导航:首页 > 考试分析 > 小学三年级奥数题及答案

小学三年级奥数题及答案

发布时间:2020-11-27 13:26:59

小学三年级奥数题

小学三年级奥数:盈亏问题

三年级的老师给小朋友分糖果,如果每位同学分4颗,发现多了3颗,如果每位同学分5颗,发现少了2颗。问有多少个小朋友?有多少颗糖?

解答:(3+2)÷(5-4)=5÷1=5(位)…人数

4×5+3=20+3=23(颗)……糖

或5×5-2=25-2=23(颗)

【小结】 盈亏问题公式

(1)一次有余(盈),一次不够(亏),可用公式:

(2)(盈+亏)÷(两次每人分配数的差)=人数。
小学三年级奥数:投票

三年级一班选举班长,每人投票从甲、乙、丙三个候选人中选择一人。已知全班共有52人,并且在计票过程中的某时刻,甲得到17票,乙得到16票,丙得到11票。如果得票比其它两人都多的候选人将成为班长,那么甲最少再得到多少票就能够保证当选?

解答:在计票过程中的某时刻,甲得到17票,乙得到16票,丙得到11票。说明一共统计了17+16+11=44张选票,还有52-44=8帐没有统计,因为乙得到的票数只比甲少一张,所以,考虑到最差的情况,即后8张中如果没有任何一张是投给丙的,那么甲就必须得到4张才能确保比乙多。因此,甲最少再得到4票就能够保证当选了。
小学三年级奥数:黑白棋子

有黑白两种棋子共300枚,按每堆3枚分成100堆。其中只有1枚白子的共27堆,有2枚或3枚黑子的共42堆,有3枚白子的与有3枚黑子的堆数相等。那么在全部棋子中,白子共有多少枚?

解答:

只有1枚白子的共27堆,说明了在分成3枚一份 中一白二黑的有27堆;有2枚或3枚黑子的共42堆,就是说有 三枚黑子的有42-27=15堆;所以 三枚白子的是15堆:还剩一黑二白的是 100-27-15-15=43堆:

白子共有:43×2+15×3=158(枚)。

水彩笔和铅笔(奥数精选习题)
来源:奥数网 文章作者:奥数网整理 2010-05-17 15:27:41
标签: 数的整除


商店有水彩笔和铅笔一共163支,如果水彩笔拿走19支后,水彩笔的支数就正好是铅笔的5倍.原有水彩笔和铅笔各多少支?

解答:原有水彩笔139支,铅笔24支。

分析:水彩笔拿走19支后,正好是铅笔数量的5倍.此时水彩笔和铅笔的总数也应减少19支,列式成163-19=144 (支),且正好是铅笔支数的1+5=6 倍.铅笔有:144÷6=24 (支),水彩笔有:24×5+19=139 (支).

植树问题

一块长方形地,长为60米,宽为30米,要在四边上植树,株距6米,四个角上各有一棵,共植树多少棵?

解答:共植树30棵。

分析:长方形的周长为:(60+30)×2=180 (米),株距为6米,封闭图形,根据公式,共植树180÷6=3 (棵).

平均数问题

南南、北北两个人的平均年龄是11岁,东东、南南两个人的平均年龄是15岁,那么北北比东东小几岁?

解答:北北比东东小8岁。

分析:南南、北北的年龄和是:11×2= 22(岁),东东、南南的年龄和是:15 ×2=30(岁),所以北北、东东的年龄差为:33-22=8 (岁).

最值的差

由0、2、5、7、9写成的没有重复数字的四位数中,能被 5整除的最大数与最小数的差是多少?

解答:差为7675.

分析:能被5整除的最大四位数是9750,能被5整除的最小四位数是2075,则差是7675.

能被5整除的数的个位数为0或5。组成一个新的数时,高位上的数越大,则该数越大,反之亦然。

剑法中的巧算(奥数精选习题)
来源:奥数网 文章作者:奥数网整理 2010-05-17 15:19:55
标签: 奥数 / 奥数习题
第一题:巧算下面各题

① 36+87+64 ②99+136+101 ③ 1361+972+639+28

解答:①式=(36+64)+87

=100+87=187

②式=(99+101)+136

=200+136=336

③式=(1361+639)+(972+28)

=2000+1000=3000

第二题:拆数补数

① 188+873 ②548+996 ③9898+203

解答:①式=(188+12)+(873-12)(熟练之后,此步可略)

=200+861=1061

②式=(548-4)+(996+4)

=544+1000=1544

③式=(9898+102)+(203-102)

=10000+101=10101

第三题:剑法中的巧算

① 300-73-27 ② 1000-90-80-20-10

解答:①式= 300-(73+ 27)

=300-100=200

②式=1000-(90+80+20+10)

=1000-200=800

第四题:巧算

① 4723-(723+189) ② 2356-159-256

解答:①式=4723-723-189

=4000-189=3811

②式=2356-256-159

=2100-159

=1941

第五题:巧算

① 506-397 ②323-189

③467+997 ④987-178-222-390

解答:

①式=500+6-400+3(把多减的 3再加上)=109

②式=323-200+11(把多减的11再加上)

=123+11=134

③式=467+1000-3(把多加的3再减去)

=1464

④式=987-(178+222)-390=987-400-400+10=197
晶晶的围棋方阵(奥数精选习题)
来源:奥数网 文章作者:奥数网整理 2010-05-17 15:13:44
标签: 围棋 / 奥数 / 奥数习题
1、晶晶用围棋子摆成一个三层空心方阵,最外一层每边有围棋子14个.晶晶摆这个方阵共用围棋子多少个?

分析:方阵每向里面一层,每边的个数就减少2个.知道最外面一层每边放14个,就可以求第二层及第三层每边个数.知道各层每边的个数,就可以求出各层总数。

解:最外边一层棋子个数:(14-1)×4=52(个)

第二层棋子个数:(14-2-1)×4=44(个)

第三层棋子个数:(14-2×2-1)×4=36(个).

摆这个方阵共用棋子:

52+44+36=132(个)

还可以这样想:

中空方阵总个数=(每边个数一层数)×层数×4进行计算。

解:(14-3)×3×4=132(个)

答:摆这个方阵共需132个围棋子。

2、用个同样的杯子装水,水面高度分别是4厘米、5厘米、7厘米和8厘米,这4个杯子水面平均高度是多少厘米?

解:分析求4个杯子水面的平均高度,就相当于把4个杯子里的水合在一起,再平均倒入4个杯子里,看每个杯子里水面的高度。

解:(4+5+7+8)÷4=6(厘米)

答:这4个杯子水面平均高度是6厘米。

3、甲班的图书本数比乙班多80本,甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?


分析:上图把乙班的图书本数看作1倍,甲班的图书本数是乙班的3倍,那么甲班的图书本数比乙班多2倍.又知"甲班的图书比乙班多80本",即2倍与80本相对应,可以理解为2倍是80本,这样可以算出1倍是多少本.最后就可以求出甲、乙班各有图书多少本。

解:①乙班的本数:80÷(3-1)=40(本)

②甲班的本数:40×3=120(本)

或40+80=120(本)。

验算:120-40=80(本)

120÷40=3(倍)

答:甲班有图书120本,乙班有图书40本。

4、某人到食堂去买饭,主食有三种,副食有五种,他主食和副食各买一种,共有多少种不同的买法?

