=12,8-4=4等.
两个奇数的和或差也是偶数.
例如:9+3=12,9-3=6等.
奇数与偶数的和或差是奇数.
例如:9+4=13,9-4=5等.
单数个奇数的和是奇,双数个奇数的和是偶数,几个偶数的和仍是偶数.
性质2 奇数与奇数的积是奇数.

偶数与整数的积是偶数.

性质3 任何一个奇数一定不等于任何一个偶数.
1. 有5张扑克牌,画面向上.小明每次翻转其中的4张,那么,他能在翻动若干次后,使5张牌的画面都向下吗?
同学们可以试验一下,只有将一张牌翻动奇数次,才能使它的画面由向上变为向下.要想使5张牌的画面都向下,那么每张牌都要翻动奇数次.
5个奇数的和是奇数,所以翻动的总张数为奇数时才能使5张牌的牌面都向下.而小明每次翻动4张,不管翻多少次,翻动的总张数都是偶数.
所以无论他翻动多少次,都不能使5张牌画面都向下.
2. 甲盒中放有180个白色围棋子和181个黑色围棋子,乙盒中放有181个白色围棋子,李平每次任意从甲盒中摸出两个棋子,如果两个棋子同色,他就从乙盒中拿出一个白子放入甲盒;如果两个棋子不同色,他就把黑子放回甲盒.那么他拿多少后,甲盒中只剩下一个棋子,这个棋子是什么颜色的?
不论李平从甲盒中拿出两个什么样的棋子,他总会把一个棋子放入甲盒.所以他每拿一次,甲盒子中的棋子数就减少一个,所以他拿180+181-1=360次后,甲盒里只剩下一个棋子.
如果他拿出的是两个黑子,那么甲盒中的黑子数就减少两个.否则甲盒子中的黑子数不变.也就是说,李平每次从甲盒子拿出的黑子数都是偶数.由于181是奇数,奇数减偶数等于奇数.所以,甲盒中剩下的黑子数应是奇数,而不大于1的奇数只有1,所以甲盒里剩下的一个棋子应该是黑子.
奥赛专题 -- 称球问题
例1 有4堆外表上一样的球,每堆4个.已知其中三堆是正品、一堆是次品,正品球每个重10克,次品球每个重11克,请你用天平只称一次,把是次品的那堆找出来.
解 :依次从第一、二、三、四堆球中,各取1、2、3、4个球,这10个球一起放到天平上去称,总重量比100克多几克,第几堆就是次品球.
2 有27个外表上一样的球,其中只有一个是次品,重量比正品轻,请你用天平只称三次(不用砝码),把次品球找出来.
解 :第一次:把27个球分为三堆,每堆9个,取其中两堆分别放在天平的两个盘上.若天平不平衡,可找到较轻的一堆;若天平平衡,则剩下来称的一堆必定较轻,次品必在较轻的一堆中.
第二次:把第一次判定为较轻的一堆又分成三堆,每堆3个球,按上法称其中两堆,又可找出次品在其中较轻的那一堆.
第三次:从第二次找出的较轻的一堆3个球中取出2个称一次,若天平不平衡,则较轻的就是次品,若天平平衡,则剩下一个未称的就是次品.
例3 把10个外表上一样的球,其中只有一个是次品,请你用天平只称三次,把次品找出来.
把10个球分成3个、3个、3个、1个四组,将四组球及其重量分别用A、B、C、D表示.把A、B两组分别放在天平的两个盘上去称,则
(1)若A=B,则A、B中都是正品,再称B、C.如B=C,显然D中的那个球是次品;如B>C,则次品在C中且次品比正品轻,再在C中取出2个球来称,便可得出结论.如B<C,仿照B>C的情况也可得出结论.
(2)若A>B,则C、D中都是正品,再称B、C,则有B=C,或B<C(B>C不可能,为什么?)如B=C,则次品在A中且次品比正品重,再在A中取出2个球来称,便可得出结论;如B<C,仿前也可得出结论.
(3)若A<B,类似于A>B的情况,可分析得出结论.
奥赛专题 -- 抽屉原理
【例1】一个小组共有13名同学,其中至少有2名同学同一个月过生日.为什么?
【分析】每年里共有12个月,任何一个人的生日,一定在其中的某一个月.如果把这12个月看成12个“抽屉”,把13名同学的生日看成13只“苹果”,把13只苹果放进12个抽屉里,一定有一个抽屉里至少放2个苹果,也就是说,至少有2名同学在同一个月过生日.
【例 2】任意4个自然数,其中至少有两个数的差是3的倍数.这是为什么?
【分析与解】首先我们要弄清这样一条规律:如果两个自然数除以3的余数相同,那么这两个自然数的差是3的倍数.而任何一个自然数被3除的余数,或者是0,或者是1,或者是2,根据这三种情况,可以把自然数分成3类,这3种类型就是我们要制造的3个“抽屉”.我们把4个数看作“苹果”,根据抽屉原理,必定有一个抽屉里至少有2个数.换句话说,4个自然数分成3类,至少有两个是同一类.既然是同一类,那么这两个数被3除的余数就一定相同.所以,任意4个自然数,至少有2个自然数的差是3的倍数.
【例3】有规格尺寸相同的5种颜色的袜子各15只混装在箱内,试问不论如何取,从箱中至少取出多少只就能保证有3双袜子(袜子无左、右之分)?
【分析与解】试想一下,从箱中取出6只、9只袜子,能配成3双袜子吗?回答是否定的.
按5种颜色制作5个抽屉,根据抽屉原理1,只要取出6只袜子就总有一只抽屉里装2只,这2只就可配成一双.拿走这一双,尚剩4只,如果再补进2只又成6只,再根据抽屉原理1,又可配成一双拿走.如果再补进2只,又可取得第3双.所以,至少要取6+2+2=10只袜子,就一定会配成3双.
思考:1.能用抽屉原理2,直接得到结果吗?
2.把题中的要求改为3双不同色袜子,至少应取出多少只?
3.把题中的要求改为3双同色袜子,又如何?
【例4】一个布袋中有35个同样大小的木球,其中白、黄、红三种颜色球各有10个,另外还有3个蓝色球、2个绿色球,试问一次至少取出多少个球,才能保证取出的球中至少有4个是同一颜色的球?
【分析与解】从最“不利”的取出情况入手.
最不利的情况是首先取出的5个球中,有3个是蓝色球、2个绿色球.
接下来,把白、黄、红三色看作三个抽屉,由于这三种颜色球相等均超过4个,所以,根据抽屉原理2,只要取出的球数多于(4-1)×3=9个,即至少应取出10个球,就可以保证取出的球至少有4个是同一抽屉(同一颜色)里的球.
故总共至少应取出10+5=15个球,才能符合要求.
思考:把题中要求改为4个不同色,或者是两两同色,情形又如何?
当我们遇到“判别具有某种事物的性质有没有,至少有几个”这样的问题时,想到它——抽屉原理,这是你的一条“决胜”之路.
奥赛专题 -- 还原问题
