A. 五年级奥数书出了举一反三,还有更好的吗
小学奥数体系大同小异 每本书都有出色之处 不要执着新教材,注意学习方法就好
B. 奥数题【举一反三五年级的】,快
1、一次考试,甲、乙、丙三人平均分91分,乙、丙、丁三人平均分89分,甲、丁二人平专均分95分。问属:甲、丁各得多少分?
甲乙丙总分是
91×3=273分
乙丙丁总分是
89×3=267分
甲丁总分是
95×2=190分
乙丙总分是
(273+267-190)÷2=175分
甲得分
273-275=98分
丁得分
267-175=92分
2、甲、乙、丙、丁四人称体重,乙、丙、丁三人共重120千克,甲、丙、丁三人共重126千克,丙、丁二人的平均体重是40千克。求四人的平均体重是多少千克?
丙丁共重
40×2=80千克
甲乙丙丁共重
120+126-80=166千克
四人的平均体重是
166÷4=41.5千克
3、甲、乙、丙三个小组的同学去植树,甲、乙两组平均每组植树18棵,甲、丙两组平均每组植树17棵,乙、丙两组平均每组植树19棵。三个小组各植树多少棵?
甲乙共植树
18×2=36棵
甲丙共植树
17×2=34棵
乙丙共植树
19×2=38棵
甲乙丙共植树
(36+34+38)×2=54棵
甲植树
54-38=16棵
乙植树
54-34=20棵
丙植树
54-36=18棵
C. 小学奥数《举一反三》五年级B版答案!!急!!!!!!!!!!!!!!!!!!
120x5=600(米) 120-100=20(米) 600÷20=30(分) 30x100=3000(米)
D. 五年级奥数举一反三小学奥数举一反三5年级一般应用题(2)练3的答案
1.404-(90+89+88+87)=50(分)
答:得分最少的选手至少得50分。
2.4×3+8=20(分)
4×5=20(分)
20+20=40(分)40分=4角
1元-4角=6角
答:最多可以买1角的邮票6张。
3.60-[(60-42)+(60-46)+(60-50)+(60-55)]
=60-47
=13(人)
答:至少有13人四项都会。
E. 我想要小学五年级奥数举一反三的目录及里面的试题、A版,尽快.全部.
举一反三有2种版本,一种是单墫主编的由长春出版社出版的,另外一种是专由蒋顺和李济元主属编的由陕西教育出版社出版的,第一种的题目比第二种的复杂,但有些题目解答的不是很充分,第二种容易上手,讲得很透彻.不过您说的A版,我想应该是陕西出版社的,目录如下:
1、平均数
2.平均数
3.长方形,正方形的周长
4.长方形,正方形的面积
5.分类数图形
6尾数和余数
7.一般应用题
8,一般应用题
9.一般应用题
10.数阵
11.周期问题
12.盈亏问题
13.长方体和正方体
14.长方体和正方体
15.长方体和正方体
16.倍数问题
17.倍数问题
18.组合图形面积
19组合图形面积
20数字趣味篇
21假设法解题
22作图法解题
23分解质因数
24分解质因数
25最大公约数
26最小公倍数
27最小公倍数
28行程问题
29行程问题
30行程问题
31行程问题
32算式谜
33包含与排除
34置换问题
35估值问题
36火车行程问题
37简单举例
38最大最小问题
39推理问题
40杂题
F. 小学奥数举一反三五年级
【试题】:浓度为%的酒精溶液200g,与浓度为30%的酒精溶液300g,混合后所得到的酒精溶液的浓度是( )。
【分析】:
溶液质量=溶质质量+溶剂质量
溶质质量=溶液质量×浓度
浓度=溶质质量÷溶液质量
溶液质量=溶质质量÷浓度
要求混合后的溶液浓度,必须求出混合后溶液的总质量和所含纯酒精的质量。
混合后溶液的总质量,即为原来两种溶液质量的和:
200+300=500(g)。
混合后纯酒精的含量等于混合前两种溶液中纯酒精的和:
200×60%+300×30%=120+90=210(g)
那么混合后的酒精溶液的浓度为:
210÷500=42%
【解答】:混合后的酒精溶液的浓度为42%。
【点津】:当两种不同浓度的溶液混合后,其中的溶液总量和溶质总量是不变的。
【试题】甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵。已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树。两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?