分析:要在八个8之间只添加号,使和为1000,可先考虑在加数中凑出一个较接近1000的数,它可以是888,而888+88=976,此时,用去了五个8,剩下的三个8应凑成1000-976=24,这只要三者相加就行了。

解:本题的答案是

888+88+8+8+8=1000

5、在下面算式合适的地方添上+、-、×号,使等式成立。

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3=1992

分析:本题等号左边数字比较多,右边得数比较大,仍考虑凑数法,由于数字比较多,在凑数时,应多用去一些数,注意到333×3=999,所以333×3+333×3=1998,它比1992大6,所以只要用剩下的八个3凑出6就可以了,事实了,3+3+3-3+3-3+3-3=6,由于要减去6,则可以这样添:333×3+333×3-3-3+3-3+3-3+3-3=1992。

解:本题的一个答案是:

333×3+333×3-3-3+3-3+3-3+3-3=1992。
三年级奥数应用题解题技巧
来源:奥数网整理 文章作者:—— 2010-03-25 15:10:00
标签: 应用题 / 三年级
【试题】 刘老师搬一批书,每次搬15本,搬了12次,正好搬完这批书的一半。剩下的书每次搬20本,还要几次才能搬完?

【解析】

(1)12次搬了多少本?

15×12=180(本)

搬了的与没搬的正好相等

(2)要几次才能把剩下的搬完?

180÷20=9(次)
试题】小华每分拍球25次,小英每分比小华少拍5次。照这样计算,小英5分拍多少次?小华要拍同样多次要用几分?

【解析】

(1)小英每分拍多少次?

25-5=20(次)

(2)小英5分拍多少次?

20×5=100(次)

(3)小华要几分拍100次?

100÷25=4(分)

答:小英5分拍100次,小华要拍同样多次要用4分。
【试题】同学们到车站义务劳动,3个同学擦12块玻璃。(补充不同的条件求问题,编成两道不同的两步计算应用题)。

补充1:“照这样计算,9个同学可以擦多少块玻璃?”

【详解】

(1)每个同学可以擦几块玻璃?

12÷3=4(块)

(2)9个同学可以擦多少块?

4×9=36(块)

答:9个同学可以擦36块。

补充2:“照这样计算,要擦40块玻璃,需要几个同学?”

【详解】

(1)每个同学可以擦几块玻璃?

12÷3=4(块)

(2)擦40块需要几个同学?

40÷4=10(个)

答:擦40块玻璃需要10个同学。
【试题】两个车间装配电视机。第一车间每天装配35台,第二车间每天装配37台。照这样计算,这两个车间15天一共可以装配电视机多少台?

【详解】

方法1:

(1)两个车间一天共装配多少台?

35+37=72(台)

(2)15天共可以装配多少台?

72×15=1080(台)

方法2:

(1)第一车间15天装配多少台?

35×15=525(台)

(2)第二车间15天装配多少台?

37×15=555(台)

(3)两个车间一共可以装配多少台?

555+525=1080(台)

答:15天两个车间一共可以装配1080台。
【试题】把7本相同的书摞起来,高42毫米。如果把28本这样的书摞起来,高多少毫米?(用不同的方法解答)

【详解】

方法1:

(1)每本书多少毫米?

42÷7=6(毫米)

(2)28本书高多少毫米?

6×28=168(毫米)

方法2:

(1)28本书是7本书的多少倍?

28÷7=4

(2)28本书高多少毫米?

42×4=168(毫米)
试题】纺织厂运来一堆煤,如果每天烧煤1500千克,6天可以烧完。如果每天烧1000千克,可以多烧几天?

【详解】要想求可以多烧几天,就要先知道这堆煤每天烧1000千克可以烧多少天;而要求每天烧1000千克,可以烧多少天,还要知道这堆煤一共有多少千克。

(1)这堆煤一共有多少千克?

1500×6=9000(千克)

(2)可以烧多少天?

9000÷1000=9(天)

(3)可以多烧多少天?

9-6=3(天)。
【试题】一台拖拉机5小时耕地40公顷,照这样的速度,耕72公顷地需要几小时?

【详解】要求耕72公顷地需要几小时,我们就要先求出这台拖拉机每小时耕地多少公顷?

(1)每小时耕地多少公顷?

40÷5=8(公顷)

(2)需要多少小时?

72÷8=9(小时)

答:耕72公顷地需要9小时。
【试题】一块三角形地,三边分别长156米,234米,186米,要在三边上植树,株距6米,三个角的顶点上各植上1棵数,共植树( )棵。

【详解】此题植树线路是封闭的,这类题的特点是:因为头尾两端重合在一起,所以棵数等于分成的段数。题中要求三角形三个顶点上要各栽一棵树,因此我们要按照三条边来考虑。因为156÷6=26(段),186÷6=31(段),234÷6=39(段),所以每边恰好分成了整数段,这样,从周长来讲,应栽树的棵数与段数相等。即共植树:26+31+39=96(棵)。

【试题】巧算与速算:41×49=( )

【详解】相乘的两个数都是两位数,且十位上的数字相同,个位上的数字之和正好是10,这就可以运用“头同尾合十”的巧算法进行简便计算。

“头同尾合十”的巧算方法是:用十位上的数字乘十位上的数字加1的积,再乘100,最后加上个位上2个数字的乘积。

41×49,先用(4+1)×4=20,将20作为积的前两位数字,再用1×9=9,可以发现末位数字相乘的积是一位数,那就在9的前面补一个0,作为积的后两位数字。这样答案很简单的就求出了,即41×49=(4+1)×4×100+1×9=2009。
1、甲、乙两位学生原计划每天自学的时间相同,若甲每天增加自学时间半小时,乙每天减少自学时间半小时,则乙自学6天的时间仅相等于甲自学一天的时间。问:甲、乙原订每天自学的时间是多少分钟?

分析:甲每天增加自学时间半小时,乙每天减少自学时间半小时,甲比乙多自学一个小时,乙自学6天的时间仅相等于甲自学一天的时间,甲是乙的6倍,差倍问题。

解:乙每天减少半小时后的自学时间=1/(6-1)=1/5小时=12分钟,乙原计划每天自学时间=30+12=42分钟,甲原计划每天自学时间=12*6-30=42分钟。

2、一大块金帝牌巧克力可以分成若干大小一样的正方形小块。小明和小强各有一大块金帝巧克力,他们同时开始吃第一小块巧克力。小明每隔20分钟吃1小块,14时40分吃最后1小方块;小强每隔30分钟吃1小块,18时吃最后1小方块。那么他们开始吃第1小块的时间是几时几分?

分析:小明每隔20分钟吃1小块,小强每隔30分钟吃1小块,小强比小明多间隔10分钟,小明14时40分吃最后1小方块,小强18时吃最后1小方块,小强比小明晚3小时20分,说明在吃最后一块前面共有(3*60+20)/10=20个间隔,即已经吃了20块。那么,20*20=400分钟=6小时40分钟,14时40分-6小时40分=8时。

解:18时-14时40分=3小时20分=3*60+20=200分钟,已经吃的块数=200/(30-20)=20块,小明吃20块用时20*20=400分钟=6小时40分钟,开始吃第一块的时间为14时40分-6小时40分=8时。
1、已知△,○,□是三个不同的数,并且△+△+△=○+○,○+○+○+○=□+□+□,△+○+○+□=60,那么△+○+□等于多少?

分析:由一、二可知,□是△的2倍,将它代换到三中,就是三个△加2个○等于60,而△+△+△=○+○,所以,△+△+△=○+○=60/2=30,△=10,○=15,□=20。

解:△+○+□=10+15+20=45。

2、用中国象棋的车、马、炮分别表示不同的自然数。如果,车÷马=2,炮÷车=4,炮-马=56,那么“车+马+炮”等于多少?

