A. 第七届小学希望杯全国数学邀请赛第二试答案{四年级}
1、计算:1÷50+2÷50+……+98÷50+99÷50= 。
2、2009年1月的月历如图所示,则2009年的“六一”儿童节是星期 。
3、《希望杯数学能力培训教程(四年级)》一书有160页,在它的页码中,数字“2”共出现了 次。
4、将1到35这35个自然数连续地写在一起,够成了一个大数:12345678910011……333435,则这个大数的位数是 。
5、在一次数学测验中,四(2)班的全体同学平均88分,男生平均92分,女生平均82分,则男生人数是女生人数的 倍。
6、图3是著名的汉诺塔,有三个圆盘,按半径从小到大,由上而下地套在A柱上,要将A柱上的三个圆盘移到C柱上(可利用B柱过渡)规定:每次只能移动一个圆盘,并且大圆盘不能在小圆盘的上面,那么,至少要移 次。
7、图中共有 个三角形。
8、如图,将四边形ABCD的四条边分别延长一段,得∠CBE,∠BAH,∠ADG,∠DCF,那么,这四个角的和等于 。
9、若用G(a)表示自然数a的约数的个数,如:自然数6的约数有1、2、3、6,共4个,记作G(6)=4,则G(36)+G(42)= .
10、奥运商品展卖厅的厨窗里放了100个福娃,从左向右依次是:
按此规律,排在第30个的是 。
11、如图所示的算式中,相同的汉字表示相同的一位数字,不同的汉字表示不同的一位数字,则数+学+竞+赛= 或 。
12、小明从家里出发,先向东偏北30°的方向跑了350米到达点A,接着向北偏西30°的方向跑了200米到达点B,然后又向西偏南30°的方向跑了350米到达点C,这时小明距离家 米。
13、希望小学的生物标本室里有蜻蜓,蝉,蜘蛛共11只,它们共有74条腿,10对翅膀,由图知该标本室里有 只蜘蛛。
14、人的头发平均有12万根,如果最多不超过20万根,那么13亿中国人中至少有 人的头发的根数相同。
15、大宝和小贝同时从学校出发去市图书馆,大宝到了图书馆还书,借书,用了半个小时,然后骑车沿原路返回学校,在途中遇到小贝,两人出发时刻与相遇时刻如图所示,则学校与市图书馆距离为( )米。
16、 abcd,abc,ab,a依次表示四位数,三位数,两位数及一位数,
且满足abcd—abc—ab—a= 1787,则这四位数abcde= 或 。
17、百米决赛前,小芳对参赛的五名选手的名次作了预测,比赛的结果同她预测的名次全不相同,由图10知小芳预测为第一名的选手的实际名次是第 名。
18、图11中“风车”(阴影部分)的面积等于 。
19、如图12,边长为4cm的正方形将边长为3cm的正方形遮住了一部分,则空白部分的面积的差等于 。
12
a
B
1
c
d
m
11
n
20、在图13的九个方格中,每行、每列,每条对角线上的三个数的和都相等,则a+b+c+d=
题号
1
2
3
4
5
6
7
8
9
10
答案
99
一
36
61
1.5
7
35
360°
17
迎迎
题号
11
12
13
14
15
16
17
18
19
20
答案
24;28
200
4
6500
10350
2009;2010
5
4
7
29
1、一个小数的小数点分别向右,左边移动一位所得两数之差为2.2,则这个小数用分数表示为 。
2、某种皮衣标价为1650元,若以8折降价出售仍可盈利10%(相对于进价)那么若以标价1650元出售,可盈利 元。
3、求多位数111……11(2000个)222……22(2000个)333……33(2000个)被多位数333……33(2000个)除所得商的各个数上的数字的和为 。
4、计算(1/(1×2)+2/(1×2×3)+3/(1×2×3×4)+……+9/(1×2×3×……×10)的值为 。
5、一只船顺流而行的航速为30千米/小时,已知顺水航行3小时和逆水航行5小时的航程相等,则此船顺水漂流1小时的航程为( )千米。
6、某电视机厂计划15天生产1500台,结果生产5天后,由于引进新的生产线生产效率提高25%,则这个电视机厂会提前( )天完成计划。
7、从1,2,3,4,5,6,7,8,9中任意选出三个数,使它们的和为偶数,则共有( )种不同的选法。
8、某书的页码是连续的自然数1,2,3,4,…9,10…当将这些页码相加时,某人把其中一个页码错加了两次,结果和为2001,则这书共有( )页。
9、现有21朵鲜花分给5人,若每个人分得的鲜花数各不相同,则分得鲜花最多的人至少分得( )朵鲜花。
10、三名工人师傅张强、李辉和王充分别加工200个零件。他们同时开始工作,当李辉加工200个零件的任务全部完成时,张强才加工了160个,王充还有48个没有加工。当张强加工200个零件的任务全部完成时,王充还有__个零件没有加工。
11、有一块表在10月29日零点比标准时间慢4分半,一直到11月5日上午7时,这块表比标准时间快了3分钟,那么这块表正好指向正确的时间是在11月 日 时。
12、一个水箱中的水以等速流出箱外,观察到上午9:00时,水箱中的水是2/3满,到11点,水箱中只剩下1/6的水,那么到什么时间水箱中的水刚好流完?( )
13、清华大学附中共有学生1800名,若每个学生每天要上8节课,每位教师每天要上4节课,每节课有45名学生和1位教师,据此请推出清华大学附中共有教师 名?
14、某班45人参加一次数学比赛,结果有35人答对了第一题,有27人答对了第二题,有41人答对了第三题,有38人答对了第四题,则这个班四道题都对的同学至少有 人?
15、一个数先加3,再除以3,然后减去5,再乘以4,结果是56,这个数是_______。
16、一个盖着瓶盖的瓶子里面装着一些水(如下图所示),请你根据图中标明的数据,计算瓶子的容积是_________cm³。
17、六年级某班学生中有的学生年龄为13岁,有的学生年龄为12岁,其余学生年龄为11岁,这个班学生的平均年龄是__________岁。
18、将25克白糖放入空杯中,倒入100克白开水,充分搅拌后,喝去一半糖水。又加入36克白开水,若使杯中的糖水和原来的一样甜,需要加入_______克白糖。
19、六年级一班的所有同学都分别参加了课外体育小组和唱歌小组,有的同学还同时参加了两个小组。若参加两个小组的人数是参加体育小组人数的,是参加歌唱小组人数的,这个班只参加体育小组与参加唱歌小组的人数之比是________。
20、熊猫他*的小宝宝——小熊猫今年2岁了,过若干年以后,当小熊猫和熊猫妈妈当年年龄一样大时,熊猫妈妈已经18岁了。熊猫妈妈今年是_______岁。
21、果园收购一批苹果,按质量分为三等,最好的苹果为一等,每千克售价3.6元;其次是尔等苹果。每千克售价2.8元;最次的是三等苹果每千克售价2.1元。这三种苹果的数量之比为2:3:1。若将这三种苹果混在一起出售,每千克定价________元比较适宜。
22、某班学生不超过60,在一次数学测验中,分数不低于90分的人数占,得80----89分的人数占,得70-----79分的人数占,那么得70分以下的有______人。
23、有一列数,按照下列规律排列:1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,7,……这列数的第200个数是__________.
24、某个五位数加上20万并且3倍以后,其结果正好与该五位数的右端增加一个数字2的得数相等,这个五位数是___________。
25、从3、13、17、29、31这五个自然数中,每次取两个数分别作一个分数的分子和分母,一共可组成__个最简分数。
26、北京一零一中学由于近年生源质量不断提高,特别是师生们的共同努力,使得高考成绩逐年上升。在2001年高考中有59%的考生考上重点大学;2002年高考中有68%的考生考上重点大学;2003年预计将有74%的考生考上重点大学,这三年一零一中学考上重点大学的年平均增长率是____________。
27、右图,过平行四边形ABCD内一点P画一条直线,将平行四边形分成面积相等的两部分(画图并说明方法)。
28、某学校134名学生到公园租船,租一条大船需60元可乘坐6人;租一条小船需45元可积坐4人,请设计一种租船方案,使租金最省。
29、一列火车驶过长900米的铁路桥,从车头上桥到车尾离桥共用1分25秒钟,紧接着列车又穿过一条长1800米的隧道,从车头进隧道到车尾离开隧道用了2分40秒钟,求火车的速度及车身的长度。
30、有一个六位数,它的二倍、三倍、四倍、五倍、六倍还是六位数,并且它们的数字和原来的六位数的数字完全相同只是排列的顺序不一样,求这个六位数。
31、50枚棋子围成圆圈,编上号码1、2、3、4、……50,每隔一枚棋子取出一枚,要求最后留下的枚棋子的号码是42号,那么该从几号棋子开始取呢?