【解析】总棵数是900+1250=2150棵,每天可以植树24+30+32=86棵
需要种的天数是2150÷86=25天
甲25天完成24×25=600棵
那么乙就要完成900-600=300棵之后,才去帮丙
即做了300÷30=10天之
即第11天从A地转到B地。
【试题】有三块草地,面积分别是5,15,24亩。草地上的草一样厚,而且长得一样快。第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?
【解析】这是一道牛吃草问题,是比较复杂的牛吃草问题。
把每头牛每天吃的草看作1份。
因为第一块草地5亩面积原有草量+5亩面积30天长的草=10×30=300份
所以每亩面积原有草量和每亩面积30天长的草是300÷5=60份
因为第二块草地15亩面积原有草量+15亩面积45天长的草=28×45=1260份
所以每亩面积原有草和每亩面积45天长的草是1260÷15=84份
所以45-30=15天,每亩面积长84-60=24份
所以,每亩面积每天长24÷15=1.6份
所以,每亩原有草60-30×1.6=12份
第三块地面积是24亩,所以每天要长1.6×24=38.4份,原有草就有24×12=288份
新生长的每天就要用38.4头牛去吃,其余的牛每天去吃原有的草,那么原有的草就要够吃80天,因此288÷80=3.6头牛
所以,一共需要38.4+3.6=42头牛来吃。
两种解法:
解法一
设每头牛每天的吃草量为1,则每亩30天的总草量为:10*30/5=60;每亩45天的总草量为:28*45/15=84那么每亩每天的新生长草量为(84-60)/(45-30)=1.6每亩原有草量为60-1.6*30=12,那么24亩原有草量为12*24=288,24亩80天新长草量为24*1.6*80=3072,24亩80天共有草量3072+288=3360,所有3360/80=42(头)。
解法二:10头牛30天吃5亩可推出30头牛30天吃15亩,根据28头牛45天吃15木,可以推出15亩每天新长草量(28*45-30*30)/(45-30)=24;15亩原有草量:1260-24*45=180;15亩80天所需牛180/80+24(头)24亩需牛:(180/80+24)*(24/15)=42头。
【试题】 某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元。在保证一星期内完成的前提下,选择哪个队单独承包费用最少?
【解析】甲乙合作一天完成1÷2.4=5/12,支付1800÷2.4=750元
乙丙合作一天完成1÷(3+3/4)=4/15,支付1500×4/15=400元
甲丙合作一天完成1÷(2+6/7)=7/20,支付1600×7/20=560元
三人合作一天完成(5/12+4/15+7/20)÷2=31/60,
三人合作一天支付(750+400+560)÷2=855元
甲单独做每天完成31/60-4/15=1/4,支付855-400=455元
乙单独做每天完成31/60-7/20=1/6,支付855-560=295元
丙单独做每天完成31/60-5/12=1/10,支付855-750=105元
所以通过比较
选择乙来做,在1÷1/6=6天完工,且只用295×6=1770元
【试题】一个圆柱形容器内放有一个长方形铁块。现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面。再过18分钟水已灌满容器。已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比。
【解析】把这个容器分成上下两部分,根据时间关系可以发现,上面部分水的体积是下面部分的18÷3=6倍
上面部分和下面部分的高度之比是(50-20):20=3:2
所以上面部分的底面积是下面部分装水的底面积的6÷3×2=4倍
所以长方体的底面积和容器底面积之比是(4-1):4=3:4
【独特解法】
(50-20):20=3:2,当没长方体时灌满20厘米就需要时间18*2/3=12(分),
所以,长方体的体积就是12-3=9(分钟)的水量,因为高度相同,
所以体积比就等于底面积之比,9:12=3:4
【试题】甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售。两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?
【解析】把甲的套数看作5份,乙的套数就是6份。
甲获得的利润是80%×5=4份,乙获得的利润是50%×6=3份
甲比乙多4-3=1份,这1份就是10套。
所以,甲原来购进了10×5=50套。
【试题】有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5。经过2+1/3小时,A,B两池中注入的水之和恰好是一池。这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?