分析:车÷马=2,车是马的2倍;炮÷车=4,炮是车的4倍,是马的8倍;炮-马=56,炮比马大56。差倍问题。

解:马=56/(8-1)=8,炮=56+8=64,车=8*2=16,车+马+炮=8+64+16=88。

3、聪聪用10元钱买了3支圆珠笔和7本练习本,剩下的钱若买一支圆珠笔就少1角4分;若买一本练习本还多8角,问一支圆珠笔的售价是多少元?

分析:剩下的钱若买一支圆珠笔就少1角4分;若买一本练习本还多8角,说明圆珠笔比练习本贵1角4分+8角=9角4分,那么,3支圆珠笔就要比三本练习本贵94*3=282分=2元8角2分,这样,就相当于在10元中扣除2元8角2分加8角,正好可以买11本练习本,所以,每本练习本的价钱是(1000-282-80)/11=58分=5角8分。

解:圆珠笔-练习本=14+80=94分,每本练习本的价钱是(1000-94*3-80)/11=58分=5角8分,圆珠笔的售价=58+94=152分=1元5角2分。
1、甲、乙、丙共有100本课外书。甲的本数除以乙的本数,丙的本数除以甲的本数,商都是5,而且余数都是1。那么乙有书多少本?

分析:甲的本数除以乙的本数,商5余1,说明甲是乙的5倍多1,丙的本数除以甲的本数,商5余1,说明丙是甲的5倍多1,是乙的25倍多6(5+1),因此,这是一个和倍问题。

解:乙的本数=(100-1-6)/(1+5+25)=3本。

2、小明、小红、小玲共有73块糖。如果小玲吃掉3块,那么小红与小玲的糖就一样多;如果小红给小明2块糖,那么小明的糖就是小红的糖的2倍。问小红有多少块糖?

分析:如果小玲吃掉3块,那么小红与小玲的糖就一样多,说明小玲比小红多3块;如果小红给小明2块糖,那么小明的糖就是小红的糖的2倍,即小明加2是小红减2后的2倍,说明小明是小红的2倍少6(2*2+2)。

因此,这是一个和倍问题。

解:小红的颗数=(73-3+6)/(1+1+2)=19块。

3、有货物108件,分成四堆存放在仓库时,第一堆件数的2倍等于第二堆件数的一半,比第三堆的件数少2,比第四堆的件数多2。问每堆各存放多少件?

分析:第一堆件数的2倍等于第二堆件数的一半,第二堆是第一堆的4倍;比第三堆的件数少2,第三堆是第一堆的2倍多2;比第四堆的件数多2,第四队是第一堆的2倍少2;和倍问题。

解:第一堆的件数=(108-2+2)/(1+4+2+2)=12件,第二堆的件数=12*4=48件,第三堆的件数=2*12+2=26件,第四堆的件数=2*12-2=22件。
1、南京长江大桥共分两层,上层是公路桥,下层是铁路桥。铁路桥和公路桥共长11270米,铁路桥比公路桥长2270米,问南京长江大桥的公路和铁路桥各长多少米?

分析:和差基本问题,和1127米,差2270米,大数=(和+差)/2,小数=(和-差)/2。

解:铁路桥长=(11270+2270)/2=6770米,公路桥长=(11270-2270)/2=4500米。

2、三个小组共有180人,一、二两个小组人数之和比第三小组多20人,第一小组比第二小组少2人,求第一小组的人数。

分析:先将一、二两个小组作为一个整体,这样就可以利用基本和差问题公式得出第一、二两个小组的人数和,然后对第一、二两个组再作一次和差基本问题计算,就可以得出第一小组的人数。

解:一、二两个小组人数之和=(180+20)/2=100人,第一小组的人数=(100-2)/2=49人。

3、甲、乙两筐苹果,甲筐比乙筐多19千克,从甲筐取出多少千克放入乙筐,就可以使乙筐中的苹果比甲筐的多3千克?

分析:从甲筐取出放入乙筐,总数不变。甲筐原来比乙筐多19千克,后来比乙筐少3千克,也即对19千克进行重分配,甲筐得到的比乙筐少3千克。于是,问题就变成最基本的和差问题:和19千克,差3千克。

解:(19+3)/2=11千克,从甲筐取出11千克放入乙筐,就可以使乙筐中的苹果比甲筐的多3千克。
三年级乘除法中的速算(一)
来源:奥数网整理 文章作者:—— 2010-03-25 13:57:24
标签: 三年级 / 小数除法 / 分数除法
小学三年级奥数题:乘除法中的速算

三年级乘除法中的速算(二)
来源:奥数网整理 文章作者:—— 2010-03-25 13:58:29
标签: 三年级 / 小数除法 / 分数除法
小学三年级奥数题:乘除法中的速算(二)

小学生三年级奥数题及答案

题:一棵树,两年后可以长出一棵新芽,且以后每年可以再长一棵芽,新芽长出两年后每年也可长一棵芽,问这棵树十后可以长多少棵芽?

㈢ 三年级奥数题及答案

1:奇偶性: 这里有个假设题目没有给出,但是比较显然。就是本子和橡皮都是整分,不会出现几分半钱的情况。。。 两个本子和两个橡皮加起来肯定是偶数分,再加上铅笔八分 应该是偶数分才对。。。最后找了五分钱,故不对

2:跟第一题原理基本一样,三枚硬币,想全部反过去,每一枚只会翻转奇数次,三个奇数加起来还是奇数。。。你每次翻两枚,不管怎么翻都是翻转了偶数次。。所以翻不到题目的要求