32、计算(1.6-1.125 + 8(3/4))÷37(1/6) + 52.3×(3/41)
33、 1999年2月份,我国城乡居民储蓄存款月末余额是56767亿元,&127;比月初余额增长18%,那么我国城乡居民储蓄存款2月份初余额是( )亿元 (精确到亿元)。
34、 环形跑道周长400米,甲乙两名运动员同时顺时针自起点出发,甲速度是 400米/分,乙速度是375米/分。( )分后甲乙再次相遇。
35、 2个整数的最小公倍数是1925,这两个整数分别除以它们的最大公约数, 得到2个商的和是16,这两个整数分别是( )和( )。
36、 数学考试有一题是计算4个分数(5/3) ,(3/2) ,(13/8) ,(8/5)的平均值,小明很粗心,把其中1个分数的分子和分母抄颠倒了。抄错后的平均值和正确的答案 最大相差( )。
37、果品公司购进苹果5.2万千克,每千克进价是0.98元,付运费等开支1840 元,预计损耗为1%,。如果希望全部进货销售后能获利17%。每千克苹果 零售价应当定为( )元。
38、计算:19+199+1999+……+19999…99
└1999个9┘
39、《新新》商贸服务公司,为客户出售货物收取3%的服务费,代客户购物 品收取2%服务费。今有一客户委托该公司出售自产的某种物品和代为 购置新设备。已知该公司共扣取了客户服务费264元,客户恰好收支平衡,问所购置的新设备花费了多少元?
40、一列数,前3个是1,9,9以后每个都是它前面相邻3个数字之和除以3所得 的余数,求这列数中的第1999个数是几?
41、一根长方体木料,体积是0.078立方米。已知这根木料长1.3米,宽为3分米,高该是多少分米?孙健同学把高错算为3分米。这样,这根木料的体积要比0.078立方米多多少?
42、有一大一小两个正方形,它们的周长相差20厘米,面积相差55平方厘米。小正方形的面积是多少平方厘米?
43、有9个小长方形,它们的长和宽分别相等,用这9个小长方形拼成的大长方形的面积是45平方厘米,求这个大长方形的周长。
44、 77×13+255×999+510
45、a=8.8+8.98+8.998+8.9998+8.99998,a的整数部分是____。
46、1995的约数共有____。
47、等式“学学×好好+数学=1994”,表示两个两位数的乘积,再加上一个两位数,所得的和是1994。式中的“学、好、数”3个汉字各代表3个不同数字,其中“数”代表____。
48、如图1,“好、伙、伴、助、手、参、谋”这7个汉字代表1~7这7个数字。已知3条直线上的3个数相加、2个圆圈上3个数相加所得的5个和都相等。图中间的“好”代表____。
49、农民叔叔阿根想用20块长2米、宽1.2米的金属网建一个*墙的长方形鸡窝(如图2)。为了防止鸡飞出,所建鸡窝高度不得低于2米。要使所建的鸡窝面积最大,BC的长应是 米。
50、小胡和小涂计算甲、乙两个两位数的乘积,小胡看错了甲数的个位数字,计算结果为1274;小涂看错了甲数的十位数字,计算结果为819。甲数是____。
51、1994年“世界杯”足球赛中,甲、乙、丙、丁4支队分在同一小组。在小组赛中,这4支队中的每支队都要与另3支队比赛一场。根据规定:每场比赛获胜的队可得3分;失败的队得0分;如果双方踢平,两队各得1分。已知:
(1)这4支队三场比赛的总得分为4个连续奇数;
(2)乙队总得分排在第一;
(3)丁队恰有两场同对方踢平,其中有一场是与丙队踢平的。
根据以上条件可以推断:总得分排在第四的是____队。
52、一块空地上堆放了216块砖(如图3),这个砖堆有两面*墙。现在把这个砖堆的表面涂满石灰,被涂上石灰的砖共有____块。
53、南方某城市的一家企业有90%的员工是股民,80%的员工是“万元户”,60%的员工是打工仔。那么,这家企业的“万元户”中至少有____%是股民;打工仔中至少有____(填一个分数)是“万元户”。
54、方格纸(图4)上有一只小虫,从直线 AB上的一点 O出发,沿方格纸上的横线或竖线爬行。方格纸上每小段的长为1厘米。小虫爬过若干小段后仍然在直线AB上,但不一定回到O点。如果小虫一共爬过2厘米,那么小虫的爬行路线有____种;如果小虫一共爬过3厘米,那么小虫爬行的路线有____。
55、自然数按一定的规律排列如下:
从排列规律可知,99排在第____行第____列。
56、如图5,AF=2FB,FD=2EF,直角三角形ABC的面积是36平方厘米,求平行四边形EBCD的面积。
57、利民商店从日杂公司买进一批蚊香,然后按希望获得的纯利润,每袋加价40%定价出售。但是,按这种定价卖出这批蚊香的90%时,夏季即将过去。为加快资金周转,商店以定价打七折的优惠价,把剩余蚊香全部卖出。这样,实际所得纯利润比希望获得的纯利润少了15%。按规定,不论按什么价钱出售,卖完这批蚊香必须上缴营业税300元(税金与买蚊香用的钱一起作为成本)。问利民商店买进这批蚊香用了多少元?
58、A、B、C三个油桶各盛油若干千克。第一次把A桶的一部分油倒入B、C两桶,使B、C两桶内的油分别增加到原来的2倍;第二次从B桶把油倒入C、A两桶,使C、A两桶内的油分别增加到第二次倒之前桶内油的2倍;第三次从C桶把油倒入A、B两桶,使A、B两桶内的油分别增加到第三次倒之前桶内油的2倍,这样,各桶的油都为16千克。问A、B、C三个油桶原来各有油多少千克?
59、园林工人要在周长300米的圆形花坛边等距离地栽上树。他们先沿着花坛的边每隔3米挖一坑,当挖完30个坑时,突然接到通知:改为每隔5米栽一棵树。这样,他们还要挖多少个坑才能完成任务?
60、一个学雷锋小组的大学生们每天到餐馆打工半小时,每人可挣3元钱。到11月11日,他们一共挣了1764元。这个小组计划到12月9日这天挣足3000元,捐给“希望工程”。因此小组必须在几天后增加一个人。问:增加的这个人应该从11月几日起每天到餐馆打工,才能到12月9日恰好挣足3000元钱?
61、有男女运动员各一名在一个环形跑道上练长跑,跑步时速度都不变,男运动员比女运动员跑得稍快些。如果他们从同一起跑点同时出发沿相反方向跑,那么每隔25秒钟相遇一次。现在,他们从同一起跑点同时出发沿相同方向跑,经过13分钟男运动员追上了女运动员,追上时,女运动员已经跑了多少圈?(圈数取整数)
62、在555555的倍数中,有没有各位数字之和是奇数的?如果有,请举出一个例子;如果没有,请说明理由。
63、右图是一个直角梯形。请你画一条线段,把它分成两个形状相同面积相等的四边形。(请标明表示线段位置的数据及符号或写出画法)。
64、下面5个图形都具有两个特点:(1)由4个连在一起的同样大小的正方形组成;(2)每个小正方形至少和另一个小正方形有一条公共边。我们把具有以上两个特点的图形叫做“俄罗斯方块”。
如果把某个俄罗斯方块在平面上旋转后与另一个俄罗斯方块相同(比如上面图中的B与E),那么这两个俄罗斯方块只算一种。
除上面4种外,还有好几种俄罗斯方块,请你把这几种都画出来。
65、在下面的“□”中填上合适的运算符号,使等式成立:(1□9□9□2)×(1□9□9□2)×(19□9□2)=1992
66、一个等腰梯形有三条边的长分别是55厘米、25厘米、15厘米,并且它的下底是最长的一条边。那么,这个等腰梯形的周长是__厘米。
67、一排长椅共有90个座位,其中一些座位已经有人就座了。这时,又来了一个人要坐在这排长椅上,有趣的是,他无论坐在哪个座位上都与已经就座的某个人相邻。原来至少有__人已经就座。
68、用某自然数a去除1992,得到商是46,余数是r,a=__,r=__。
69、“重阳节”那天,延龄茶社来了25位老人品茶。他们的年龄恰好是25个连续自然数,两年以后,这25位老人的年龄之和正好是2000。其中年龄最大的老人今年____岁。
70、学校买来历史、文艺、科普三种图书若干本,每个学生从中任意借两本。那么,至少____个学生中一定有两人所借的图书属于同一种。
71、五名选手在一次数学竞赛中共得404分,每人得分互不相等,并且其中得分最高的选手得90分。那么得分最少的选手至少得____分,至多得____分。(每位选手的得分都是整数)
72、要把1米长的优质铜管锯成长38毫米和长90毫米两种规格的小铜管,每锯一次都要损耗1毫米铜管。那么,只有当锯得的38毫米的铜管为____段、90毫米的铜管为____段时,所损耗的铜管才能最少。
73、甲乙两个工程队共同修筑一段长4200米的公路,乙工程队每天比甲工程队多修100米。现由甲工程队先修3天。余下的路段由甲、乙两队合修,正好花6天时间修完。问:甲、乙两个工程队每天各修路多少米?