【例1】某人去银行取款,第一次取了存款的一半多50元,第二次取了余下的一半多100元.这时他的存折上还剩1250元.他原有存款多少元?
【分析】从上面那个“重新包装”的事例中,我们应受到启发:要想还原,就得反过来做(倒推).由“第二次取余下的一半多100元”可知,“余下的一半少100元”是1250元,从而“余下的一半”是 1250+100=1350(元)
余下的钱(余下一半钱的2倍)是: 1350×2=2700(元)
用同样道理可算出“存款的一半”和“原有存款”.综合算式是:
[(1250+100)×2+50]×2=5500(元)
还原问题的一般特点是:已知对某个数按照一定的顺序施行四则运算的结果,或把一定数量的物品增加或减少的结果,要求最初(运算前或增减变化前)的数量.解还原问题,通常应当按照与运算或增减变化相反的顺序,进行相应的逆运算.
【例2】有26块砖,兄弟2人争着去挑,弟弟抢在前面,刚摆好砖,哥哥赶来了.哥哥看弟弟挑得太多,就拿来一半给自己.弟弟觉得自己能行,又
从哥哥那里拿来一半.哥哥不让,弟弟只好给哥哥5块,这样哥哥比弟弟多挑2块.问最初弟弟准备挑多少块?
【分析】我们得先算出最后哥哥、弟弟各挑多少块.只要解一个“和差问题”就知道:哥哥挑“(26+2)÷2=14”块,弟弟挑“26-14=12”块.
提示:解还原问题所作的相应的“逆运算”是指:加法用减法还原,减法用加法还原,乘法用除法还原,除法用乘法还原,并且原来是加(减)几,还原时应为减(加)几,原来是乘(除)以几,还原时应为除(乘)以几.
对于一些比较复杂的还原问题,要学会列表,借助表格倒推,既能理清数量关系,又便于验算.
奥赛专题 -- 鸡兔同笼问题
例1 鸡兔同笼,头共46,足共128,鸡兔各几只?
[分析] :如果 46只都是兔,一共应有 4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚.如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚.那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了.所以,鸡的只数就是28,兔的只数是46-28=18.
①鸡有多少只?
(4×6-128)÷(4-2)
=(184-128)÷2
=56÷2
=28(只)
②免有多少只?
46-28=18(只)
答:鸡有28只,免有18只.
例2 鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?
[分析]: 这个例题与前面例题是有区别的,没有给出它们脚数的总和,而是给出了它们脚数的差.这又如何解答呢?
假设100只全是鸡,那么脚的总数是2×100=200(只)这时兔的脚数为0,鸡脚比兔脚多200只,而实际上鸡脚比兔脚多80只.因此,鸡脚与兔脚的差数比已知多了(200-80)=120(只),这是因为把其中的兔换成了鸡.每把一只兔换成鸡,鸡的脚数将增加2只,兔的脚数减少4只.那么,鸡脚与兔脚的差数增加(2+4)=6(只),所以换成鸡的兔子有120÷6=20(只).有鸡(100-20)=80(只).
(2×100-80)÷(2+4)=20(只).
100-20=80(只).
答:鸡与兔分别有80只和20只.
例3 红英小学三年级有3个班共135人,二班比一班多5人,三班比二班少7人,三个班各有多少人?
[分析1] 我们设想,如果条件中三个班人数同样多,那么,要求每班有多少人就很容易了.由此得到启示,是否可以通过假设三个班人数同样多来分析求解.
结合下图可以想,假设二班、三班人数和一班人数相同,以一班为标准,则二班人数要比实际人数少5人.三班人数要比实际人数多7-5=2(人).那么,请你算一算,假设二班、三班人数和一班人数同样多,三个班总人数应该是多少?
解法1:
一班:[135-5+(7-5)]÷3=132÷3
=44(人)
二班:44+5=49(人)
三班:49-7=42(人)
答:三年级一班、 二班、三班分别有44人、 49人和 42人.
[分析2] 假设一、三班人数和二班人数同样多,那么,一班人数比实际要多5人,而三班要比实际人数多7人.这时的总人数又该是多少?
解法2:(135+ 5+ 7)÷3 = 147÷3 = 49(人)
49-5=44(人),49-7=42(人)
答:三年级一班、二班、三班分别有44人、49人和42人.
例4 刘老师带了41名同学去北海公园划船,共租了10条船.每条大船坐6人,每条小船坐4人,问大船、小船各租几条?
[分析] 我们分步来考虑:
①假设租的 10条船都是大船,那么船上应该坐 6×10= 60(人).
②假设后的总人数比实际人数多了 60-(41+1)=18(人),多的原因是把小船坐的4人都假设成坐6人.
③一条小船当成大船多出2人,多出的18人是把18÷2=9(条)小船当成大船.
[6×10-(41+1)÷(6-4)
= 18÷2=9(条) 10-9=1(条)
答:有9条小船,1条大船.
例5 有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀),求蜻蜓有多少只?
[分析] 这是在鸡兔同笼基础上发展变化的问题.观察数字特点,蜻蜓、蝉都是6条腿,只有蜘蛛8条腿.因此,可先从腿数入手,求出蜘蛛的只数.我们假设三种动物都是6条腿,则总腿数为 6×18=108(条),所差 118-108=10(条),必然是由于少算了蜘蛛的腿数而造成的.所以,应有(118-108)÷(8-6)=5(只)蜘蛛.这样剩下的18-5=13(只)便是蜻蜓和蝉的只数.再从翅膀数入手,假设13只都是蝉,则总翅膀数1×13=13(对),比实际数少 20-13=7(对),这是由于蜻蜓有两对翅膀,而我们只按一对翅膀计算所差,这样蜻蜓只数可求7÷(2-1)=7(只).
①假设蜘蛛也是6条腿,三种动物共有多少条腿?
6×18=108(条)
②有蜘蛛多少只?
(118-108)÷(8-6)=5(只)
③蜻蜒、蝉共有多少只?
18-5=13(只)
④假设蜻蜒也是一对翅膀,共有多少对翅膀?1×13=13(对)
⑤蜻蜒多少只?
(20-13)÷ 2-1)= 7(只)
答:蜻蜒有7只.