3、(1) 拿四个角上的 (2)应该是斜着拿,题目没写清楚

4 用想加和除以3 得到中间座位号

㈣ 每天十道奥数题,是小学三年级下册,带答案,谢谢

小学三年级奥数题及答案
1.一条路长100米,从头到尾每隔10米栽1棵梧桐树,共栽多少棵树?路分成100÷10=10段,共栽树10+1=11棵。 12棵柳树排成一排,在每两棵柳树中间种3棵桃树,共种多少棵桃树?3×(12-1)=33棵。 一根200厘米长的木条,要锯成10厘米长的小段,需要锯几次?200÷10=20段,20-1=19次。 4.蚂蚁爬树枝,每上一节需要10秒钟,从第一节爬到第13节需要多少分钟?从第一节到第13节需10×(13-1)=120秒,120÷60=2分。 5.在花圃的周围方式菊花,每隔1米放1盆花。花圃周围共20米长。需放多少盆菊花?20÷1×1=20盆 6.从发电厂到闹市区一共有250根电线杆,每相邻两根电线杆之间是30米。从发电厂到闹市区有多远?30×(250-1)=7470米。 7.王老师把月收入的一半又20元留做生活费,又把剩余钱的一半又50元储蓄起来,这时还剩40元给孩子交学费书本费。他这个月收入多少元?[(40+50) ×2+20] ×2=400(元)答:他这个月收入400元。 8.一个人沿着大提走了全长的一半后,又走了剩下的一半,还剩下1千米,问:大提全长多少千米?1×2×2=4千米 9.甲在加工一批零件,第一天加工了这堆零件的一半又10个,第二天又加工了剩下的一半又10个,还剩下25个没有加工。问:这批零件有多少个?(25+10)×2=70个,(70+10)×2=160个。综合算式:【(25+10)×2+10】×2=160个 10.一条毛毛虫由幼虫长到成虫,每天长一倍,16天能长到16厘米。问它几天可以长到4厘米?16÷2÷2=4(厘米),16-1-1=14(天) 11.一桶水,第一次倒出一半,然后倒回桶里30千克,第二次倒出桶中剩下水的一半,第三次倒出180千克,桶中还剩下80千克。桶里原来有水多少千克?180+80=260(千克),260×2-30=490(千克),490×2=980(千克)。 12.甲、乙两书架共有图书200本,甲书架的图书数比乙书架的3倍少16本。甲、乙两书架上各有图书多少本?答案:乙:(200+16)÷(3+1)=54(本);甲:54×3-16=146(本)。 13.小燕买一套衣服用去185元,问上衣和裤子各多少元?裤子:(185-5)÷(2+1)=60(元);上衣:60×2+5=125(元)。 14.甲、乙、丙三人年龄之和是94岁,且甲的2倍比丙多5岁,乙2倍比丙多19岁,问:甲、乙、丙三人各多大?如果每个人的年龄都扩大到2倍,那么三人年龄的和是94×2=188。如果甲再减少5岁,乙再减少19岁,那么三人的年龄的和是188-5-19=164(岁),这时甲的年龄是丙的一半,即丙的年龄是甲的两倍。同样,这时丙的年龄也是乙两倍。所以这时甲、乙的年龄都是164÷(1+1+2)=41(岁),即原来丙的年龄是41岁。甲原来的年龄是(41+5)÷2=23(岁),乙原来的年龄是(41+19)÷2=30(岁)。 15.小明、小华捉完鱼。小明说:“如果你把你捉的鱼给我1条,我的鱼就是你的2倍。如果我给你1条,咱们就一样多了。“请算出两个各捉了多少条鱼。小明比小华多1×2=2(条)。如果小华给小明1条鱼,那么小明比小华多2+1×2=4(条),这时小华有鱼4÷(2-1)=4(条)。原来小华有鱼4+1=5(条),原来小明有鱼5+2=7(条)。 16.小芳去文具店买了13本语文书,8本算术书,共用去10元。已知6本语文本的价钱与4本算术本的价钱相等。问:1本语文本、1本算术本各多少钱?8÷4×6=12,即8本算术本与12本语文体价钱相等。所以1本语文本值10×100÷(13+12)=40(分),1本算术本值40×6÷4=60(分),即1本语文本4角,1本算术本6角。 17.找规律,在括号内填入适当的数. 75,3,74,3,73,3,(),()。答案:72,3。 18找规律,在括号内填入适当的数. 1,4,5,4,9,4,(),()。奇数项构成数列1,5,9……,每一项比前一项多4;偶数项都是4,所以应填13,4 19.找规律,在括号内填入适当的数. 3,2,6,2,12,2,(),()。24,2。 20.找规律,在括号内填入适当的数. 76,2,75,3,74,4,(),()。答案:将原数列拆分成两列,应填:73,5。 21.找规律,在括号内填入适当的数. 2,3,4,5,8,7,(),()。答案:将原数列拆分成两列,应填:16,9。 22.找规律,在括号内填入适当的数. 3,6,8,16,18,(),()。答案:6=3×2,16=8×2,即偶数项是它前面的奇数项的2倍;又8=6+2,18=16+2,即从第三项起,奇数项比它前面的偶数项多2.所以应填:36,38。 23.找规律,在括号内填入适当的数. 1,6,7,12,13,18,19,(),()。答案:将原数列拆分成两列,应填:24,25。 24.找规律,在括号内填入适当的数. 1,4,3,8,5,12,7,()。答案:奇数项构成数列1,3,5,7,…,每一项比前一项多2;偶数项构成数列4,8,12,…,每一项比前一项多4,所以应填:16。 25.找规律,在括号内填入适当的数. 0,1,3,8,21,55,(),()。答案:144,377。 26.A、B、C、D四人在一场比赛中得了前4名。已知D的名次不是最高,但它比B、C都高,而C的名次也不比B高。问:他们各是第几名?答案:D名次不是最高,但比B、C高,所以它是第2名,A是第1名。C的名次不比B高,所以B是第3名,C是第4名。 27.一头象的重量等于4头牛的重量,一头牛的重量等于3匹小马的重量,一匹小马的重量等于3头小猪的重量。问:一头象的重量等于几头小猪的重量?答案:4×3×3=36,所以一头象的重量等于36头小猪的重量。 28.甲、乙、丙三人,一个人喜欢看足球,一个人喜欢看拳击,一个人喜欢看篮球。已知甲不爱看篮球,丙既不喜欢看篮球又不喜欢看足球。现有足球、拳击、篮球比赛的入场券各一张。请根据他们的爱好,把票分给他们。答案:丙不喜欢看篮球与足球,应将拳击入场券给丙。甲不喜欢看篮球,应将足球入场券给甲。最后,应将篮球入场券给乙。 29.有一堆铁块和铜块,每块铁块重量完全一样,每块铜块的重量也完全一样。3块铁快和5块铜块共重210克。4块铁块和10块铜块共重380克。问:每一块铁块、每一块铜块各重多少?答案:4块铁块和10块铜块共重380克,所以2块铁块和5块铜块共重380÷2=190(克)。而3块铁块和5块铜块共重210克,所以1块铁块重210-190=20(克)。1铜块重(190-20×2)÷5=30(克)。 30.甲、乙、丙三人中有一人做了一件好事。他们各自都说了一句话,而其中只有一句是真的。甲说:“是乙做的。” 乙说:“不是我做的。” 丙说:“也不是我做的。” 问:到底是谁做的好事?答案:如果是甲做的好事,那么乙、丙的话都是真的,与只有一句是真的矛盾。如果是乙做的好事,那么甲、丙的话都是真的,也产生矛盾。好事是丙做的,这时甲、丙的话都是错的,只有乙的话是真的,所以好事是丙做的。 31.一张长8分米、宽3分米的长方形纸板,在四个角落上各截去一个边长为2分米的正方形,所剩下的部分的周长是多少?答:(8+3)×2=22(分米) 32.计算 :18+19+20+21+22+23原式=(18+23)×6÷2=123 33.计算 :100+102+104+106+108+110+112+114原式=(100+114) ×8÷2=856 34.995+996+997+998+999原式=(995+999) ×5÷2=4985 35.:(1999+1997+1995+…+13+11)-(12+14+16+…+1996+1998)第一个括号内的项数为(1999-11)÷2+1=995,所以原式=(1999-1998)+(1997-1996)+…+(13-12)+11=1×994+11=1005

有四个队采茶叶,甲,已,丙三队平均每队采24千克,乙,丙,丁三队平均每队采26千克,已知丁对采28千克,求甲队采多少千克?
(22)

记采纳!!!

㈤ 小学三年级奥数题及答案

1.一条路长100米,从头到尾每隔10米栽1棵梧桐树,共栽多少棵树?
路分成100÷10=10段,共栽树10+1=11棵。

12棵柳树排成一排,在每两棵柳树中间种3棵桃树,共种多少棵桃树?
3×(12-1)=33棵。

一根200厘米长的木条,要锯成10厘米长的小段,需要锯几次?
200÷10=20段,20-1=19次。

4.蚂蚁爬树枝,每上一节需要10秒钟,从第一节爬到第13节需要多少分钟?
从第一节到第13节需10×(13-1)=120秒,120÷60=2分。

5.在花圃的周围方式菊花,每隔1米放1盆花。花圃周围共20米长。需放多少盆菊花?
20÷1×1=20盆

6.从发电厂到闹市区一共有250根电线杆,每相邻两根电线杆之间是30米。从发电厂到闹市区有多远?
30×(250-1)=7470米。

7.王老师把月收入的一半又20元留做生活费,又把剩余钱的一半又50元储蓄起来,这时还剩40元给孩子交学费书本费。他这个月收入多少元?
[(40+50) ×2+20] ×2=400(元)答:他这个月收入400元。