74、一个人从县城骑车去乡办厂。他从县城骑车出发,用30分钟时间行完了一半路程,这时,他加快了速度,每分钟比原来多行50米。又骑了20分钟后,他从路旁的里程标志牌上知道,必须再骑2千米才能赶到乡办厂,求县城到乡办厂之间的总路程。
75、一个长方体的宽和高相等,并且都等于长的一半(如图12)。将这个长方体切成12个小长方体,这些小长方体的表面积之和为600平方分米。求这个大长方体的体积。
76、有1992粒钮扣,两人轮流从中取几粒,但每人至少取1粒,最多取4粒,谁取到最后一粒,就算谁输。问:保证一定获胜的对策是什么?
77、有一块边长24厘米的正方形厚纸,如果在它的四个角各剪去一个小正方形,就可以做成一个无盖的纸盒。现在要使做成的纸盒容积最大,剪去的小正方形的边长应为几厘米?
78、个体铁铺的金师傅加工某种铁皮制品,需要如图13所示的(a)、(b)两种形状的铁皮毛坯。现有甲、乙两块铁皮下脚料(如图14、图15),图13、图14、图15中的小方格都是边长相等的正方形。金师傅想从其中选用一块,使选用的铁皮料恰好适合加工成套的这种铁皮制品(“成套”,指(a)、(b)两种铁皮同样多),并且一点材料也不浪费。问:(1)金师傅应当从甲、乙两块铁皮下脚料中选哪一块?(2)怎样裁剪所选用的下脚料?(请在图上画出裁剪的线痕或用阴影表示其中一种形状的毛坯)
79、只修改21475的某一位数字,就可以使修改后的数能被225整除。怎样修改?
80、(1)要把9块完全相同的巧克力平均分给4个孩子(每块巧克力最多只能切成两部分),怎么分?
(2)如果把上面(1)中的“4个孩子”改为“7个孩子”,好不好分?如果好分,怎么分?如果不好分,为什么?
第四届华罗庚金杯少年数学邀请赛初赛试题
第四届华罗庚金杯少年数学邀请赛初赛试题
1.请将下面算式的计算结果写成带分数:
2. 一块木板上有13枚钉子(右图)。用橡皮筋套住其中的几枚钉子,可以构成三角形,正方形,梯形等等(下图)。请回答:可以构成多少个正方形?
3.这里有一个圆柱和一个圆锥(下图),它们的高和底面直径都标在图上,单位是厘米。请回答:圆锥体积与圆柱体积的比是多少?
4.这里有5个分数: ,,,,.如果按从大到小的顺序排列,排在中间的是哪个数?
5.现在流行的变速自行车,在主动轴和后轴分别安装了几个齿数不同的齿轮。用链条连接不同搭配的齿轮,通过不同的传动比获得若干档不同的车速。“希望牌”变速自行车主动轴上有三个齿轮,齿数分别是48,36,24;后轴上有四个齿轮,齿数分别是36,24,16,12。问:这种变速车一共有几档不同的车速?
6.图中的大正方形ABCD面积是1,其它点都是它所在的边的中点。请问:阴影三角形的面积是多少?(见下图)
7.在右边的算式中,被加数的数字和是和数的数字和的三倍。问:被加数至少是多少?
8.筐中有60个苹果,将它们全部都取出来,分成偶数堆,使得每堆的个数相同。问:有多少种分法?
9.小明玩套圈游戏,套中小鸡一次得9分,套中小猴得5分,套中小狗得2分。小明共套了10次,每次都套中了,每个小玩具都至少被套中一次。小明套10次共得了61分。问:小鸡至少被套中多少次?
10.车库中停放着若干辆双轮摩托车和四轮小卧车,车的辆数与车的轮子数之比是2∶5。问:摩托车的辆数与小卧车的辆数之比是多少?
11.有一个时钟,它每小时慢25秒,今年3月21日中午十二点它的指示正确。请问:这个时钟下一次指示正确时间是几月几日几点钟?
12.某人由甲地去乙地。如果他从甲地先骑摩托车行12小时,再换骑自行车行9小时,恰好到达乙地。如果他从甲地先骑自行车行21小时,再换骑摩托车行8小时,也恰好到达乙地。问:全程骑摩托车需要几小时到达乙地?
13.下图的二个圆只有一个公共点A,大圆直径48厘米,小圆直径30厘米。二只甲虫同时从A点出发,按箭头所指的方向以相同速度分别沿二个圆爬行。问:当小圆上的甲虫爬了几圈时,二只甲虫相距最远?
14.某种少年读物,如果按原定价格销售,每售一本,获利0.24元;现在降价销售,结果售书量增加一倍,获利增加0.5倍。问:每本书售价降低多少元?
15有一座四层楼房,每个窗户的4块玻璃分别涂上红色和白色,每个窗户代表一个数字(下图)。
每层搂有三个窗户,由左向右表示一个三位数。四个楼层表示的三位数有:791,275,362,612。问:第二层楼表示那个三位数?
第四届华罗庚金杯少年数学邀请赛复赛试题
1.化简
2.电视台要播放一部30集的电视连续剧,如果要求每天安排播出的集数互不相等,该电视连续剧最多可以播几天?
3.一个正方形的纸盒中恰好能放入一个体积为628立方厘米的圆柱体,纸盒的容积有多大?(圆周率=3.14)
4.有一筐苹果,把它们三等分后还剩2个苹果;取出其中两份,将它们三等分后还剩两个;然后再取出其中两份,又将这两份三等分后还剩2个,问:这筐苹果至少有几个?
5.计算
6.长方形ABCD周长为16米,在它的每条边上各画一个以该边为边长的正方形,已知这四个正方形的面积的和是68平方米,求长方形ABCD的面积。
B. (2011年教师小学数学教材教法模拟考试题),并带有答案
小学数学教师业务学习考试试题及答案
一、填空(每空0.5分,共20分)
1、数学是研究( 数量关系 )和( 空间形式 )的科学。
2、数学课程应致力于实现义务教育阶段的培养目标,体现(基础性 )、(普及性 )和(发展性 )。义务教育的数学课程应突出体现(全面 )、(持续 )、(和谐发展 )。
3、义务教育阶段的数学课程要面向全体学生,适应学生个性发展的需要,使得:(人人都能获得良好的数学教育),(不同的人在数学上得到不同的发展 )。
4、学生是数学学习的(主体),教师是数学学习的( 组织者 )、( 引导者)与(合作者)。
5、《义务教育数学课程标准》(修改稿)将数学教学内容分为(数与代数 )、(图形与几何 )、(统计与概率)、( 综合与实践)四大领域;将数学教学目标分为(知识与技能 )、(数学与思考)、(解决问题 )、(情感与态度)四大方面。
6、学生学习应当是一个(生动活泼的)、主动的和(富有个性)的过程。除(接受学习 )外,(动手实践)、(自主探索)与(合作交流)也是学习数学的重要方式。学生应当有足够的时间和空间经历观察、实验、猜测、(计算)、推理、(验证)等活动过程。
7、通过义务教育阶段的数学学习,学生能获得适应社会生活和进一步发展所必须的数学的“四基”包括(基础知识 )、(基本技能 )、(基本思想)、( 基本活动经验);“两能”包括(发现问题和提出问题能力)、(分析问题和解决问题的能力)。
8、教学中应当注意正确处理:预设与(生成)的关系、面向全体学生与(关注学生个体差异 )的关系、合情推理与(演绎推理)的关系、使用现代信息技术与(教学手段多样化)的关系。
二、简答题:(每题5分,共30分)
1、义务教育阶段的数学学习的总体目标是什么?