3. 小学四年级奥数题及答案50题

小学四年级奥数题及答案和题目分析
一、按规律填数。
1)64,48,40,36,34,( ) 2)8,15,10,13,12,11,( )
3)1、4、5、8、9、( )、13、( )、( ) 4)2、4、5、10、11、( )、( ) 5)5,9,13,17,21,( ),( ) 二、等差数列
1.在等差数列3,12,21,30,39,48,…中912是第几个数?
2.求1至100内所有不能被5或9整除的整数和

3.把210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5,那么,第1个数与第6个数分别是多少?

4.把从1开始的所有奇数进行分组,其中每组的第一个数都等于此组中所有数的个数,如(1),(3、5、7),(9、11、13、15、17、19、21、23、25),(27、29、……79),(81、……),求第5组中所有数的和
三、 平均数问题
1.已知9个数的平均数是72,去掉一个数后,余下的数平均数为78,去掉的数是______ . 2.某班有40名学生,期中数学考试,有两名同学因故缺考,这时班级平均分为89分,缺考的同学补考各得99分,这个班级中考平均分是_______ .
3.今年前5个月,小明每月平均存钱4.2元,从6月起他每月储蓄6元,那么从哪个月起小明的平均储蓄超过5元?
4.A、B、C、D四个数,每次去掉一个数,将其余下的三个数求平均数,这样计算了4次,得到下面4个数. 23, 26, 30, 33
A、B、C、D 4个数的平均数是多少?
5 A、B、C、D4个数,每次去掉一个数,将其余3个数求平均数,这样计算了4次得到下面4个数23、26、30、33,A、B、C、D4个数的和是 。
四、加减乘除的简便运算
1)100-98+96-94+92-90+……+8-6+4-2=( ) 2)1976+1977+……2000-1975-1976-……-1999=( ) 3)26×99 =( )
4)67×12+67×35+67×52+67=( )
5)(14+28+39)×(28+39+15)-(14+28+39+15)×(28+39)
五、数阵图
1、△、□、〇分别代表三个不同的数,并且;
△+△+△=〇+〇;〇+〇+〇+〇=□+□+□; △+〇+〇+□=60 求:△= 〇= □=
2.将九个连续自然数填入3行3列的九个空格中,使每一横行及每一竖列的三个数之和都等于60.
3.将从1开始的九个连续奇数填入3行3列的九个空格中,使每一横行、每一竖列及两条对角线上的三个数之和都相等.

4 用1至9这9个数编制一个三阶幻方,写出所有可能的结果。所谓幻方是指在正方形的方格表的每个方格内填入不同的数,使得每行、每列和两条对角线上的各数之和相等;而阶数是指每行、每列所包含的方格的数。
六、和差倍问题
1.果园里一共种340棵桃树和杏树,其中桃树的棵数比杏树的3倍多20棵,两种树各种了多少棵?
2.一个长方形,周长是30厘米,长是宽的2倍,求这个长方形的面积。

3.甲、乙两个数,如果甲数加上320就等于乙数了.如果乙数加上460就等于甲数的3倍,两个数各是多少?