【解析】把一池水看作单位“1”。
由于经过7/3小时共注了一池水,所以甲管注了7/12,乙管注了5/12。
甲管的注水速度是7/12÷7/3=1/4,乙管的注水速度是1/4×5/7=5/28。
甲管后来的注水速度是1/4×(1+25%)=5/16
用去的时间是5/12÷5/16=4/3小时
乙管注满水池需要1÷5/28=5.6小时
还需要注水5.6-7/3-4/3=29/15小时
即1小时56分钟
【继续再做一种方法】:
按照原来的注水速度,甲管注满水池的时间是7/3÷7/12=4小时
乙管注满水池的时间是7/3÷5/12=5.6小时
时间相差5.6-4=1.6小时
后来甲管速度提高,时间就更少了,相差的时间就更多了。
甲速度提高后,还要7/3×5/7=5/3小时
缩短的时间相当于1-1÷(1+25%)=1/5
所以时间缩短了5/3×1/5=1/3
所以,乙管还要1.6+1/3=29/15小时
【再做一种方法】:
①求甲管余下的部分还要用的时间。
7/3×5/7÷(1+25%)=4/3小时
②求乙管余下部分还要用的时间。
7/3×7/5=49/15小时
③求甲管注满后,乙管还要的时间。
49/15-4/3=29/15小时
【试题】小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校。小明从家到学校全部步行需要多少时间?
【解析】爸爸骑车和小明步行的速度比是(1-3/10):(1/2-3/10)=7:2
骑车和步行的时间比就是2:7,所以小明步行3/10需要5÷(7-2)×7=7分钟
所以,小明步行完全程需要7÷3/10=70/3分钟。
【试题】 甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离。乙车的速度是甲车速度的80%。已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地。最后乙车比甲车迟4分钟到C地。那么乙车出发后几分钟时,甲车就超过乙车。
【解析】乙车比甲车多行11-7+4=8分钟。
说明乙车行完全程需要8÷(1-80%)=40分钟,甲车行完全程需要40×80%=32分钟
当乙车行到B地并停留完毕需要40÷2+7=27分钟。
甲车在乙车出发后32÷2+11=27分钟到达B地。
即在B地甲车追上乙车。
【试题】甲、乙两辆清洁车执行东、西城间的公路清扫任务。甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?
【解析】甲车和乙车的速度比是15:10=3:2
相遇时甲车和乙车的路程比也是3:2
所以,两城相距12÷(3-2)×(3+2)=60千米
纯手打打1小时为了100分不容易啊!!!!!!!!!!!!!!!!!!!!
G. 谁有小学五年级数学《举一反三》的奥数题
1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成.如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九.现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成.现在先请甲、丙合做2小时后,余下的乙还需做6小时完成.乙单独做完这件工作要多少小时?4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天.已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?5.师徒俩人加工同样多的零件.当师傅完成了1/2时,徒弟完成了120个.当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵.单份给男生栽,平均每人栽几棵?7.一个池上装有3根水管.甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完.现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?答案为6天9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?
H. 小学五年级奥数举一反三A版25周答案
第25周 最大公约数
专题简析:
几个数公有的约数叫做这几个数的公约数,其中最大的一个叫做这几个数的最大公约数。我们可以把自然数a、b的最公约数记作(a、b),如果(a、b)=1,则a和b互质。
求几个数的最大公约数可以用分解质因数和短除法等方法。
例题1 一张长方形的纸,长7分米5厘米,宽6分米。现在要把它裁成一块块正方形,而且正方形边长为整厘米数,有几种裁法?如果要使裁得的正方形面积最大,可以裁多少块?
分析 7分米5厘米=75厘米,6分米=60厘米。因为裁成的正方形的边长必须能同时整除75和60,所以边长是75和60的公约数。75和60的公约数有1、3、5、15,所以有4种裁法。
如果要使正方形面积最大,那么边长也应该最大,应该取75和60的最大公约数15作为正方形的边长,所以可以裁(75÷15)×(60÷15)=20块。
练习一
1,把1米3分米5厘米长、1米5厘米宽的长方形纸,裁成同样大小的正方形,至少能裁多少块?
2,一块长45厘米、宽30厘米的长方形木板,把它锯成若干块正方形而无剩余,所锯成的正方形的边长最长是多少厘米?
3,将一块长80米、宽60米的长方形土地划分成面积相等的小正方形,小正方形的面积最大是多少?