通过义务教育阶段的数学学习,学生能:
(1). 获得适应社会生活和进一步发展所必须的数学的基础知识、基本技能、基本思想、基本活动经验。
(2). 体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用数学的思维方式进行思考,增强发现和提出问题的能力、分析和解决问题的能力。
(3). 了解数学的价值,激发好奇心,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯,具有初步的创新意识和实事求是的科学态度。
2、课程标准对解决问题的要求规定为哪四个方面?
(1)初步学会从数学的角度发现问题和提出问题,综合运用数学知识解决简单的实际问题,发展应用意识和实践能力。
(2)获得分析问题和解决问题的一些基本方法,体验解决问题方法的多样性,发展创新意识。
(3)学会与他人合作、交流。
(4)初步形成评价与反思的意识。
3、“数感”主要表现在哪四个方面?
数感主要是指关于数与数量表示、数量大小比较、数量和运算结果的估计、数量关系等方面的感悟。建立数感有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。
4、课程标准的教学建议有哪六个方面?
(1).数学教学活动要注重课程目标的整体实现;
(2).重视学生在学习活动中的主体地位;
(3).注重学生对基础知识、基本技能的理解和掌握;
(4).引导学生积累数学活动经验、感悟数学思想;
(5).关注学生情感态度的发展;
(6).教学中应当注意的几个关系:“预设”与“生成”的关系。面向全体学生与关注学生个体差异的关系。合情推理与演绎推理的关系。使用现代信息技术与教学手段多样化的关系。
5、估算有哪三大特点?如何评价估算?
① 估算过程多样
② 估算方法多样
③ 估算结果多样
评价:在上述前提下,估算没有对和错之分,但有估算结果与精确计算结果的差异大小之分。
6、可以用哪四种不同的方式确定物体所在的方向和位置?
①上下、前后、左右
②东、南、西、北、东南、西南、东北、西北
③数对
④观测点、方向、角度、距离
三、运用课程标准的新理念分析(10分)
下面上《“1——5”的认识》的教学设计中的教学目标,请你依据课程标准对这一内容的教学目标加以简评。
教学目标:
1、使学生会用1——5各数表示物体的个数,知道1——5的数序,能认读1——5各数,建立初步的数感。
2、培养学生初步的观察能力和动手操作能力。
3、体验与同伴互相交流学习的乐趣。
4、让学生感知生活中处处有数学。
简 评:
(1)全面(知识与技能、数学思考、解决问题、情感与态度)。
(2)具体(数量、数序、数感)。
(3)准确(会用、体验、感知)。
(4)突出了学习方式的更新。
四、解答题:(每题4分,共40分)
1、6个好朋友见面,每两人握一次手,一共握( 15次 )手。
2、地面以上1层记作+1层,地面以下1层记作-1层,从+2层下降了9层,所到的这一层应该记作( -8 )层。
3、有一个整数除300,262,205所得的余数相同,则这个整数最大是( 19 )。
4、大约在1500年前,《孙子算经》中记载了这样一个有趣的问题。书中说:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”鸡有( 23 )只,兔有( 12 )只。
5、某小学四、五年级的同学去参观科技展览。346人排成两路纵队,相邻两排前后各相距0.5米,队伍每分钟走65米,现在要过一座长629米的桥,从排头两人上桥至排尾两个离开桥,共需要( 11 )分钟。
6、用绳子三折量水深,水面以上部分绳长13米;如果绳子五折量,则水面以上部分长3米,那么水深是( 12 )米。
7、小玲沿某公路以每小时4千米速度步行上学,沿途发现每隔9分钟有一辆公共汽车从后面超过她,每隔7分钟遇到一辆迎面而来的公共汽车.若汽车发车的间隔时间相同,而且汽车的速度相同,求公共汽车发车的间隔是( 63/8 )分钟。
8、一个合唱队共有50人,暑假期间有一个紧急演出,老师需要尽快通知到每一个队员。如果用打电话的方式,每分钟通知1人。请你设计一个打电话的方案,最少花( 6分钟 )时间就能通知到每个人。
9、口袋里装有42个红球,15个黄球,20个绿球,14个白球,9个黑球。那么至少要摸出( 66 )个球才能保证其中有15个球的颜色是相同的。
10、在统计学中平均数、中位数、众数都可以称为一组数据的代表,下面给出一批数据,请挑选适当的代表。
(1)在一个20人的班级中,他们在某学期出勤的天数是:7人未缺课,6人缺课1天,4人缺课2天,2人缺课3天,1人缺课90天。试确定该班学生该学期的缺课天数。(选取:平均数)
(2)确定你所在班级中同学身高的代表,如果是为了:①体格检查,②服装推销。(①选取:中位数②选取:众数)
(3)一个生产小组有15个工人,每人每天生产某零件数目分别是6,6,7,7,7,8,8,8,8,8,9,11,12,12,18。欲使多数人超额生产,每日生产定额(标准日产量)就为多少?(选取:众数)
3、“最近发展区”是指苏联心理学家维果茨基提出的一个概念。他认为在进行教学时,必须注意到儿童有两种发展水平。一是儿童的现有发展水平,指由一定的已经完成的发展系统所形成的儿童心理机能的发展水平;二是即将达到的发展水平。维果茨基把两种水平之间的差异称为"最近发展区"。它表现为"在有指导的情况下,凭借成人的帮助所达到的解决问题的水平与在独立活动中所达到的解决问题的水平之间的差异"。 4、教学模式(教学方法)指的是教学的途径和手段,是教学过程中教师教的方法和学生学的方法的结合,是完成任务的方法的总和。 5、谈话法是指教师根据学生已有的知识和经验,把教材内容组织成若干问题,引导学生积极思考,开展讨论、得出结论,从而获得知识、发展智力的一种方法。 6、数学课程与原来的教学大纲相比,从目标取向上看,它突出如下几个方面:(1)重视培养学生数学的情感、态度与价值观,提高学生学习数学的信心;(2)强调让学生体验数学化的过程;(3)注重培养学生的探索与创新精神;(4)使学生获得必需的数学知识、技能与思想方法。 7、课型按上课的形式来划分可分为: 讲授课、自学辅导课 、练习课、复习课 、 实践活动课、实验课 等。 8、那些对前面知识紧密联系,对后面要学习的知识具有重大影响的内容,为教学的重点。 9、所谓“教育”,应当是一项既着眼于学生的现实生活,又着眼于未来发展的事业,是为“未来”而培育人的事业。“教育在本质上是以发展为目标的一种社会活动,是人类社会赖以生存和发展的重要基础。” 10、情感与态度方面的目标涉及数学学习的好奇心、求知欲、自信心、自我负责精神、意志力、对数学的价值意识、实事求是的态度等诸多方面。 11、所谓“自主学习”是就学习的品质而言的,相对的是“被动学习”“机械学习”“他主学习”。新课程倡导的自主学习的概念。它倡导教育应注重培养学生的独立性和自主性,引导学生质疑、调查、探究,在实践中学习,促进学生在教师的指导下主动地富有个性地学习。 12、教学设计的书写格式有多种,概括起来分为文字式、表格式 、 程序式三大类。 