4.有两块同样长的布,第一块卖出25米,第二块卖出14米,剩下的布第二块是第一块的2倍,求每块布原有多少米?
5.果园里有桃树和梨树共150棵,桃树比梨树多20棵,两种果树各有多少棵?
6.甲、乙两桶油共重30千克,如果把甲桶中6千克油倒入乙桶,那么两桶油重量相等,问甲、乙两桶原有多少油?
七、年龄问题
1.兄弟俩今年的年龄和是30岁,当哥哥像弟弟现在这样大时,弟弟的年龄恰好是哥哥年龄的一半,哥哥今年几岁?
2.母女的年龄和是64岁,女儿年龄的3倍比母亲大8岁,求母女二人的年龄各是多少岁?
3.哥哥今年比小丽大12岁,8年前哥哥的年龄是小丽的4倍,今年二人各几岁?
4.爷爷今年72岁,孙子今年12岁,几年后爷爷的年龄是孙子的5倍?几年前爷爷的年龄是孙子的13倍?
八、假设问题
1、有42个同学参加植树,男生平均每人种3棵,女生平均每人种2棵,男生比女生多种56棵.男、女生各多少人?
2.某小学举行一次数学竞赛,共15道题,每做对一题得8分,每做错一题倒扣4分,小明共得了72分,他做对了多少道题?
3.一张试卷有25道题,答对一题得4分,答错或不答均倒扣1分,某同学共得60分,他答对了多少道题?
4.小华解答数学判断题,答对一题给4分,答错一题要倒扣4分,她答了20个判断题,结果只得了56分,她答错了多少道题?
5. 育才小学五年级举行数学竞赛,共10道题,每做对一道题得8分,错一题倒扣
5分,张小灵最终得分为41分,她做对了多少道题?
自己做吧,有了答案就不会好好做,对不起

4. 小学三年级奥数题及答案

1.一条路长100米,从头到尾每隔10米栽1棵梧桐树,共栽多少棵树?
路分成100÷10=10段,共栽树10+1=11棵。

12棵柳树排成一排,在每两棵柳树中间种3棵桃树,共种多少棵桃树?
3×(12-1)=33棵。

一根200厘米长的木条,要锯成10厘米长的小段,需要锯几次?
200÷10=20段,20-1=19次。

4.蚂蚁爬树枝,每上一节需要10秒钟,从第一节爬到第13节需要多少分钟?
从第一节到第13节需10×(13-1)=120秒,120÷60=2分。

5.在花圃的周围方式菊花,每隔1米放1盆花。花圃周围共20米长。需放多少盆菊花?
20÷1×1=20盆

6.从发电厂到闹市区一共有250根电线杆,每相邻两根电线杆之间是30米。从发电厂到闹市区有多远?
30×(250-1)=7470米。

7.王老师把月收入的一半又20元留做生活费,又把剩余钱的一半又50元储蓄起来,这时还剩40元给孩子交学费书本费。他这个月收入多少元?
[(40+50) ×2+20] ×2=400(元)答:他这个月收入400元。

8.一个人沿着大提走了全长的一半后,又走了剩下的一半,还剩下1千米,问:大提全长多少千米?
1×2×2=4千米

9.甲在加工一批零件,第一天加工了这堆零件的一半又10个,第二天又加工了剩下的一半又10个,还剩下25个没有加工。问:这批零件有多少个?
(25+10)×2=70个,(70+10)×2=160个。综合算式:【(25+10)×2+10】×2=160个

10.一条毛毛虫由幼虫长到成虫,每天长一倍,16天能长到16厘米。问它几天可以长到4厘米?
16÷2÷2=4(厘米),16-1-1=14(天)

11.一桶水,第一次倒出一半,然后倒回桶里30千克,第二次倒出桶中剩下水的一半,第三次倒出180千克,桶中还剩下80千克。桶里原来有水多少千克?
180+80=260(千克),260×2-30=490(千克),490×2=980(千克)。

12.甲、乙两书架共有图书200本,甲书架的图书数比乙书架的3倍少16本。甲、乙两书架上各有图书多少本?
答案:乙:(200+16)÷(3+1)=54(本);甲:54×3-16=146(本)。

13.小燕买一套衣服用去185元,问上衣和裤子各多少元?
裤子:(185-5)÷(2+1)=60(元);
上衣:60×2+5=125(元)。

14.甲、乙、丙三人年龄之和是94岁,且甲的2倍比丙多5岁,乙2倍比丙多19岁,问:甲、乙、丙三人各多大?
如果每个人的年龄都扩大到2倍,那么三人年龄的和是94×2=188。如果甲再减少5岁,乙再减少19岁,那么三人的年龄的和是188-5-19=164(岁),这时甲的年龄是丙的一半,即丙的年龄是甲的两倍。同样,这时丙的年龄也是乙两倍。所以这时甲、乙的年龄都是164÷(1+1+2)=41(岁),即原来丙的年龄是41岁。甲原来的年龄是(41+5)÷2=23(岁),乙原来的年龄是(41+19)÷2=30(岁)。

