『壹』 第14届华杯赛小学组决赛试题的答案
1、2; 2、64; 3、3; 4、26; 5、41; 6、1626; 7、33;
8、37; 9、1~2; 10、10;3,5,8,11
11、36;108,540 12、43 13、25/16 14、159
时间仓促,难免有错
『贰』 13届华杯赛小学组初赛试题
小学组试题
华杯赛网址是www.huabeisai.cn。将其中的字母组成如下算式:
www+hua+bei+sai+cn=2008
如果每版个字权母分别代表0~9这十个数字中的一个,相同的字母代表相同的数字,不同的字母代表不同的数字,并且w=8,h=6,a=9,c=7,则三位数bei
最小值是___________。
答案
888+6u9+bei+s9i+7n=2008
u*10+b*100+e*10+i+s*100+i+n
=2008-888-609-90-70=351
b=1,u*10+e*10+i+s*100+i+n=251
s=2
u*10+e*10+i+i+n=51
i+i+n的和个位是1
i=3
n=5
u*10+e*10=40
e=0
u=4
bei=103
参考资料:http://..com/question/48516002.html?si=2
『叁』 2011第十六届华杯赛决赛试题及答案(小学组) 一等奖的分数线 进入总决赛的分数线
75
『肆』 第九届华杯赛总决赛小学组第二试试题的答案
迟老抄师数袭学天空(新浪博客)
http://blog.sina.com.cn/s/blog_60de50b80100dxeg.html
『伍』 2011年第十六届华杯赛小学组试题答案
【参考答案及详解】
1.
任何四个连续自然数之和一定被4除余2,所以只有102满足条件。
“都为合数”这个条件可以被无视了。
C
2.
容易发现,如果原数字有n根火柴,则对应数字7-n。
原数字的火柴数目依次是2,5,5,4,5,6,3,7,6,6,
包含了2,3,4,5,6,7,共6个不同数字,所以对应的也有6个不同的。
C
3.
这属于和倍问题,大数是小数的6倍,所以它们的和等于小数的7倍,
即小数为6/7,大数为36/7,两数之积为216/49,两数之差为30/7=210/49,
所以差为6/49。
D
4.
任何两人说的话都不能同时为真,所以最多有一个人说的是真话,如果
有一个人复习了,那么李说的是真话,符合题意;如果没有人复习了,
那么张说的是真话,矛盾。
B
5.
看蚂蚁所在的列,可知应该在中间一列,这列上有N和Q;
看蚂蚁所在的行,可知应该在中间一行,所以是N。
B
6.
增加3台计算机,时间变成75%也就是3/4,说明计算机增加到4/3,
增加了1/3,原来有9台;如果减少3台计算机,减少到2/3,时间变为
3/2,增加了1/2,所以原定时间是5/6×2=5/3(小时)。
A
7.
如图所示,有8个。画出其中的两个,其余的完全对称。
8
8.
相遇后,甲还需要3小时返回甲地。第二次相遇时,甲距离相遇点的
距离等于甲2.5小时的路程,乙用了3.5小时走这些路程,所以甲乙速度比
为7:5。甲乙相遇需要3小时,那么乙单独到需要180×12÷5=432分钟。
432
9.
易知夹在平行线之间的△ABM和△EFM面积相等,△CDN和△EFN面积相等。
而△EFM和△EFN的面积之和等于EF×(MO+ON)÷2=26,所以空白部分的面积
总和为52,所求答案为65。
65
10.
显然华=1。
总共有9个数字,也就是说0到9中有一个不能用,根据弃九法,5不能用。
每进一位数字和减少9,0+1+2+3+4+6+7+8+9-(2+0+1+1)=36,所以共进4位。
所以个位和十位之一需要进两位,有两种可能:
(1)个位数字之和为11,十位数字之和为20,百位数字之和为8;
(2)个位数字之和为21,十位数字之和为9,百位数字之和为9。
为了让“华杯初赛”尽量大,“杯”应尽量大,“十”应尽量小。
“十”最少为2,优先考虑情况(2),此时“杯”可以等于7。
剩余数字0,3,4,6,8,9,个位和为21的显然是4+8+9,
十位和为9的剩下0+3+6,所以最大为1769。
不必再考虑(1)了。
1769
『陆』 小学组第十四届华杯赛决赛试题和答案小学组
http://www.jiazhang.cn/viewthread.php?tid=1272&extra=page%3D1 小学的
http://www.jiazhang.cn/viewthread.php?tid=1274&extra=page%3D1 中学的
都是答案,你要题目可以HI我,这下分是我的了吧!回多给点附答加!
『柒』 第三届两岸四地华杯赛小学组试题答案
1.12
2.不清楚
3.82.2
4.50413.5
5.203
6.不清楚
7.9:8
8.290
后面的也不太清楚,望谅解,希望对你有所帮助。
『捌』 第九届华杯赛小学组决赛试题的答案
一、填空(每题10分,如果一题中有两个填空,则每个5分)
题目
1
2
3
4
5
6
答案
1989.5
9
728
18.84
2.4;2.1
1680
二、解答下列各题,写出简要过程(每题10分):
7.解答:李家和王家各养了300头和221头牛.
算术解法:
①李家养牛数的67%是母牛,母牛数应当是整数,67是质数,所以,李家养牛数应当是100的倍数,可能是500、400、300、200或100头,王家养牛数则可能是21、121、221、321和421头.