13、教学方法是教学的途径和手段,是教学过程中教师教的方法和学生学的方法的结合,是完成教学任务的方法的总称。 14、练习法是指是学生在教师指导下巩固知识和形成技能、技巧的一种教学方法。 15、“以问题探究为特征的数学课堂教学模式” 是指:不呈现学习结论,而是让学生通过对一定材料的实验、尝试、推测、思考,去发现和探索某些事物间的关系和规律。 16、《标准》中的四个目标大致可分为两个领域:认知领域和 情感领域。其中, 知识与技能 、数学思考、问题解决属于认知领域。 17、教学设计的一般的结构是: 概况 、 教学过程,板书设计 、 教学反思。 18、教学方法的选择,还要视不同班级情况而定。有的班级学生思维相当活跃,可考虑采用引导发现法;有的阅读课本习惯较强,也可适当采用自学辅导法 。 19、问题生成的途径有四个方面:其一,教学内容即问题;其二,教师提供问题;其三,学生提出问题;其四,课堂上随机生成的问题 。 20、数学课程目标分为知识与技能 、 数学思考、解决问题 、 情感与态度四个维度。 21、教学目标对整个教学活动具有导向、(激励)、(评价)的功能。
小学数学教师业务考试题
第一部分 填空(数学课程标准基础知识)(15分)
1、义务教育阶段的数学课程应突出体现全面、持续、和谐发展。使数学教育面向全体学生实现人人学有价值的数学;人人都能获得必须的数学;不同的人在数学上得到不同的发展。
2、学生的数学学习内容应当是数与代数 、图形与几何 、统计与概率和 综合与实践。
3、有意义的数学学习活动不能单纯地依赖_________ _________ 、_________ 和____ 是学生学习数学的重要方式。
4、数学教学活动必须建立在学生的_________ 和__________ 的基础上。
第二部分 案例分析(请围绕新课标精神分析下面的案例)
案例1:《年、月、日的认识》情境创设
上课时,教师为学生准备1994--2005年之间共十年的年历表然后让学生以小组为单位观察讨论。从这些年历表中,你们发现了什么几分钟后学生汇报。
生1:我发现1999年是兔年,是从2月16日 开始的。
生2:我发现2001年是蛇年,是从1月24日开始的。
听到这里,上课教师的表情凝重,可是学生的回答依然在这无关的信息上进行着,教学进入了尴尬的境地.原来教师发给学生的每一张年历表的表头上都有这样的字眼:X年(X月X日开始)。
请你对此情境创设进行分析。如果是你讲这节课想怎样创设情境。(10分)
这个x年(x月x日开始)应该是指生肖的吧,教材中并没有涉及到这一教学内容,那么在准备时就应该把这些干扰条件全部去除。
但如果是课上才发现这个问题的话,当第一个学生回答(我发现1999年是兔年,是从2月16日 开始的),教师应该先肯定这个学生的回答(因为他的回答本身没有错),然后教师可以问:“还有没有其他的发现?”如果第二个学生仍旧回答(我发现2001年是蛇年,是从1月24日开始的。),那么这个时候教师就可以说:“两位同学都是发现了年历表上和生肖有关的信息,那么除了这些,你们还有没有别的发现?”我想如果是自己班的学生的话应该能听懂你的意思。
关于怎样创设情境,如果是家常课的话,我想先提问:关于“年、月、日”你已经了解了哪些知识?从学生的回答中了解他们已经掌握了哪些知识,还有哪些需要着重讲解的。
如果是公开课的话,这节课的引入部分,本身没什么问题啊,只是你准备的学具有一些干扰(生肖),而且因为你的这个问题有一定的开放性,所以学生的回答必定是五花八门的,这个时候就是考验教师在课堂上是否能“收放自如”。
案例2: 一位数学教师在教学一年级数学的进位加法中有这样一个片断: 35+7=
3 5
+ 7
—————
4 2
当学生完成了竖式计算教师针对书写进行评价时全班学生围绕竖式中的进位点展开了讨论:
生1:认为进位点应写在十位和个位之间这样我就明白它是一个进位点。
生2:我认为进位点应该写在十位上这样很明白它是十位上的数。
生3:我认为它应该写成标准的1。
生4:我认为它应该写成倾斜的点。
师:你们的看法都有道理但老师最喜欢的还是把它写在十位上这样我在加的时候就不会出错。如果把它写在十位和个位之间我会糊涂:它到底是个位的点呢还是十位的点呢?……
问题:你认为教师在处理学生回答的问题时方法可取吗?为什么 ?(10分)
(数学是严谨的自然科学,不能用模糊的词语。该写到哪里就必须要求学生写在哪里。)
第三部分 问题分析及对策(30分)
当前有不少公开课气氛活跃,上得很是热闹然而在热闹的背后却少见了学生高质量的思维活动。作为教师你对这一现象怎么看?怎么办?
2、我们走进课堂听课,常常会发现这样的现象,回答问题好的总是那么几个人,另外的一些学生有的认真听别人讲话,有的则心不在焉。遇到这样的情况,你怎样调整使另一部分学生也能参与你的课堂教学(不单指在一节课上)
新课程改革实验以来,许多老师在课堂教学中都会遇到学生插嘴的现象。具体表现为学生插老师的嘴,当教师在讲解,引导或统一要求时,学生突然给你一句意想不到的话;学生插同学的嘴,当同学在提出一个问题或解决一个问题时,有的学生会无意识地把自己的想法说出来。作为教师你将如何对待学生插嘴?
(简单说说自己对这三个问题的看法:1、的确,现在的公开课存在着表面热闹、内在空虚的情况。其实说实在话,只要是上过大规模公开课的老师可能都有这样的感觉:也想像名家们那样,于细节处与学生对话,显自己的真本事。但无奈因为是公开课,碍于怕出丑以及自身的驾驭能力的局限,便不敢放开手脚去上,设计的问题便也没有太多的深度。要解决这种课堂现象,还是应该加强教师对文本的解读,只有自己真正吃透教材,做到胸有成竹,课堂上与学生对话,任凭学生海阔天空,也有能力将他们驾驭。2、少数学生课堂积极,大多数学生乐于倾听的现象是一个不容忽视的现实,尤其是在高年级,这样的情况更是严重。要解决这一问题,我想不是一日之功,我们老师应该从平时的每一节常态课抓起,别具匠心地设计适合各个层次的学生的问题,让每个学生都有站起来回答问题的机会,让他们也体验到回答问题的快乐,久而久之,我想,课堂上的主人会大大增加的。3、说实话,我可不赞同在一年级就让孩子写日记,我们的教学应该符合学生的年龄特点,在一年级,我们应该更多地引导孩子去观察,去感受,去表达,当然这里的表达应该以口头为主。一年级的孩子毕竟识字量有限,如果孩子说都没好好说,就迫不及待地让他们去写自己会说但还不会写的话,这不是加重学生负担吗?这样做,必然会让孩子渐渐产生对写日记的厌倦。)
第四部分 基础知识
1、甲、乙、丙三人一起买了18块糖平均分着吃甲付了11块糖的钱乙付了7块糖的钱等吃完后一算丙应该拿出9元钱。问甲、乙各应该收回多少钱?
2、甲、乙、丙、丁四人进行跳绳比赛赛前名次各说不一A说:甲第二名丁第三名。B说:甲第一名丁第二名。C说:丙第二名丁第四名。实际上上面三种说法各说对了一半。甲、乙、丙、丁各是第几名?
3、有两筐重量相等的苹果甲筐买出15千克乙筐27千克后甲筐余下的苹果是乙筐余下的4倍两筐苹果各有多少千克?
4、沿长、宽相差25米的游泳池跑4圈作下水前的准备活动。已知共跑了600米这个游泳池的占地面积是多少平方米?