15.小明、小华捉完鱼。小明说:“如果你把你捉的鱼给我1条,我的鱼就是你的2倍。如果我给你1条,咱们就一样多了。“请算出两个各捉了多少条鱼。
小明比小华多1×2=2(条)。如果小华给小明1条鱼,那么小明比小华多2+1×2=4(条),这时小华有鱼4÷(2-1)=4(条)。原来小华有鱼4+1=5(条),原来小明有鱼5+2=7(条)。

16.小芳去文具店买了13本语文书,8本算术书,共用去10元。已知6本语文本的价钱与4本算术本的价钱相等。问:1本语文本、1本算术本各多少钱?
8÷4×6=12,即8本算术本与12本语文体价钱相等。所以1本语文本值10×100÷(13+12)=40(分),1本算术本值40×6÷4=60(分),即1本语文本4角,1本算术本6角。

17.找规律,在括号内填入适当的数. 75,3,74,3,73,3,(),()。
答案:72,3。

18找规律,在括号内填入适当的数. 1,4,5,4,9,4,(),()。
奇数项构成数列1,5,9……,每一项比前一项多4;偶数项都是4,所以应填13,4

19.找规律,在括号内填入适当的数. 3,2,6,2,12,2,(),()。
24,2。

20.找规律,在括号内填入适当的数. 76,2,75,3,74,4,(),()。
答案:将原数列拆分成两列,应填:73,5。

21.找规律,在括号内填入适当的数. 2,3,4,5,8,7,(),()。
答案:将原数列拆分成两列,应填:16,9。

22.找规律,在括号内填入适当的数. 3,6,8,16,18,(),()。
答案:6=3×2,16=8×2,即偶数项是它前面的奇数项的2倍;又8=6+2,18=16+2,即从第三项起,奇数项比它前面的偶数项多2.所以应填:36,38。

23.找规律,在括号内填入适当的数. 1,6,7,12,13,18,19,(),()。
答案:将原数列拆分成两列,应填:24,25。

24.找规律,在括号内填入适当的数. 1,4,3,8,5,12,7,()。
答案:奇数项构成数列1,3,5,7,…,每一项比前一项多2;偶数项构成数列4,8,12,…,每一项比前一项多4,所以应填:16。

25.找规律,在括号内填入适当的数. 0,1,3,8,21,55,(),()。
答案:144,377。

26.A、B、C、D四人在一场比赛中得了前4名。已知D的名次不是最高,但它比B、C都高,而C的名次也不比B高。问:他们各是第几名?
答案:D名次不是最高,但比B、C高,所以它是第2名,A是第1名。C的名次不比B高,所以B是第3名,C是第4名。

27.一头象的重量等于4头牛的重量,一头牛的重量等于3匹小马的重量,一匹小马的重量等于3头小猪的重量。问:一头象的重量等于几头小猪的重量?
答案:4×3×3=36,所以一头象的重量等于36头小猪的重量。

28.甲、乙、丙三人,一个人喜欢看足球,一个人喜欢看拳击,一个人喜欢看篮球。已知甲不爱看篮球,丙既不喜欢看篮球又不喜欢看足球。现有足球、拳击、篮球比赛的入场券各一张。请根据他们的爱好,把票分给他们。
答案:丙不喜欢看篮球与足球,应将拳击入场券给丙。甲不喜欢看篮球,应将足球入场券给甲。最后,应将篮球入场券给乙。

29.有一堆铁块和铜块,每块铁块重量完全一样,每块铜块的重量也完全一样。3块铁快和5块铜块共重210克。4块铁块和10块铜块共重380克。问:每一块铁块、每一块铜块各重多少?
答案:4块铁块和10块铜块共重380克,所以2块铁块和5块铜块共重380÷2=190(克)。而3块铁块和5块铜块共重210克,所以1块铁块重210-190=20(克)。1铜块重(190-20×2)÷5=30(克)。

30.甲、乙、丙三人中有一人做了一件好事。他们各自都说了一句话,而其中只有一句是真的。甲说:“是乙做的。” 乙说:“不是我做的。” 丙说:“也不是我做的。” 问:到底是谁做的好事?
答案:如果是甲做的好事,那么乙、丙的话都是真的,与只有一句是真的矛盾。如果是乙做的好事,那么甲、丙的话都是真的,也产生矛盾。好事是丙做的,这时甲、丙的话都是错的,只有乙的话是真的,所以好事是丙做的。

31.一张长8分米、宽3分米的长方形纸板,在四个角落上各截去一个边长为2分米的正方形,所剩下的部分的周长是多少?
答:(8+3)×2=22(分米)

32.计算 :18+19+20+21+22+23
原式=(18+23)×6÷2=123

33.计算 :100+102+104+106+108+110+112+114
原式=(100+114) ×8÷2=856

34.995+996+997+998+999
原式=(995+999) ×5÷2=4985

35.:(1999+1997+1995+…+13+11)-(12+14+16+…+1996+1998)
第一个括号内的项数为(1999-11)÷2+1=995,所以原式=(1999-1998)+(1997-1996)+…+(13-12)+11=1×994+11=1005
满意请采纳。