8.一个人沿着大提走了全长的一半后,又走了剩下的一半,还剩下1千米,问:大提全长多少千米?
1×2×2=4千米

9.甲在加工一批零件,第一天加工了这堆零件的一半又10个,第二天又加工了剩下的一半又10个,还剩下25个没有加工。问:这批零件有多少个?
(25+10)×2=70个,(70+10)×2=160个。综合算式:【(25+10)×2+10】×2=160个

10.一条毛毛虫由幼虫长到成虫,每天长一倍,16天能长到16厘米。问它几天可以长到4厘米?
16÷2÷2=4(厘米),16-1-1=14(天)

11.一桶水,第一次倒出一半,然后倒回桶里30千克,第二次倒出桶中剩下水的一半,第三次倒出180千克,桶中还剩下80千克。桶里原来有水多少千克?
180+80=260(千克),260×2-30=490(千克),490×2=980(千克)。

12.甲、乙两书架共有图书200本,甲书架的图书数比乙书架的3倍少16本。甲、乙两书架上各有图书多少本?
答案:乙:(200+16)÷(3+1)=54(本);甲:54×3-16=146(本)。

13.小燕买一套衣服用去185元,问上衣和裤子各多少元?
裤子:(185-5)÷(2+1)=60(元);
上衣:60×2+5=125(元)。

14.甲、乙、丙三人年龄之和是94岁,且甲的2倍比丙多5岁,乙2倍比丙多19岁,问:甲、乙、丙三人各多大?
如果每个人的年龄都扩大到2倍,那么三人年龄的和是94×2=188。如果甲再减少5岁,乙再减少19岁,那么三人的年龄的和是188-5-19=164(岁),这时甲的年龄是丙的一半,即丙的年龄是甲的两倍。同样,这时丙的年龄也是乙两倍。所以这时甲、乙的年龄都是164÷(1+1+2)=41(岁),即原来丙的年龄是41岁。甲原来的年龄是(41+5)÷2=23(岁),乙原来的年龄是(41+19)÷2=30(岁)。

15.小明、小华捉完鱼。小明说:“如果你把你捉的鱼给我1条,我的鱼就是你的2倍。如果我给你1条,咱们就一样多了。“请算出两个各捉了多少条鱼。
小明比小华多1×2=2(条)。如果小华给小明1条鱼,那么小明比小华多2+1×2=4(条),这时小华有鱼4÷(2-1)=4(条)。原来小华有鱼4+1=5(条),原来小明有鱼5+2=7(条)。

16.小芳去文具店买了13本语文书,8本算术书,共用去10元。已知6本语文本的价钱与4本算术本的价钱相等。问:1本语文本、1本算术本各多少钱?
8÷4×6=12,即8本算术本与12本语文体价钱相等。所以1本语文本值10×100÷(13+12)=40(分),1本算术本值40×6÷4=60(分),即1本语文本4角,1本算术本6角。

17.找规律,在括号内填入适当的数. 75,3,74,3,73,3,(),()。
答案:72,3。

18找规律,在括号内填入适当的数. 1,4,5,4,9,4,(),()。
奇数项构成数列1,5,9……,每一项比前一项多4;偶数项都是4,所以应填13,4

19.找规律,在括号内填入适当的数. 3,2,6,2,12,2,(),()。
24,2。

20.找规律,在括号内填入适当的数. 76,2,75,3,74,4,(),()。
答案:将原数列拆分成两列,应填:73,5。

21.找规律,在括号内填入适当的数. 2,3,4,5,8,7,(),()。
答案:将原数列拆分成两列,应填:16,9。

22.找规律,在括号内填入适当的数. 3,6,8,16,18,(),()。
答案:6=3×2,16=8×2,即偶数项是它前面的奇数项的2倍;又8=6+2,18=16+2,即从第三项起,奇数项比它前面的偶数项多2.所以应填:36,38。

23.找规律,在括号内填入适当的数. 1,6,7,12,13,18,19,(),()。
答案:将原数列拆分成两列,应填:24,25。

24.找规律,在括号内填入适当的数. 1,4,3,8,5,12,7,()。
答案:奇数项构成数列1,3,5,7,…,每一项比前一项多2;偶数项构成数列4,8,12,…,每一项比前一项多4,所以应填:16。

25.找规律,在括号内填入适当的数. 0,1,3,8,21,55,(),()。
答案:144,377。

26.A、B、C、D四人在一场比赛中得了前4名。已知D的名次不是最高,但它比B、C都高,而C的名次也不比B高。问:他们各是第几名?
答案:D名次不是最高,但比B、C高,所以它是第2名,A是第1名。C的名次不比B高,所以B是第3名,C是第4名。

27.一头象的重量等于4头牛的重量,一头牛的重量等于3匹小马的重量,一匹小马的重量等于3头小猪的重量。问:一头象的重量等于几头小猪的重量?
答案:4×3×3=36,所以一头象的重量等于36头小猪的重量。

28.甲、乙、丙三人,一个人喜欢看足球,一个人喜欢看拳击,一个人喜欢看篮球。已知甲不爱看篮球,丙既不喜欢看篮球又不喜欢看足球。现有足球、拳击、篮球比赛的入场券各一张。请根据他们的爱好,把票分给他们。
答案:丙不喜欢看篮球与足球,应将拳击入场券给丙。甲不喜欢看篮球,应将足球入场券给甲。最后,应将篮球入场券给乙。

29.有一堆铁块和铜块,每块铁块重量完全一样,每块铜块的重量也完全一样。3块铁快和5块铜块共重210克。4块铁块和10块铜块共重380克。问:每一块铁块、每一块铜块各重多少?
答案:4块铁块和10块铜块共重380克,所以2块铁块和5块铜块共重380÷2=190(克)。而3块铁块和5块铜块共重210克,所以1块铁块重210-190=20(克)。1铜块重(190-20×2)÷5=30(克)。

30.甲、乙、丙三人中有一人做了一件好事。他们各自都说了一句话,而其中只有一句是真的。甲说:“是乙做的。” 乙说:“不是我做的。” 丙说:“也不是我做的。” 问:到底是谁做的好事?
答案:如果是甲做的好事,那么乙、丙的话都是真的,与只有一句是真的矛盾。如果是乙做的好事,那么甲、丙的话都是真的,也产生矛盾。好事是丙做的,这时甲、丙的话都是错的,只有乙的话是真的,所以好事是丙做的。

31.一张长8分米、宽3分米的长方形纸板,在四个角落上各截去一个边长为2分米的正方形,所剩下的部分的周长是多少?
答:(8+3)×2=22(分米)

32.计算 :18+19+20+21+22+23
原式=(18+23)×6÷2=123

33.计算 :100+102+104+106+108+110+112+114
原式=(100+114) ×8÷2=856

34.995+996+997+998+999
原式=(995+999) ×5÷2=4985

35.:(1999+1997+1995+…+13+11)-(12+14+16+…+1996+1998)
第一个括号内的项数为(1999-11)÷2+1=995,所以原式=(1999-1998)+(1997-1996)+…+(13-12)+11=1×994+11=1005
满意请采纳。

㈥ 三年级奥数题及答案30道

1.一条路长100米,从头到尾每隔10米栽1棵梧桐树,共栽多少棵树?
路分成100÷10=10段,共栽树10+1=11棵。

12棵柳树排成一排,在每两棵柳树中间种3棵桃树,共种多少棵桃树?
3×(12-1)=33棵。

一根200厘米长的木条,要锯成10厘米长的小段,需要锯几次?
200÷10=20段,20-1=19次。

4.蚂蚁爬树枝,每上一节需要10秒钟,从第一节爬到第13节需要多少分钟?
从第一节到第13节需10×(13-1)=120秒,120÷60=2分。

5.在花圃的周围方式菊花,每隔1米放1盆花。花圃周围共20米长。需放多少盆菊花?
20÷1×1=20盆

6.从发电厂到闹市区一共有250根电线杆,每相邻两根电线杆之间是30米。从发电厂到闹市区有多远?
30×(250-1)=7470米。

7.王老师把月收入的一半又20元留做生活费,又把剩余钱的一半又50元储蓄起来,这时还剩40元给孩子交学费书本费。他这个月收入多少元?
[(40+50) ×2+20] ×2=400(元)答:他这个月收入400元。