5、公路两旁每隔120米竖立着一根电杆骑自行车从第一根电杆到第六根电杆处小王要1分钟小李要50秒现在两人都从第一根电线处为起点骑车当小王骑到第八课电杆处时小李开始追赶几分钟小李追上小王。
能力测试题 (限时60分钟)
填空题 (每空一分,共21分)1、 国庆节挂彩灯,学校门口按“1红2绿3黄”的顺序安装灯泡,那么第18个灯泡是——色的,第37个——-色的。2、在小学阶段学过的四边形中,既为轴对称图形,又为中心对称图形的有————。3、有8个千万,9个万,9个千和5个百组成的数写作——,读作——,改写成以“万”作单位,保留一位小数约是——万。4、用5个棱长是1厘米的正方体拼成一个长方体,这个长方体的表面积是——平方厘米, 体积是——立方厘米。5、两个非连续自然数的和乘以它们的差,积是57,这两个自然数是——和——。6、在一个比例式中,两个比的比值等于2,而这个比例的两个外项是10以内相邻的两个 合数。这个比例式是——。7、做一个圆柱形的无盖水桶,底面直径为6分米,高8分米,至少要用——平方米的铁皮, 这个水桶的容积是——升。8、新的教学模式要求教师的角色做出相应的改变,《数学课程标准》指出——是数学学习的 主人,教师是数学学习的 和 。9、《数学课程标准》指出,评价要关注学生的——,更要关注他们学习的——。10、在评价中,应建立评价目标——,评价方法——的评价体系。
二、快乐选择(每题3分,共15分)
1、一个长方体和一个圆锥体的底面积和高分别相等,长方体体积是圆锥体体积的( )。A、3倍 B、2/3 C、2倍 D、无法确定 2、一个比的前项是4,当它增加8时,要使比值不变,后项必须( )。A、增加8 B、扩大2倍 C、乘以3 D、扩大8倍3、一条直线把一个正方形分成完全一样的两部分,有多少种分法。( )
A、2种 B、4种 C、8种 D、无数种4、下面四个数都是六位数,N是比10小的自然数,S是零,一定能被3 和5整除的数是( A、NNNSNN B、NSNSNS C、NSSNSS D、NSSNSN 5、甲乙两人同时骑车由A地到相距60千米的B地,甲每小时比乙慢4千米,乙到B地后立即返回,在距B地12千米处与甲相遇,则甲的速度为每小时( )千米。A、10 B、8 C、12 D、16三、计算,能简算的要简算(每题4分,共8分)8.97÷1/3+8.97×97 5.4×1.25+1.25×3.2-0.6×125% 四、解方程(每题4分,共8分)500х×3/4=60×25 3.2χ-4×3=52 五、简答题(每题4分,共12分) 如何测量一个土豆的体积?六、解答下面各题(每题6分,共18分)1、 一张长6.28米,宽1.2米的铁皮,加工成一个圆柱后,它的体积是多少?2、 有两组书,第一组数的平均数是12.8,第二组数的平均数是10.2,而这两组数总的平均数是12.02,那么第一组数的个数与第二组数的个数比是多少? 3、 希望小学要买60个足球,现有甲、乙、丙三个商店可以选择,三个商店足球的价格都是25元,但各个商店的优惠办法不同。 甲店:买10个足球免费赠送两个,不足10个不赠送。 乙店:每个足球优惠5元。 丙店:购物每满200元,返还现金30元。 为了节省费用,希望小学应到哪个商店购买?八、教学案例分析(12分) :有这样一题:
例4 ,街心花园中圆形画坛的周长18.84米,花坛的面积是多少平方米?一位教师在出示例题时,漏抄了“圆形”二字,结果,学生试做时,出现下面情景: 生:(小声地)老师,这道题不能做,缺少条件,没说什么形状。师:(一时语塞沉思后)请同学们停一下笔,会做这道题的举手。 这时,大多数学生举起了手。 师:(指一名没有举手的)你不会做吗? 生:我觉得这道题差一个条件,补上“圆形”条件就能做了。 师:对,确实差一个条件。其实,我并不是有意掉的,而是由于自己的粗心,漏掉了“圆形”二字。还好,几个细心的同学及时发现并提了出来。这里我要说一声“谢谢!”,老师不是完人,老师也有缺点和错误,希望同学们以后多提意见。 这时,已举了手的又慢慢放下了,目光注视着老师。师:现在,我看这样,不加“圆形”二字,这街心花坛的形状您将如何设计呢?要求周长还是18.84米,先设计图形,再求花坛的面积,行吗? 生:行! 师:小组合作设计,比一比,哪一组设计的图形多。 小组汇报: 设计方案算 理 生1: ○ (18.84÷3.14÷2)2×3.14 生2: □ (18.84÷4)2 生3:(18.84÷3.14÷2)2×3.14×2 生4: 先设一直段边为ⅹ米,2ⅹ+3.14ⅹ=18.84 生5: (18.84÷6)2×2 生6: (18.84÷3÷3.14÷2)2×3×3.14 生7: (18.84÷8)2×3 ......师:同学们设计的真漂亮,祝贺你们——未来的设计师。请你们把自己设计的最漂亮、最合理的花坛面积算出来,好吗?生:好! ...... 请您结合课标和新的教学模式,对本案例加以分析、评价。(纵观本课,教师紧密联系学生的已有知识和经验,准确把握知识间的内在联系,不断设置合理的认知冲突,促使学生进行有效的猜想、验证,初步体现了“创设情境——大胆猜想——合作探索——反思归纳”的探索性教学模式,从而充分的体现了在课堂教学中学生的主体作用和教师的主导作用。)
阅读下面案例,请你从自我反思的角度谈谈课堂预设与生成的关系。
《可能性》教研课中,有一个老师让学生体验“哪种物体的数量多、摸到的可能性大,数量少摸到的可能性小”的实践活动中,其中第四小组摸到红球的次数和摸到白球的次数一样多,并且比摸到黄球的次数还多2次。答:预设”和“生成”这两个相互对立的概念融入到了我们的教学实践中。虽然很多教师总觉得它们是一对矛盾体,犹如一副跷跷板:主观预设多了,动态生成就少了;动态生成的多了,主观预设的就没用了。而我则认为:学生自发生成的活动与教师的预设活动是不可分割的,两者是相互交融,有效渗透的。“生成”需要“预设”来引导,“预设”是“生成”的前提条件,我们的课堂教学要将“预设”和“生成”结合起来,好的课堂效果也只有在师生的互动中才能生成。
、[案例描述]《带分数乘法》
教学片断:⒈学生根据应用题“草坪长5米,宽2米,求草坪的面积。”列出算式:5×2⒉算式一出现,教师就立即组织四人小组交流算法。
其中一个组,在小组交流时,由于三位同学还没有想出方法,整个合作过程只好由一位同学讲了三种方法:①(5+)×(2+) ②5.8×2.5 ③×,其他同学拍手叫好而告终。
请你根据上述教学片断进行反思(主要从合作交流与独立思考的层面分析)。
答:一、合作学习中必须处理好独立思考的问题,因为合作学习虽然是一种非常重要的学习形式,但只有建立在个人努力的基础上才能完成,只有在学生独立思考的基础上,有了自己的想法后再与同伴探究、交流才有真正的价值。本案例中,由于学生没有自己的独立思考过程,所以不能发挥小许合作的优势,其三种方法的得出也不能代表本小组的水平。困难学生越过了独立思考而直接从好学生中获取信息,知识困难学生在小组合作中的获益比在班级教学中的获益还少,达不到合作学习的目标。所以在合作学习前,可以安排学生先独立尝试,在碰到实际困难,在有了一定的体验,产生探究的需要后再开展小组合作学习,效果会更好。
C. 2011年小学数学毕业试卷及答案、快点
一、填空题。(每空1分,共20分)
l.一个数的亿位上是5、万级和个级的最高位上也是5,其余数位上都是0,这个数写作( ),省略万位后面的尾数是( )。
2.0.375的小数单位是( ),它有( )个这样的单位。
3.6.596596……是( )循环小数,用简便方法记作( ),把它保留两位小数是( )。
4. < < ,( )里可以填写的最大整数是( )。
5.在l——20的自然数中,( )既是偶数又是质数;( )既是奇数又是合数。
6.甲数=2×3×5,乙数=2×3×3,甲数和乙数的最大公约数是( )。最小公倍数是( )。
7.被减数、减数、差相加得1,差是减数的3倍,这个减法算式是( )。
8.已知4x+8=10,那么2x+8=( )。
9.在括号里填入>、<或=。
1小时30分( )1.3小时 1千米的 ( )7千米 。
10.一个直角三角形,有一个锐角是35°,另一个锐角是( )。
11.一根长2米的直圆柱木料,横着截去2分米,和原来比,剩下的圆柱体木料的表面积减少12.56平方分米,原来圆柱体木料的底面积是( )平方分米,体积是( )立方分米。
12.在含盐率30%的盐水中,加入3克盐和7克水,这时盐水中盐和水的比是( )。
二、判断题。对的在括号内打“√”,错的打“×”。(每题1分,共5分)
1.分数单位大的分数一定大于分数单位小的分数。( )
2.36和48的最大公约数是12,公约数是1、2、3、4、6、12。( )
3.一个乒乓球的重量约是3千克。( )
4.一个圆有无数条半径,它们都相等。( )
5.比的前项乘以 ,比的后项除以2,比值缩小4倍。( )
三、选择题。把正确答案的序号填入括号内。(每题2分,共10分)
1.两个数相除,商50余30,如果被除数和除数同时缩小10倍,所得的商和余数是( )。
(l)商5余3 (2)商50余3 (3)商5余30 (4)商50余30
2.4x+8错写成4(x+8),结果比原来( )。
(1)多4 (2)少4 (3)多24 (4)少24
3.在一幅地图上,用2厘米表示实际距离90千米,这幅地图的比例尺是( )。
(1) (2) (3) (4)
4.一个长方体,长6厘米,宽3厘米,高2厘米,它的最小面的面积与表面积的比是( )。
(l)l:3 (2)1:6 (3)l:12 (4)l:24
5.甲数是840, ,乙数是多少?如果求乙数的算式是840÷(l+ ),那么横线上应补充的条件是( )。
(1)甲数比乙数多 (2)甲数比乙数少
(3)乙数比甲数多 (4)乙数比甲数少
四、计算题。(共35分)
1.直接写出得数。(5分)
529+198= 992= 305-199= 2.05×4=
8×12.5%= 0.28÷= + ×0= =
0.68+ +0.32= ÷ +0.75×8=
2.用简便方法计算。(6分)
25×1.25×32 (3.75+4.1+2.35)×9.8
3.计算。(l2分)
5400-2940÷28×27 (20.2×0.4+7.88)÷4.2
( )÷ + 10÷[ -( ÷ + )]
4.列式计算。(6分)
(l)0.6与2.25的积去除3.2与l.85的差,商是多少?