5. 小学奥数题及答案

第一题:要使乘法算式84300365(20000)积的最后5个数字都是0,括号里最小应填什么数?
第二题:甲乙两个数都大于100而小于150,他们俩个数的积等于65与231的积,求这两个数
答:这两个数是105与143
第三题:李老师带领同学们去植树,学生恰好分成了3组,如果老师比每个学生多植一棵,则师生共植507棵?共有多少名学生参加植树?
第四题:一个长方体的体积是3360立方厘米,他的长宽高是三个连续的自然数,这个长方体的棱长综合是多少
答:14、15、16
第五题:将40,44,45,63,65,78,99,105这八个数平均分成两组,使每组四个数的乘积相等?
答:63、65、99、40,另一组105、78、44、45
第六题:有四个人,他们的年龄一个比一个大一岁,他们的年龄乘积等于43680,求这四个人的年龄各多少
答:13、14、15、16
第七题:有两个整数,它们的和恰好是两个数字相同的自然数,他们的乘积恰好是三个数字相同的三位数,求这两个整数。
答: 18 和37
第八题:一个长方体,前面和上面的面积之和是209平方厘米,这个长方体的长,宽,高都是质数,求这个长方体的体积
答:长宽高分别为17、11、2,体积=17×11×2=374立方厘米。
第十题:爷爷,父亲,孙子,三人的年龄乘积是2412,求三人的年龄各是多大?
答:67、36、1

6. 小学六年级奥数题及答案(30道)。

给你一个网址http://www.aoshu.com/z2011/lnjaszsd/

7. 20道小学四年级奥数题及答案

1.有一串数19962808864……,这串数的排列规律是:从第7个数起,每个数都是它前面两个数之和的个位数。那么这串数中第1999个数字是(),这1999个数字的和是()。
2.有一种细胞,每分钟分裂一次,每次能把一个细胞分裂成9个。经过1999分钟,把这些细胞平均装在7个试管里,还剩下()个细胞。
3.用记号(a)表示a的整数部分,如(10,62)=10,(15÷4)=3,那么(120÷7)×(9.47-1.83)=()
4.□□□□□+□□□□□=199998,则这10个□中的数字之和是()。
5.印刷厂要印刷数学口算册27万本,白班每天印刷2855本,夜班比白班每天多印刷290本。完成任务时,白班比夜班少印刷()本。
6.一条长2000米的公路两旁每隔10米种一棵杨树,每二棵杨树之间等距离种3棵枫树。这条公路两旁一共种枫树()棵。
7.

8.小明骑在牛背上要赶着四头水牛过河,这四头牛过河分别需要2分、3分、6分、8分钟,并且每次只能赶着两头牛过河。那么小明至少需要()分钟才能把牛全部赶过河去。
9.海关大楼共有十二层,李苹的爸爸在十楼办公,有一天,李苹去找爸爸,她用40秒从一楼走到五楼,照此速度,她至少还要再走()秒才能到达她爸爸办公室。
10.今年小玲12岁,妈妈40岁。当妈妈的年龄是女儿5倍的时候,母女两人年龄的和是()岁。
11.小巍带着一条猎犬骑车离家到26千米远的招宝山郊游,他骑车速度是每小时18千米,猎犬奔跑速度是骑车速度的2倍。当猎犬跑到招宝山脚下后,如小巍还未到,则马上返回迎着小巍跑去,遇到小巍后再跑向招宝山,……这样来回跑一直到小巍到招宝山为止。这时,这只猎犬一共跑了()千米路。
12.有一组算式:1+1,2+3,3+5,1+7,2+9,3+11,1+13……那么和是1997的算式是左起第()个算式,第1999个算式的和是()。
13.有两列火车,客车长200米,每秒行30米,货车长300米,每秒行20米。两车在平行轨道上齐头同向行进,()秒后客车超过货车;如两车相向而行,从相遇到错车而过,需要()秒。
14.四年级数学竞赛试卷共有15道题,做对一题得10分,做错一题扣4分,不答得0分。陈莉得了88分,她有()题未答。
15.四(2)班举行“六一”联欢晚会,辅导员老师带着一笔钱去买糖果,如果买芒果13千克,还差4元,如果买奶糖15千克,则还剩2元。已知每千克芒果比奶糖贵2元,那么辅导员老师带了()元钱。

参考答案
1.(2)(8003) 2.(2)
3.(119) 4.(90)
5.(13050) 6.(1200)
7.(略)
8.(19) 9.(70) 10.(42)
11.(52) 12.(998)(3998) 13.(20)(10)
14.(2) 15.(152)