8.一个人沿着大提走了全长的一半后,又走了剩下的一半,还剩下1千米,问:大提全长多少千米?
1×2×2=4千米

9.甲在加工一批零件,第一天加工了这堆零件的一半又10个,第二天又加工了剩下的一半又10个,还剩下25个没有加工。问:这批零件有多少个?
(25+10)×2=70个,(70+10)×2=160个。综合算式:【(25+10)×2+10】×2=160个

10.一条毛毛虫由幼虫长到成虫,每天长一倍,16天能长到16厘米。问它几天可以长到4厘米?
16÷2÷2=4(厘米),16-1-1=14(天)

11.一桶水,第一次倒出一半,然后倒回桶里30千克,第二次倒出桶中剩下水的一半,第三次倒出180千克,桶中还剩下80千克。桶里原来有水多少千克?
180+80=260(千克),260×2-30=490(千克),490×2=980(千克)。

12.甲、乙两书架共有图书200本,甲书架的图书数比乙书架的3倍少16本。甲、乙两书架上各有图书多少本?
答案:乙:(200+16)÷(3+1)=54(本);甲:54×3-16=146(本)。

13.小燕买一套衣服用去185元,问上衣和裤子各多少元?
裤子:(185-5)÷(2+1)=60(元);
上衣:60×2+5=125(元)。

14.甲、乙、丙三人年龄之和是94岁,且甲的2倍比丙多5岁,乙2倍比丙多19岁,问:甲、乙、丙三人各多大?
如果每个人的年龄都扩大到2倍,那么三人年龄的和是94×2=188。如果甲再减少5岁,乙再减少19岁,那么三人的年龄的和是188-5-19=164(岁),这时甲的年龄是丙的一半,即丙的年龄是甲的两倍。同样,这时丙的年龄也是乙两倍。所以这时甲、乙的年龄都是164÷(1+1+2)=41(岁),即原来丙的年龄是41岁。甲原来的年龄是(41+5)÷2=23(岁),乙原来的年龄是(41+19)÷2=30(岁)。

15.小明、小华捉完鱼。小明说:“如果你把你捉的鱼给我1条,我的鱼就是你的2倍。如果我给你1条,咱们就一样多了。“请算出两个各捉了多少条鱼。
小明比小华多1×2=2(条)。如果小华给小明1条鱼,那么小明比小华多2+1×2=4(条),这时小华有鱼4÷(2-1)=4(条)。原来小华有鱼4+1=5(条),原来小明有鱼5+2=7(条)。

16.小芳去文具店买了13本语文书,8本算术书,共用去10元。已知6本语文本的价钱与4本算术本的价钱相等。问:1本语文本、1本算术本各多少钱?
8÷4×6=12,即8本算术本与12本语文体价钱相等。所以1本语文本值10×100÷(13+12)=40(分),1本算术本值40×6÷4=60(分),即1本语文本4角,1本算术本6角。

17.找规律,在括号内填入适当的数. 75,3,74,3,73,3,(),()。
答案:72,3。

18找规律,在括号内填入适当的数. 1,4,5,4,9,4,(),()。
奇数项构成数列1,5,9……,每一项比前一项多4;偶数项都是4,所以应填13,4

19.找规律,在括号内填入适当的数. 3,2,6,2,12,2,(),()。
24,2。

20.找规律,在括号内填入适当的数. 76,2,75,3,74,4,(),()。
答案:将原数列拆分成两列,应填:73,5。

21.找规律,在括号内填入适当的数. 2,3,4,5,8,7,(),()。
答案:将原数列拆分成两列,应填:16,9。

22.找规律,在括号内填入适当的数. 3,6,8,16,18,(),()。
答案:6=3×2,16=8×2,即偶数项是它前面的奇数项的2倍;又8=6+2,18=16+2,即从第三项起,奇数项比它前面的偶数项多2.所以应填:36,38。

23.找规律,在括号内填入适当的数. 1,6,7,12,13,18,19,(),()。
答案:将原数列拆分成两列,应填:24,25。

24.找规律,在括号内填入适当的数. 1,4,3,8,5,12,7,()。
答案:奇数项构成数列1,3,5,7,…,每一项比前一项多2;偶数项构成数列4,8,12,…,每一项比前一项多4,所以应填:16。

25.找规律,在括号内填入适当的数. 0,1,3,8,21,55,(),()。
答案:144,377。

26.A、B、C、D四人在一场比赛中得了前4名。已知D的名次不是最高,但它比B、C都高,而C的名次也不比B高。问:他们各是第几名?
答案:D名次不是最高,但比B、C高,所以它是第2名,A是第1名。C的名次不比B高,所以B是第3名,C是第4名。

27.一头象的重量等于4头牛的重量,一头牛的重量等于3匹小马的重量,一匹小马的重量等于3头小猪的重量。问:一头象的重量等于几头小猪的重量?
答案:4×3×3=36,所以一头象的重量等于36头小猪的重量。

28.甲、乙、丙三人,一个人喜欢看足球,一个人喜欢看拳击,一个人喜欢看篮球。已知甲不爱看篮球,丙既不喜欢看篮球又不喜欢看足球。现有足球、拳击、篮球比赛的入场券各一张。请根据他们的爱好,把票分给他们。
答案:丙不喜欢看篮球与足球,应将拳击入场券给丙。甲不喜欢看篮球,应将足球入场券给甲。最后,应将篮球入场券给乙。

29.有一堆铁块和铜块,每块铁块重量完全一样,每块铜块的重量也完全一样。3块铁快和5块铜块共重210克。4块铁块和10块铜块共重380克。问:每一块铁块、每一块铜块各重多少?
答案:4块铁块和10块铜块共重380克,所以2块铁块和5块铜块共重380÷2=190(克)。而3块铁块和5块铜块共重210克,所以1块铁块重210-190=20(克)。1铜块重(190-20×2)÷5=30(克)。

30.甲、乙、丙三人中有一人做了一件好事。他们各自都说了一句话,而其中只有一句是真的。甲说:“是乙做的。” 乙说:“不是我做的。” 丙说:“也不是我做的。” 问:到底是谁做的好事?
答案:如果是甲做的好事,那么乙、丙的话都是真的,与只有一句是真的矛盾。如果是乙做的好事,那么甲、丙的话都是真的,也产生矛盾。好事是丙做的,这时甲、丙的话都是错的,只有乙的话是真的,所以好事是丙做的。

31.一张长8分米、宽3分米的长方形纸板,在四个角落上各截去一个边长为2分米的正方形,所剩下的部分的周长是多少?
答:(8+3)×2=22(分米)

32.计算 :18+19+20+21+22+23
原式=(18+23)×6÷2=123

33.计算 :100+102+104+106+108+110+112+114
原式=(100+114) ×8÷2=856

34.995+996+997+998+999
原式=(995+999) ×5÷2=4985

35.:(1999+1997+1995+…+13+11)-(12+14+16+…+1996+1998)
第一个括号内的项数为(1999-11)÷2+1=995,所以原式=(1999-1998)+(1997-1996)+…+(13-12)+11=1×994+11=1005