(2)一个数的 比30的25%多1.5,求这个数。
5.计算体积。(单位:米)(3分)
6.下图中每格都代表1平方厘米,请你尽量利用方格纸中的点和线,分别画出面积是6平方厘米的平行四边形、三角形、梯形,并分别作出一条高。(3分)
五、应用题。(30分)
1.一个长方形和一个圆的周长相等,已知长方形的长是10厘米,宽是5.7厘米。圆的面积是多少?
2.三新村开展植树造林活动,5人3天共植树90棵,照这样计算,30人3天共植树多少棵?
3.甲乙两列火车同时从相距500千米的两地相对开出,4小时后没有相遇还相距20千米,已知甲车每小时行65千米,乙车每小时行多少千米?
4.王老师领取一笔1500元稿费,按规定扣除800元后要按20%缴纳个人所得税,王老师缴纳个人所得税后应领取多少元?
5.小明读一本故事书,第一天读了24页,占全书的 ,第二天读了全书的37.5%,还剩多少页没有读?
6.生产一批零件,甲每小时可做18个,乙单独做要12小时完成。现在由甲乙二人合做,完成任务时,甲乙生产零件的数量之比是3:5,甲一共生产零件多少个?
参考答案
一、填空题:
1.550005000,55001万;2.0.001,375;3.纯,6. 9,6.60;4.3;5.2,9和15;6.6,90;
7.略;8.9;9.>,=;10.55°;11.3.14,62.8;12.3:7。
二、判断题:
1.×;2.√;3.×;4.√;5.×。
三、选择题:
1.②;2.③;3.④;4.③;5.①。
四、计算题:
1.727,9801,106,8.2,1,0.04;
2.1000,99.96;
3.2565,3.8,1,37.5;
4.(1)1;(2)12;
5.11.14立方米;
6.略。
五、应用题:
1.78.5平方厘米;
2.540棵;
3.55千米;
4.1360元
5.51页;
6.135个。
D. 求文档: 2011年第十五届华罗庚金杯赛少年数学邀请赛决赛试卷(小学组)及答案
杯赛
+ 华罗庚
第十六届
————
2 0 1 1 问要想让算式成立,一共有多少种可能(9个字代表9个不同的数字) 题大概是这样,我考了,但考后就记住这一道题(^-^)
E. 2011年小学数学联赛(奥赛)决赛的试题和答案
全国小学联赛试题和答案不公布,初中联赛只公布答案,不公布试题,高中联赛试题和答案都公布,没办法。
成绩考后的20天左右能出来,到各个赛区查询。
具体的证书1个月以内吧。不知道你是哪个省的,有的省会更快些。
F. 第十八届华罗庚金杯少年数学邀请赛决赛试题(小学高年级组·武汉)(时间:2013年4月20日10:00~11:30)答案
第十八届华罗庚金杯少年数学邀请赛
决赛试题
A
参考答案
(小学高年级组)
一、填空题(
每题
10
分
,
共
80
分
)
题号
1 2 3 4 5 6 7
8
答案
25
2,
3
316
12 62 74 94
54
二、解答下列各题(
每题
10
分
,
共
40
分
,
要求写出简要过程
)
9.
解答
.
例如
3
4
)
4
4
4
(
,
4
4
)
4
4
(
4
,
5
4
)
4
4
4
(
,
6
4
4
)
4
4
(
.
10.
答案:
25
解答
.
设比小明小的学生为
x
人
,
比小华小的学生为
y
人
.
因为比小明大的学生
为
2
x
人
,
所以全班学生共
3
1
N
x
人
;
又因为比小华大的学生为
3
y
人
,
所以全
班学生共
4
1
N
y
人
.
这样
,
1
N
既是
3
的倍数
,
又是
4
的倍数
,
因此
1
N
是
3
4
12
的倍数
.
这个班学生人数大于
20
而小于
30,
所以
1
N
只可能是
24.
因
此这个班共有学生
24
1
25
N
人
.
11.
答案
:
1.375
解答
.
小虎划船的全部时间为
120
分钟
,
他每划行
30
分钟
,
休息
10
分钟
,
周期
- 2 -
为
40
分钟
,
所以一共可分为
3
个
30
分钟划行时间段
,
有
3
个
10
分钟休息
划船
时
,
顺水的船速与逆水的船速之比为
4.5:1.5=3:1.
因为小虎要把船划到离租船处
尽可能远
,
他在划船的过程中只能换一次划船的方向
,
而且是在尽可能远处
.
分
两种情况讨论
.
1)
开始向下游划船
,
设最远离租船处
x
千米
.
因为回到租船处是逆水
,
所以小虎
只有
110
分钟可用
.
由于划船时顺流速度是逆流速度的
3
倍
,
所以用在向下游划
船的时间不能超过半小时
.
另外两次休息时间只能用在返程
,
在休息期间内船向
下游漂流了
5
.
1
3
1
,
所以
5
.
1
5
.
1
5
.
1
3
1
5
.
4
x
x
.
整理上式得
75
.
6
5
.
1
3
x
x
,
25
.
5
4
x
,
3125
.
1
x
(
千米
).
2)
开始向上游划
,
设最远离租船处
y
千米
.
小虎可用
120
分钟
,
有两次休息时间
用在向上游
.
所以
5
.
1
5
.
4
5
.
1
6
1
5
.
1
5
.
1
3
1
y
y
.
整理上式得
75
.
6
5
.
1
6
5
4
y
,
5
.
5
4
y
,
375
.
1
y
(
千米
).
综合
1)
和
2)
的讨论
,
小虎的船最多离租船处
1.375
千米
.
12.
答案:
不能
解答
.
设放的最小自然数为
a
,
则放的最大自然数为
23
a
.
于是这
24
个数的和
为
).
23
2
(
12
a
A
假设可能
,
设每个正方形边上的数之和为
S
.
因为共有
5
个正方形
,
这些和
的和为
S
5
.
因为每个数在这些和中出现两次
,
所以有
- 3 -
.
2
5
A
S
记最小的
16
个数的和为
B
,
则
)
15
2
(
8
a
B
.
下面分两种情形讨论
:
(1)
若
S
B
,
则
)
15
2
(
8
)
23
2
(
5
24
5
2
a
a
A
S
,
120
16
4
.
110
8
.
9
a
a
,
不存在自然数
a
使得不等式成立
.
(2)
情形
S
B
也是不可能的
,
因为此时不可能选择最大正方形边上的
16
个数使得这
16
个数的和等于
S
.
三、解答下列各题(
每题
15
分
,
共
30
分
,
要求写出详细过程
)
13.
答案:
5
解答
.
用右图代替题目中的
1
2
小长方形
.
因为题目所给的小长方形上下不对称
,
所以同一个小长方形在拼成的上下对称的正方形中
,
不会既在上半部分也在下
半部分
.
这样
,
就可以只考虑上半部分的不同情形
.
1)
相邻的空白格在第一行最左边或最右边
.
因为要排除旋转相同的
,
所以
只考虑相邻空白格在最右边的情况
,
有下图所示的
2
种图形
,
2)
相邻的空白格在第一行中间
.
去掉旋转重合的
,
有下图所示的
3
种图形
,
所有不同的图形为
5
种
.
14.