1.1993年的元旦是星期五,请你算一算,1997年的元旦是星期几?2000年的元旦是星期几?
答: 星期三、星期六
2.某年的10月有5的星期六,4个星期日,问这一年的十月一日是星期几?
答: 星期一
3.
第一列 第二列 第三列 第四列 第五列
614…… 27101518 38111619 49121720 …… 51321
问:(1)300排在第几列?(2)1000排在第几列?
答: 第四列、第三列
4.用5÷14,商的小数点后面第1997位上数字是几?
答: 4
5.1÷7的商小数点后面2001个数字之和是多少?
答:2001÷6=333……3,(1+4+2+8+5+7)×333+1+4+2=8998
6.数列1,3,4,7,11,18……,从第三项开始,每项均为它前面相邻两项之和,数列中第2001个数被4除余几?
答: 0
7、将1----100的自然数按下面的顺序排列:
答:正方形里的9个数和是90,能否照这样框出9个数,使它们的和分别是170、216、630?
分析与解答:首先先观察9个数的特点。上下两个数的平均数是10,左右两个数的平均数也是10,对角线的平均数还是10。说明10是这九个数的平均数,它们的和就是90。从这里可以看出,用3×3的正方形框出来的9个数的和一定是9的倍数。170不是9的倍数,所以不可能和是170。225和630都是9的倍数,是不是这两个数都可以呢?可以发现,排在最左边一列和最右边一列上的数,不能做这9个数的平均数,因为画不出正方形。216和630÷9分别等于24和70,这两个数分别在哪一列呢?8个一循环,24÷8=3,正好在最右边一列,所以画不出来。而70÷8=8……6,余数是6,排在第6列,所以能画出来。
8、有一个数列:
1,2,3,5,8,13,……。(从第3个数起,每个数恰好等于它前面相邻两个数的和)
求第1993个数被6除余几?(这道题需要你耐心解答呦)
分析:如果能知道第1993个数是哪个数,问题很容易解决。可是要做到这一点不容易。由于我们所研究的是“余数”,如能构造出数列各项被6除,余数构成的数列,问题也可以得到解决。
解:根据“如果一个数等于几个数的和,那么这个数被a除的余数,等于各个加数被a除的余数的和再被a除的余数”。得到数列各项被6除,余数组成的数列是:
1,2,3,5,2,1,3,4,1,5,0,5,5,4,3,1,4,5,3,2,5,1,0,1,1,2,3,5,……。
观察规律,发现到第25项以后又重复出现前24项。呈现周期性变化规律。一个周期内排有24个数。(余数数列的前24项)
1993÷24=83……1。
第1993个数是第84个周期的第1个数。因此被6除是余1。

8. 小学三年级奥数题及答案

1.一条路长100米,从头到尾每隔10米栽1棵梧桐树,共栽多少棵树?
路分成100÷10=10段,共栽树10+1=11棵。

12棵柳树排成一排,在每两棵柳树中间种3棵桃树,共种多少棵桃树?
3×(12-1)=33棵。

一根200厘米长的木条,要锯成10厘米长的小段,需要锯几次?
200÷10=20段,20-1=19次。

4.蚂蚁爬树枝,每上一节需要10秒钟,从第一节爬到第13节需要多少分钟?
从第一节到第13节需10×(13-1)=120秒,120÷60=2分。

5.在花圃的周围方式菊花,每隔1米放1盆花。花圃周围共20米长。需放多少盆菊花?
20÷1×1=20盆

6.从发电厂到闹市区一共有250根电线杆,每相邻两根电线杆之间是30米。从发电厂到闹市区有多远?
30×(250-1)=7470米。

7.王老师把月收入的一半又20元留做生活费,又把剩余钱的一半又50元储蓄起来,这时还剩40元给孩子交学费书本费。他这个月收入多少元?
[(40+50) ×2+20] ×2=400(元)答:他这个月收入400元。

8.一个人沿着大提走了全长的一半后,又走了剩下的一半,还剩下1千米,问:大提全长多少千米?
1×2×2=4千米

9.甲在加工一批零件,第一天加工了这堆零件的一半又10个,第二天又加工了剩下的一半又10个,还剩下25个没有加工。问:这批零件有多少个?
(25+10)×2=70个,(70+10)×2=160个。综合算式:【(25+10)×2+10】×2=160个

10.一条毛毛虫由幼虫长到成虫,每天长一倍,16天能长到16厘米。问它几天可以长到4厘米?
16÷2÷2=4(厘米),16-1-1=14(天)

11.一桶水,第一次倒出一半,然后倒回桶里30千克,第二次倒出桶中剩下水的一半,第三次倒出180千克,桶中还剩下80千克。桶里原来有水多少千克?
180+80=260(千克),260×2-30=490(千克),490×2=980(千克)。

12.甲、乙两书架共有图书200本,甲书架的图书数比乙书架的3倍少16本。甲、乙两书架上各有图书多少本?
答案:乙:(200+16)÷(3+1)=54(本);甲:54×3-16=146(本)。

13.小燕买一套衣服用去185元,问上衣和裤子各多少元?
裤子:(185-5)÷(2+1)=60(元);
上衣:60×2+5=125(元)。

14.甲、乙、丙三人年龄之和是94岁,且甲的2倍比丙多5岁,乙2倍比丙多19岁,问:甲、乙、丙三人各多大?
如果每个人的年龄都扩大到2倍,那么三人年龄的和是94×2=188。如果甲再减少5岁,乙再减少19岁,那么三人的年龄的和是188-5-19=164(岁),这时甲的年龄是丙的一半,即丙的年龄是甲的两倍。同样,这时丙的年龄也是乙两倍。所以这时甲、乙的年龄都是164÷(1+1+2)=41(岁),即原来丙的年龄是41岁。甲原来的年龄是(41+5)÷2=23(岁),乙原来的年龄是(41+19)÷2=30(岁)。

15.小明、小华捉完鱼。小明说:“如果你把你捉的鱼给我1条,我的鱼就是你的2倍。如果我给你1条,咱们就一样多了。“请算出两个各捉了多少条鱼。
小明比小华多1×2=2(条)。如果小华给小明1条鱼,那么小明比小华多2+1×2=4(条),这时小华有鱼4÷(2-1)=4(条)。原来小华有鱼4+1=5(条),原来小明有鱼5+2=7(条)。

16.小芳去文具店买了13本语文书,8本算术书,共用去10元。已知6本语文本的价钱与4本算术本的价钱相等。问:1本语文本、1本算术本各多少钱?
8÷4×6=12,即8本算术本与12本语文体价钱相等。所以1本语文本值10×100÷(13+12)=40(分),1本算术本值40×6÷4=60(分),即1本语文本4角,1本算术本6角。