②王家的牛群中有是母牛,21、121、221、321和421中仅有221能为13整除,所以,王家养牛数是221头,李家养牛数是300头.
代数解法:
①李家的牛群中有67%是母牛,67是质数,可以设李家养牛头数为100x,王家的牛群中仅有是母牛,13是质数,可以设王家养牛数是13y,列出方程
100x+13y=521.…………………………………(*)
②x和y是整数,分别取x=1,2,3,4,5.可以得到x=3,y=13.或者解同余方程(*).
(*)式两边除13,
-4x=1,Mod(13).…………………………(**)
x=3是(**)式的解,得到y=13.
8.解答:M是3.
,
①把最简分数写成循环小数:,
,
②上面6个最简真分数的循环小数节的数字和都是27,2004被27除的余数是6,仅3/7符合要求.
9.解答:小丽最多能买14支圆珠笔,小丽最少能买9支圆珠笔.
方法一:
①买圆珠笔总费用是奇数,所以,买3元1支的圆珠笔的数量必须是奇数.
②高价格的笔买的越少,买圆珠笔的总数量就越多,若3元和4元的圆珠笔只各买1支,则小丽能买(31-4-3)÷2=12支单价2元的圆珠笔,最多能买12+2=14(支)
③类似,低价格笔买的越少,买圆珠笔总的数量就越少,如果小丽2元和3元的圆珠笔计划各买1支,余下的钱有26元,能买6支单价4元的笔,尚余2元,可以再买1支2元的圆珠笔.所以,小丽最少能买9支圆珠笔.
方法二:
①设2元、3元、4元的圆珠笔各买x、y、z支,则:2x+3y+4z=31,……………………(*)
②分析等式(*)的奇偶性,y必须是奇数.因为x,y,z≥1, 3y=31-2x-4z≤25,y≤7.列下表:
y=1
x 12 10 8 6 4 2
z 1 2 3 4 5 6
y=3
x 1 3 5 7 9
z 5 4 3 2 1
y=5
x 2 4 6
z 3 2 1
y=7
x 1 3
z 2 1
从上表,小丽最多能买14支圆珠笔,小丽最少能买9支圆珠笔.
方法三:
①因为x,y,z≥1,所以从(*)式,2x+2y+2z=31-y-2z≤31-3=28,得到x+y+z≤14.
②取x=12,y=1,z=1满足(*)式,且x+y+z=14.小丽最多能买14支圆珠笔.
③类似,4x+4y+4z=31+2x+y≥31+3=34,≥.
取x=2,y=1,z=6满足(*)式,并且,x+y+z=9.小丽最少可以买9支圆珠笔.
10.解答:不同类型的涂法有3种,如下图A.
说明:
①所涂5个阴影方格分布在3行中,只有一行涂有3个阴影方格.同样,仅有一列涂有3个阴影方格.
②所以,仅有一个方格,它所在的行和列均有3个阴影方格,有这种性质的方格称为“特征阴影方格”.“特征阴影方格”在3×3正方格纸中的位置,就唯一地决定了3×3的方格纸的涂法.“特征阴影方格”在方格纸的角上(图A左边)、外边中间的方格(图A中间)和中心的方格(图A右边)三个位置确定了只有3种类型的涂法.
11.解答:60
说明:
①任何三个连续正整数,必有一个能为3整除.所以,任何“美妙数”必有因子3.
②若三个连续正整数中间的数是偶数,它又是完全平方数,必定能为4整除;若中间的数是奇数,则第一和第三个数是偶数,所以任何“美妙数”必有因子4.
③完全平方数的个位只能是1、4、5、6、9和0,若其个位是5和0,则中间的数必能被5整除,若其个位是1和6,则第一个数必能被5整除,若其个位是4和9,则第三个数必能被5整除.所以,任何“美妙数”必有因子5.
④上述说明“美妙数”都有因子3、4、和5,也就有因子60,即所有的美妙数的最大公约数至少是60.60=3×4×5是一个“美妙数”,美妙数的最大公约至多是60.所有的美妙数的最大公约数既不能大于60,又至少是60,只能是60.
12.解答:多面体的表面积是358.
①设长方体长宽高分别为x、y、z无仿设x≥z≥y,它们只能取正整数.长方体的体积是455,则有x×y×z=455,分解455=5×7×13,即:x×y×z=5×7×13(1)
②沿棱拆下的小正方体有455-371=84个,若认为从“长”边拆下的小正方体为(x-1)个,则从每个“宽”边拆下的小正方体为(y-1)个,而从每个“高”边拆下的小正方体为(z-2)个,应当有下面关系式:
4×(x-1+y-1+z-2)=84,x+y+z=25.(2)
分析(1)和(2),既然x,y,z只取正整数,验证x=13,z=7,y=5 是唯一解.
③计算表面积:
方法一:如右图B,拆下沿棱的小正方体后的多面体的表面积由两部分组成:
第一部分是突出在外面的6个平面,总面积是:2×(11×5+11×3+5×3)=206.
第二部分是24个宽都是1的长条,总面积是:8×(11+3+5)=152.
方法二:拆下沿棱的小正方体后的多面体的表面积和原长方体表面积去掉8个顶点处的小正方体的三个侧面的面积相同(想像一下为什么).所以,2×(13×7+13×5+7×5)-3×8=358.
『玖』 求:第十一届“华杯赛”决赛小学组试题 决赛 答案及解析【急~~~】
搜索:“迟老师数学”或“迟老师数学天空”