采纳哦

㈦ 三年级奥数题100道。及答案

小学三年级奥数题
乘除法中的速算

三年级乘除法中的速算(2)
小学三年级奥数题:乘除法中的速算(2)

三年级乘除法中的速算(3)
小学三年级奥数题:乘除法中的速算(3)

三年级奥数题:吨的认识、测量

小学三年级奥数题:差倍问题(1)
小学三年级奥数题:差倍问题(1)

小学三年级奥数题:差倍问题(2)
小学三年级奥数题:差倍问题(2)

小学三年级奥数题:差倍问题(3)
小学三年级奥数题:差倍问题(3)

小学三年级奥数题:差倍问题(4)
小学三年级奥数题:差倍问题(4)

三年级奥数题:加减法的验算
小学三年级奥数题:加减法的验算

三年级奥数题:循环问题(1)
小学三年级奥数题:循环问题(1)

三年级奥数题:循环问题(2)
小学三年级奥数题:循环问题(2)

小学三年级奥数题:循环问题(3)
三年级奥数题:循环问题(3)

三年级奥数题:年月日问题(1)

三年级奥数题:年月日问题(1)

三年级奥数题:年月日问题(2)
三年级奥数题:年月日问题(2)

三年级奥数题:火柴棒问题
三年级奥数题:火柴棒问题

三年级奥数题:和差倍数问题(1)
1、南京长江大桥共分两层,上层是公路桥,下层是铁路桥。铁路桥和公路桥共长11270米,铁路桥比公路桥长2270米,问南京长江大桥的公路和铁路桥各长多少米?

分析:和差基本问题,和1127米,差2270米,大数=(和+差)/2,小数=(和-差)/2。

解:铁路桥长=(11270+2270)/2=6770米,公路桥长=(11270-2270)/2=4500米。

2、三个小组共有180人,一、二两个小组人数之和比第三小组多20人,第一小组比第二小组少2人,求第一小组的人数。

分析:先将一、二两个小组作为一个整体,这样就可以利用基本和差问题公式得出第一、二两个小组的人数和,然后对第一、二两个组再作一次和差基本问题计算,就可以得出第一小组的人数。

解:一、二两个小组人数之和=(180+20)/2=100人,第一小组的人数=(100-2)/2=49人。

3、甲、乙两筐苹果,甲筐比乙筐多19千克,从甲筐取出多少千克放入乙筐,就可以使乙筐中的苹果比甲筐的多3千克?

分析:从甲筐取出放入乙筐,总数不变。甲筐原来比乙筐多19千克,后来比乙筐少3千克,也即对19千克进行重分配,甲筐得到的比乙筐少3千克。于是,问题就变成最基本的和差问题:和19千克,差3千克。

解:(19+3)/2=11千克,从甲筐取出11千克放入乙筐,就可以使乙筐中的苹果比甲筐的多3千克。
三年级奥数题:和差倍数问题(2)
1、在一个减法算式里,被减数、减数与差的和等于120,而减数是差的3倍,那么差等于多少?

分析:被减数=减数+差,所以,被减数和减数与差的和就各自等于被减数、减数与差的和的一半,即:

被减数=减数+差=(被减数+减数+差)/2。因此,减数与差的和= 120/2=60。这样就是基本的和倍问题了。小数=和/(倍数+1)

解:减数与差的和=120/2=60,差=60/(3+1)=15。

2、已知两个数的商是4,而这两个数的差是39,那么这两个数中较小的一个是多少?

分析:两个数的商是4,即大数是小数的4倍,因此,这是一个基本的差倍问题。小数=差/(倍数-1)。

解:两个数中较小的一个=39/(4-1)=13。

3、姐姐做自然练习比妹妹做算术练习多用48分钟,比妹妹做英语练习多用42分钟,妹妹做算术、英语两门练习共用了44分钟,那么妹妹做英语练习用了多少分钟?

分析:姐姐做自然练习的时间是一定的,比妹妹做算术和英语的时间分别差了48分和42分,说明妹妹做英语比做算术多用了48-42=6分钟,仍然是一个和差问题。

解:妹妹做英语练习用时=(44+6)/2=25分钟。

三年级奥数题:和差倍数问题(3)
1、已知△,○,□是三个不同的数,并且△+△+△=○+○,○+○+○+○=□+□+□,△+○+○+□=60,那么△+○+□等于多少?

分析:由一、二可知,□是△的2倍,将它代换到三中,就是三个△加2个○等于60,而△+△+△=○+○,所以,△+△+△=○+○=60/2=30,△=10,○=15,□=20。

解:△+○+□=10+15+20=45。

2、用中国象棋的车、马、炮分别表示不同的自然数。如果,车÷马=2,炮÷车=4,炮-马=56,那么“车+马+炮”等于多少?

分析:车÷马=2,车是马的2倍;炮÷车=4,炮是车的4倍,是马的8倍;炮-马=56,炮比马大56。差倍问题。

解:马=56/(8-1)=8,炮=56+8=64,车=8*2=16,车+马+炮=8+64+16=88。

3、聪聪用10元钱买了3支圆珠笔和7本练习本,剩下的钱若买一支圆珠笔就少1角4分;若买一本练习本还多8角,问一支圆珠笔的售价是多少元?

分析:剩下的钱若买一支圆珠笔就少1角4分;若买一本练习本还多8角,说明圆珠笔比练习本贵1角4分+8角=9角4分,那么,3支圆珠笔就要比三本练习本贵94*3=282分=2元8角2分,这样,就相当于在10元中扣除2元8角2分加8角,正好可以买11本练习本,所以,每本练习本的价钱是(1000-282-80)/11=58分=5角8分。

解:圆珠笔-练习本=14+80=94分,每本练习本的价钱是(1000-94*3-80)/11=58分=5角8分,圆珠笔的售价=58+94=152分=1元5角2分。
三年级奥数题:和差倍数问题(4)
1、甲、乙两位学生原计划每天自学的时间相同,若甲每天增加自学时间半小时,乙每天减少自学时间半小时,则乙自学6天的时间仅相等于甲自学一天的时间。问:甲、乙原订每天自学的时间是多少分钟?

分析:甲每天增加自学时间半小时,乙每天减少自学时间半小时,甲比乙多自学一个小时,乙自学6天的时间仅相等于甲自学一天的时间,甲是乙的6倍,差倍问题。

解:乙每天减少半小时后的自学时间=1/(6-1)=1/5小时=12分钟,乙原计划每天自学时间=30+12=42分钟,甲原计划每天自学时间=12*6-30=42分钟。

2、一大块金帝牌巧克力可以分成若干大小一样的正方形小块。小明和小强各有一大块金帝巧克力,他们同时开始吃第一小块巧克力。小明每隔20分钟吃1小块,14时40分吃最后1小方块;小强每隔30分钟吃1小块,18时吃最后1小方块。那么他们开始吃第1小块的时间是几时几分?