17.找规律,在括号内填入适当的数. 75,3,74,3,73,3,(),()。
答案:72,3。

18找规律,在括号内填入适当的数. 1,4,5,4,9,4,(),()。
奇数项构成数列1,5,9……,每一项比前一项多4;偶数项都是4,所以应填13,4

19.找规律,在括号内填入适当的数. 3,2,6,2,12,2,(),()。
24,2。

20.找规律,在括号内填入适当的数. 76,2,75,3,74,4,(),()。
答案:将原数列拆分成两列,应填:73,5。

21.找规律,在括号内填入适当的数. 2,3,4,5,8,7,(),()。
答案:将原数列拆分成两列,应填:16,9。

22.找规律,在括号内填入适当的数. 3,6,8,16,18,(),()。
答案:6=3×2,16=8×2,即偶数项是它前面的奇数项的2倍;又8=6+2,18=16+2,即从第三项起,奇数项比它前面的偶数项多2.所以应填:36,38。

23.找规律,在括号内填入适当的数. 1,6,7,12,13,18,19,(),()。
答案:将原数列拆分成两列,应填:24,25。

24.找规律,在括号内填入适当的数. 1,4,3,8,5,12,7,()。
答案:奇数项构成数列1,3,5,7,…,每一项比前一项多2;偶数项构成数列4,8,12,…,每一项比前一项多4,所以应填:16。

25.找规律,在括号内填入适当的数. 0,1,3,8,21,55,(),()。
答案:144,377。

26.A、B、C、D四人在一场比赛中得了前4名。已知D的名次不是最高,但它比B、C都高,而C的名次也不比B高。问:他们各是第几名?
答案:D名次不是最高,但比B、C高,所以它是第2名,A是第1名。C的名次不比B高,所以B是第3名,C是第4名。

27.一头象的重量等于4头牛的重量,一头牛的重量等于3匹小马的重量,一匹小马的重量等于3头小猪的重量。问:一头象的重量等于几头小猪的重量?
答案:4×3×3=36,所以一头象的重量等于36头小猪的重量。

28.甲、乙、丙三人,一个人喜欢看足球,一个人喜欢看拳击,一个人喜欢看篮球。已知甲不爱看篮球,丙既不喜欢看篮球又不喜欢看足球。现有足球、拳击、篮球比赛的入场券各一张。请根据他们的爱好,把票分给他们。
答案:丙不喜欢看篮球与足球,应将拳击入场券给丙。甲不喜欢看篮球,应将足球入场券给甲。最后,应将篮球入场券给乙。

29.有一堆铁块和铜块,每块铁块重量完全一样,每块铜块的重量也完全一样。3块铁快和5块铜块共重210克。4块铁块和10块铜块共重380克。问:每一块铁块、每一块铜块各重多少?
答案:4块铁块和10块铜块共重380克,所以2块铁块和5块铜块共重380÷2=190(克)。而3块铁块和5块铜块共重210克,所以1块铁块重210-190=20(克)。1铜块重(190-20×2)÷5=30(克)。

30.甲、乙、丙三人中有一人做了一件好事。他们各自都说了一句话,而其中只有一句是真的。甲说:“是乙做的。” 乙说:“不是我做的。” 丙说:“也不是我做的。” 问:到底是谁做的好事?
答案:如果是甲做的好事,那么乙、丙的话都是真的,与只有一句是真的矛盾。如果是乙做的好事,那么甲、丙的话都是真的,也产生矛盾。好事是丙做的,这时甲、丙的话都是错的,只有乙的话是真的,所以好事是丙做的。

31.一张长8分米、宽3分米的长方形纸板,在四个角落上各截去一个边长为2分米的正方形,所剩下的部分的周长是多少?
答:(8+3)×2=22(分米)

32.计算 :18+19+20+21+22+23
原式=(18+23)×6÷2=123

33.计算 :100+102+104+106+108+110+112+114
原式=(100+114) ×8÷2=856

34.995+996+997+998+999
原式=(995+999) ×5÷2=4985

35.:(1999+1997+1995+…+13+11)-(12+14+16+…+1996+1998)
第一个括号内的项数为(1999-11)÷2+1=995,所以原式=(1999-1998)+(1997-1996)+…+(13-12)+11=1×994+11=1005

阅读全文

与小学的奥数题及答案相关的资料

热点内容
小学读书计划表格模板 浏览:342
小学语文四年级感叹句 浏览:243
天通苑中山实验小学 浏览:596
小学三年级语文补习班内容 浏览:921
吉安师范附属小学作文 浏览:396
小学教师备课网站 浏览:1
私立美男学院 浏览:383
小学六年级上册语文第六单元试卷凉州岛 浏览:915
小学1年级手gong大全 浏览:459
小学生手抄报的图片大全图片大全 浏览:68
小学健康知识讲座 浏览:120
小学毕业季适合发老师的句子 浏览:451
汕尾凤山中心小学校长 浏览:606
小学生毕业汇演舞蹈 浏览:702
小学生抗击疫情的表演 浏览:107
私立华联大学本科 浏览:61
小学三年级作文我想谢谢你400 浏览:855
中小学生睡眠问题 浏览:174
小学生公共生活守规则教案 浏览:313
淮河私立学校 浏览:99