答案:
6036
- 4 -
解答
.
令
2013
2
1
2012
2
1
2010
2
1
c
c
c
b
b
b
a
a
a
n
,
其中
,
所有的
i
a
数字和相同
,
所有的
j
b
数字和相同
,
所有的
k
c
数字和相同
.
两个
自然数数字的和相同
,
则它们除以
9
的余数相同
,
即
2010
,
,
2
,
1
,
9
i
r
u
a
i
i
,
2012
,
,
2
,
1
,
9
j
s
v
b
j
j
,
2013
,
,
2
,
1
,
9
k
t
w
c
k
k
.
则
,
2013
)
(
9
2012
)
(
9
2010
)
(
9
2013
2
1
2012
2
1
2010
2
1
t
w
w
w
s
v
v
v
r
u
u
u
n
(1)
由上面的等式可得
,
s
s
v
v
v
r
r
u
u
u
5
)
223
(
9
3
)
223
(
9
2012
2
1
2010
2
1
,
(2)
s
s
v
v
v
t
t
w
w
w
5
)
223
(
9
6
)
223
(
9
2012
2
1
2013
2
1
,
(3)
由
(2)
可以得出
s
是
3
的倍数
,
只能是
0,
3
或
6.
下面三种情况讨论
:
1)
0
s
.
此时
,
对
2012
,
,
2
,
1
j
,
因为
j
j
v
b
9
的数字和不为零
,
所以
1
j
v
.
则
18108
2012
9
)
(
9
2012
2
1
v
v
v
n
.
2)
6
s
.
此时
12072
6
2012
)
(
9
2012
2
1
v
v
v
n
.
- 5 -
3)
3
s
,
此时
6036
3
2012
)
(
9
2012
2
1
v
v
v
n
.
可以取
1
,
2
t
r
.
而
.
1
1
1
10
10
10
11
11
11
2
2
2
3
3
3
6036
2012
个
个
个
个
个
n
m
y
x
下面计算
x
,
y
与
m
,
n
,
,
6036
11
2
,
2010
y
x
y
x
,
6036
10
,
2013
n
m
n
m
解得
1786
x
, 224
y
,
447
m
,
1566
n
.
即
2012
3
1566
447
10
224
11
1786
2
6036
.
最终
,
满足条件的最小自然数是
6036.
G. 2011年小学数学能力竞赛“希望杯”的简要提醒(如:重点考什么问题啊等)!急!30分钟内!悬赏好高的!
小学数学智力竞赛方案
一、目的意义
小学数学智力竞赛有益于煅炼学生的思维能力、拓展学生的思维深度与广度,能够开阔学生的视野,提高学生对数学学习的兴趣。为了让小学生的智力在小学生阶段就得到良好的发展,拟定举办全县小学数学智力竞赛。
二、活动对象
六年级学优生(学校可组织学有余力的学生组成兴趣小组参与本活动)
三、知识内容
竞赛的知识是在现行小学数学一到六年级教材所涉及知识点的拓展与延伸。以教材的星号题为基础,教学不宜过分的追求难度。(具体内容请看附页)
四、活动方式
初赛:学校内自行组织智力竞赛
决赛:由学校初赛确定的六年级学生参加全县竞赛
五、活动时间
2011年上半年(具体时间待定)
广丰县教研室
2010、9、7
附页:
小学数学竞赛知识内容
1、关于数的部分
整数问题——
1)整除与余数(质数、合数及质因数分解、因数和倍数、整除性、最大公因数和最小公倍数、余数与同余)
2)等差数列(求和、连续数问题)
3)其他(数码个数与数字和、比较大小、平均数)
计算部分——
1)数、分数的运算
2)循环小数与分数
3)分数的分拆
2、关于形的部分
平面图形——
1)图形的剪拼
2)图形的角度、周长计算
3)图形的面积计算
立体图形——
(1)立体图形的展开图
(2)立体图形的相对位置和空间想象能力
3、方程
(1)方程和解法
(2)用方程解应用题
4、应用题
(1)典型应用题(盈亏、年龄、植树、时钟、鸡兔同笼、还原等)
(2)行程问题(相遇、追及以及行船)
(3)工程问题
(4)分数应用题(分数相关的因数和倍数、比例问题、浓度问题)
5、其他专题——
(1)排列组合相关(枚举法、加法原理、乘法原理、排列和组合)
(2)最优化问题(最佳方案、最佳策略)
(3)抽屉原理(整数分类、图形分化以及其他方法构造抽屉)
(4)逻辑推理问题
(以上内容均是小学数学教材内容的拓展与延伸,难度不宜过大)
H. 六年级-小学希望杯全国数学邀请赛赛前模拟试卷 专题3数字谜语的答案
http://bbs.school-e.cn/thread-693873-1-1.html 中心镇小学六年级数学奥数知识竞赛试题
http://bbs.school-e.cn/thread-692476-1-1.html 第四届“华罗庚金杯”少年数学邀请赛
http://bbs.school-e.cn/thread-692446-1-1.html 初中数学夏令营赛前专题训练(05)几何(A)
http://bbs.school-e.cn/thread-692423-1-1.html 第八届华罗庚金杯少年数学邀请赛
http://bbs.school-e.cn/thread-692448-1-1.html 第五届西部数学奥赛试题(2005年11月6\7日)
http://bbs.school-e.cn/thread-693105-1-1.html 2003小学数学竞赛模拟训练(一)
http://bbs.school-e.cn/thread-693062-1-1.html 第三届“学用杯”全国数学知识应用竞赛初二年级决赛试题
http://bbs.school-e.cn/thread-692902-1-1.html 八年级数学竞赛题[下学期](无答案) 北师大版
http://bbs.school-e.cn/thread-691700-1-1.html 二○○六年全国高中数学联赛江西省预赛试卷
http://bbs.school-e.cn/thread-691388-1-1.html 《小学数学报》第06届数学竞赛决赛试题及答案
http://bbs.school-e.cn/thread-691378-1-1.html 2003小学数学竞赛选拔赛复赛试题(1,2)
http://bbs.school-e.cn/thread-692081-1-1.html 《小学数学报》第02届数学竞赛初赛试题及答案
http://bbs.school-e.cn/thread-692019-1-1.html 《小学数学报》第04届数学竞赛决赛试题及答案
http://bbs.school-e.cn/thread-691981-1-1.html 第二届“华罗庚金杯”少年数学邀请赛
http://bbs.school-e.cn/thread-691327-1-1.html 2006年7月温州第七届青少年数学国际城市邀请赛个人赛试题与解答(繁体)
http://bbs.school-e.cn/thread-691247-1-1.html 《小学数学报》第05届数学竞赛初赛试题及答案
http://bbs.school-e.cn/thread-690579-1-1.html 第五届华罗庚金杯少年数学邀请赛
http://bbs.school-e.cn/thread-690502-1-1.html “文心杯”第一届数学奥林匹克公开赛试题
http://bbs.school-e.cn/thread-691222-1-1.html “文心杯”第一届数学奥林匹克公开赛试题2
http://bbs.school-e.cn/thread-691108-1-1.html 《小学数学报》第01届数学竞赛第一试试题及答案
江苏赛区初赛试卷
http://bbs.school-e.cn/thread-689955-1-1.html 初中数学夏令营赛前专题训练(12)组合(D)
http://bbs.school-e.cn/thread-690004-1-1.html 北京市海淀区第11届高二数学竞赛团体赛
http://bbs.school-e.cn/thread-689723-1-1.html 2006年“信利杯”全国初中数学竞赛试题及答案
http://bbs.school-e.cn/thread-690240-1-1.html 第一届“南方杯”数学邀请赛试题
http://bbs.school-e.cn/thread-690197-1-1.html 2003小学数学竞赛选拔赛决赛试题(第二试)
http://bbs.school-e.cn/thread-690177-1-1.html 第七届“华罗庚金杯”少年数学邀请赛
http://bbs.school-e.cn/thread-690139-1-1.html 第三届“华罗庚金杯”少年数学邀请赛
I. 第十七届华罗庚金杯少年数学邀请赛决赛试题A小学高年级组答案. 一定要写出详细做法
把题目传上来看看,我们帮你分析下
J. 谁有2011年小学数学教师教材教法业务考试试题的答案,2、学生是数学学习的什么,教师是数学学习的什么
学生是数学学习的( 主人 ),教师是数学学习的( 组织者 引导者与合作者 )。