例题2 一个长方体木块,长2.7米,宽1.8分米,高1.5分米。要把它切成大小相等的正方体木块,不许有剩余,正方体的棱长最大是多少分米?
分析 2.7米=270厘米,1.8分米=18厘米,1.5分米=15厘米。要把长方体切成大小相等的正方体,不许有剩余,正方体的棱长应该是长、宽、高的公约数。现要求正方体的棱长最大,所以棱长就是长、宽、高的最大公约数。
(270,18,15)=3,3厘米=0.3分米
练习二
1,一个长方体木块的长是4分米5厘米、宽3分米6厘米、高2分米4厘米。要把它切成大小相等的正方体木块,不许有剩余,求所切正方体木块的棱长最长是多少厘米?
2,有50个梨,75个橘子和100个苹果,要把这些水果平均分给几个小组,并且每个小组分得的三种水果的个数也相同,最多可以分给几个小组?
3,五年级三个班分别有24人、36人、42人参加体育活动,要把他们分成人数相等的小组,但各班同学不能打乱,最多每组多少人?每班各可以分几组?
例题3 有三根钢管,它们的长度分别是240厘米、200厘米和480厘米,如果把它们截成同样长的小段,每小段最长可以是多少厘米?
分析 要把三根钢管截成同样长的小段,每小段的长度数应该是240、200和480的公约数,而每小段要取最长,也就是求240、200和480的最大公约数。240、200和480的最大公约数是40,所以每小段最长是40厘米。
练习三
1,有一个长方体木块,长60厘米、宽40厘米,高24厘米。如果要切成同样大小的小正方体,这些正方体的棱长最长是多少厘米?
2,用一张长1072毫米、宽469毫米的长方形纸,剪成面积相等的正方形,并且最后没有剩余,这些正方形的边长最长是多少?
3,工人加工了三批零件,每加工一批零件,除了王师傅比其他工人多加工若干个外,其他工人加工的都同样多。已知他们第一批共加工2100个,其中王师傅比每个工人多加工7个;第二批加工1800个,其中王师傅比每个工人多加工6个;第三批加工1600个,其中王师傅比每个工人多加工13个。这批工人最多有多少人?
例题4 一条道路由甲村经过乙村到丙村。已知甲、乙村相距360米,乙、丙村相距675米。现在准备在路边裁树,要求相邻两棵树之间距离相等,并在甲、乙两村和乙、丙两村的中点都要种上树,求相邻两棵树之间的距离最多是多少米?
分析 由于甲乙、乙丙的两村中点各要种上一棵树,所要要将360÷2=180米、675÷2=337.5米平均分成若干段,并且使每段的长度最长。因为(675、360)=45,而180=360÷2,337.5=675÷2,所以,45÷2=22.5,即相邻两棵树之间距离最多是22.5米。
练习四
1,一条公路由A经B到C。已知A、B相距300米,B、C相距215米。现在路边植树,要求相邻两树间的距离相等,并在B点及AB、BC的中点上都要植一棵,那么两树间的距离最多有多少米?
2,有336支铅笔,252块橡皮,210个文具盒,用这些文具,最多可以分成多少份同样的礼物?在每份礼物中,铅笔、橡皮、文具盒各有多少?
3,甲数是36,甲、乙两数的最小公倍数是288,最大公约数是4,乙数是多少?
例题5 用一张长1072毫米、宽469毫米的长方形纸,剪成面积相等的正方形,并且最后没有剩余,这些正方形的边长最长是多少?
分析 前面的例题已经告诉了我们,解决这道题只要求出长方形长和宽的最大公约数就行了。但是这题中,长和宽的数比较大,最大公约数比较难求出,这里再介绍一种求两个数的最大公约数的方法。
第一步:1072÷469,余134;
第二步:469÷134,余67;
第三步:134÷67,没有余数,所以用67毫米为正方形的边长来剪,正好能剪(1072÷67)×(469÷67)=112个正方形,即这些正方形的边长最大是67毫米。
这种求两个较大数的最大公约数的方法叫辗转相除法。
练习五
1,用辗转相除法求568和1065的最大公约数。
2,试用辗转相除法判断1547与3135是否互质。
3,判断11111/15015是不是最简分数。