分析:小明每隔20分钟吃1小块,小强每隔30分钟吃1小块,小强比小明多间隔10分钟,小明14时40分吃最后1小方块,小强18时吃最后1小方块,小强比小明晚3小时20分,说明在吃最后一块前面共有(3*60+20)/10=20个间隔,即已经吃了20块。那么,20*20=400分钟=6小时40分钟,14时40分-6小时40分=8时。

解:18时-14时40分=3小时20分=3*60+20=200分钟,已经吃的块数=200/(30-20)=20块,小明吃20块用时20*20=400分钟=6小时40分钟,开始吃第一块的时间为14时40分-6小时40分=8时。
三年级奥数题:速算与巧算
【试题】巧算与速算:41×49=( )

【详解】相乘的两个数都是两位数,且十位上的数字相同,个位上的数字之和正好是10,这就可以运用“头同尾合十”的巧算法进行简便计算。

“头同尾合十”的巧算方法是:用十位上的数字乘十位上的数字加1的积,再乘100,最后加上个位上2个数字的乘积。

41×49,先用(4+1)×4=20,将20作为积的前两位数字,再用1×9=9,可以发现末位数字相乘的积是一位数,那就在9的前面补一个0,作为积的后两位数字。这样答案很简单的就求出了,即41×49=(4+1)×4×100+1×9=2009。

三年级奥数题:植树问题

【试题】一块三角形地,三边分别长156米,234米,186米,要在三边上植树,株距6米,三个角的顶点上各植上1棵数,共植树( )棵。

【详解】此题植树线路是封闭的,这类题的特点是:因为头尾两端重合在一起,所以棵数等于分成的段数。题中要求三角形三个顶点上要各栽一棵树,因此我们要按照三条边来考虑。因为156÷6=26(段),186÷6=31(段),234÷6=39(段),所以每边恰好分成了整数段,这样,从周长来讲,应栽树的棵数与段数相等。即共植树:26+31+39=96(棵)。

三年级奥数应用题解题技巧(1)
【试题】一台拖拉机5小时耕地40公顷,照这样的速度,耕72公顷地需要几小时?

【详解】要求耕72公顷地需要几小时,我们就要先求出这台拖拉机每小时耕地多少公顷?

(1)每小时耕地多少公顷?

40÷5=8(公顷)

(2)需要多少小时?

72÷8=9(小时)

答:耕72公顷地需要9小时。

三年级奥数应用题解题技巧(2)
【试题】纺织厂运来一堆煤,如果每天烧煤1500千克,6天可以烧完。如果每天烧1000千克,可以多烧几天?

【详解】要想求可以多烧几天,就要先知道这堆煤每天烧1000千克可以烧多少天;而要求每天烧1000千克,可以烧多少天,还要知道这堆煤一共有多少千克。

(1)这堆煤一共有多少千克?

1500×6=9000(千克)

(2)可以烧多少天?

9000÷1000=9(天)

(3)可以多烧多少天?

9-6=3(天)。
三年级奥数应用题解题技巧(3)
【试题】把7本相同的书摞起来,高42毫米。如果把28本这样的书摞起来,高多少毫米?(用不同的方法解答)

【详解】

方法1:

(1)每本书多少毫米?

42÷7=6(毫米)

(2)28本书高多少毫米?

6×28=168(毫米)

方法2:

(1)28本书是7本书的多少倍?

28÷7=4

(2)28本书高多少毫米?

42×4=168(毫米)
三年级奥数应用题解题技巧(4)
【试题】两个车间装配电视机。第一车间每天装配35台,第二车间每天装配37台。照这样计算,这两个车间15天一共可以装配电视机多少台?

【详解】

方法1:

(1)两个车间一天共装配多少台?

35+37=72(台)

(2)15天共可以装配多少台?

72×15=1080(台)

方法2:

(1)第一车间15天装配多少台?

35×15=525(台)

(2)第二车间15天装配多少台?

37×15=555(台)

(3)两个车间一共可以装配多少台?

555+525=1080(台)

答:15天两个车间一共可以装配1080台。
三年级奥数应用题解题技巧(5)
【试题】同学们到车站义务劳动,3个同学擦12块玻璃。(补充不同的条件求问题,编成两道不同的两步计算应用题)。

补充1:“照这样计算,9个同学可以擦多少块玻璃?”

【详解】

(1)每个同学可以擦几块玻璃?

12÷3=4(块)

(2)9个同学可以擦多少块?

4×9=36(块)

答:9个同学可以擦36块。

补充2:“照这样计算,要擦40块玻璃,需要几个同学?”

【详解】

(1)每个同学可以擦几块玻璃?

12÷3=4(块)

(2)擦40块需要几个同学?

40÷4=10(个)

答:擦40块玻璃需要10个同学。
三年级奥数应用题解题技巧(6)
【试题】小华每分拍球25次,小英每分比小华少拍5次。照这样计算,小英5分拍多少次?小华要拍同样多次要用几分?

【解析】

(1)小英每分拍多少次?

25-5=20(次)

(2)小英5分拍多少次?

20×5=100(次)

(3)小华要几分拍100次?

100÷25=4(分)

答:小英5分拍100次,小华要拍同样多次要用4分。
三年级奥数应用题解题技巧(7)
【试题】刘老师搬一批书,每次搬15本,搬了12次,正好搬完这批书的一半。剩下的书每次搬20本,还要几次才能搬完?

【解析】

(1)12次搬了多少本?

15×12=180(本)

搬了的与没搬的正好相等

(2)要几次才能把剩下的搬完?

180÷20=9(次)

答:还要9次才能搬完。

㈧ 三年级奥数题及答案100道

最低0.27元开通文库会员,查看完整内容>
原发布者:小泥巴cyn
01、40个梨分给3个班,分给一班20个,其余平均分给二班和三班,二班分到()个。【解析】分给一班后还剩下40-20=20个梨,因为其余平均分给二班和三班,所以二班分到20÷2=10个。02、7年前,妈妈年龄是儿子的6倍,儿子今年12岁,妈妈今年()岁。【解析】年龄问题,7年前,儿子年龄为12-7=5岁,而妈妈年龄是儿子的6倍,所以妈妈七年前的年龄为5×6=30岁,那么妈妈今年37岁。03、同学们进行广播操比赛,全班正好排成相等的6行。小红排在第二行,从头数,她站在第5个位置,从后数她站在第3个位置,这个班共有()人【解析】站队问题,要注意不要忽略本身。从头数,她站在第5个位置,说明她前面有5-1=4个人,从后数她站在第3个位置,说明她后面有3-1=2人,所以这一行的人数为4+2+1=7人,所以这个班的人数为7×6=42人。04、有一串彩珠,按“2红3绿4黄”的顺序依次排列。第600颗是()颜色。【解析】周期循环问题,以2+3+4=9个一循环,600÷9=66....6,余数为6,所以第600颗是黄颜色。05、用一根绳子绕树三圈余30厘米,如果绕树四圈则差40厘米,树的周长有()厘米,绳子长()厘米。【解析】绕树三圈余30厘米,绕树四圈则差40厘米,所以树的周长为30+40=70厘米,绳子长为3×70+30=240厘米。06、一只蜗牛在12米深的井底向上爬,每小时爬上3米后要滑下2米,这只蜗牛要()小时才能爬出井口。【解析】每小时爬上3米后要滑下2米,相当于每小时向上爬了1米,那么7小时后,蜗牛向上爬

阅读全文

与小学三年级奥数题及答案相关的资料

热点内容
小学读书计划表格模板 浏览:342
小学语文四年级感叹句 浏览:243
天通苑中山实验小学 浏览:596
小学三年级语文补习班内容 浏览:921
吉安师范附属小学作文 浏览:396
小学教师备课网站 浏览:1
私立美男学院 浏览:383
小学六年级上册语文第六单元试卷凉州岛 浏览:915
小学1年级手gong大全 浏览:459
小学生手抄报的图片大全图片大全 浏览:68
小学健康知识讲座 浏览:120
小学毕业季适合发老师的句子 浏览:451
汕尾凤山中心小学校长 浏览:606
小学生毕业汇演舞蹈 浏览:702
小学生抗击疫情的表演 浏览:107
私立华联大学本科 浏览:61
小学三年级作文我想谢谢你400 浏览:855
中小学生睡眠问题 浏览:174
小学生公共生活守规则教案 浏览:313
淮河私立学校 浏览:99