1. 要30道5年级数学奥数题,带答案。
1.一块长米20厘米,宽90厘米的铝皮,剪成直径30厘米的圆片,最多可以剪几块?
分析:此题不需求面积的。只需求长和宽各是圆的直径的几倍,然后求出长和宽的倍数的积。
1米20厘米=120厘米
120÷30=4
90÷30=3
4×3=12(块)
答:最多可以剪12块。
2.一个圆柱,底面半径1分米,它的侧面展开是一个正方形。这个圆柱的表面积和体积是多少?
分析:从侧面展开图正方形入手,可知这个圆柱的高是圆柱的底面周长。
圆柱的表面积:
(3.14×1×2)×(3.14×1×2)+3.14×1×1×2
=6.28×6.28+6.28
=6.28×7.28
=45.7184(平方分米)
圆柱的体积:
3.14×1×1×(3.14×1×2)
=3.14×6.28
=19.7192(平方分米)
答:这个圆柱的表面积是45.7184平方分米,体积是19.7192平方分米。
3.一列火车上午8时从甲站开出,到第二天的晚上9时到达乙站。已知火车平均每小时行98千米。甲乙两站间的铁路长多少千米?
分析:这题的解题关键是要知道火车行驶的时间。
24-8+9=25(小时)[或者:12-8+12+9=25(小时)]
98×25=(100-2)×25
=2500-50
=2450(千米)
答:甲乙两站间的铁路长2450千米。
4.一个圆和一个扇形的半径相等。已知圆的面积是30平方厘米,扇形的圆心角是72度。求扇形的面积。
分析:因为圆和扇形的半径相等,圆和扇形的面积存要在倍数关系。这个倍数就是它们圆心角之间的倍数关系。
72÷360=1/5,30×1/5=6(平方厘米)
答:扇形的面积是6平方厘米。
第11题:一个半径3厘米的圆,在圆中画一个扇形,使它的面积占圆面积的20%,并且算出这个扇形的面积。
分析:此题与上题的思路一样。
3.14×3×3×20%=5.652(平方厘米)
答:这个扇形的面积是5.652平方厘米。
5.学校把植树任务按5:3分给六年级和五年级。六年级实际栽了108棵,超过原分配任务的20%。原计划五年级栽树多少棵?
分析:六年级原计划栽树的棵数是解题的关键。
1、六年级原计划栽树多少棵?
108÷(1+20%)=108×5/6=90(棵)
2、原计划五年级栽树多少棵?
90÷5×3=54(棵)
综合算式:
108÷(1+20%)÷5×3
=90÷5×3
=54(棵)
答:原计划五年级栽树54棵。
6.甲乙两面个工程队全修一段公路,甲队的工作效率是乙队的3/5。两队合修6天正好完成这段公路的2/3,余下的由乙队单独修,还要几天才能修完?
分析:求两队的工效是解题的关键。
1、两队的工效和是多少?
2/3÷6=1/9
2、乙队的工效是多少?
1/9×[5÷(3+5)]
=1/9×5/8
=5/72
3、还要几天才能修完?
(1-2/3)÷5/72
=1/3×72/5
=24/5(天)
答:还要24/5天才能修完。
7.某水泥厂去年生产水泥232400吨,今年头5个月的产量就等于去年全年的产量。照这样计算,这个水泥厂今年将比去年增产百分之几?
解法一:分析,今年后7个月的产量就是增产的,因此我们要先求出后7个月生产量。
232400÷5×(12-5)
=46480×7
=325360(吨)
325360÷232400=1、4=140%
解法二:把232400吨看作单位“1”,
1、今年平均每月生产量是去年的几分之几?
1÷5=1/5
2、今年比去年增产几分之几?
1/5×(12-5)=7/5
3、今年比去年增产百分之几?
7/5=1.4=140%
综合算式:1÷5×(12-5)=1.4=140%
答:这个厂今年比去年增产140%。
8.幼儿园买进大小两种毛巾各40条,共用258.8元。大毛巾的单价比小毛巾单价的2倍多0.11元。这两种毛巾单价各是多少元?
解:设小毛巾的单价是x元,则大毛巾的单价是(2x+0.11)元。
[x+(2x+0.11)]×40=258.8
3x=6.47-0.11
x=6.36÷3
x=2.12
2x+0.11=2.12×2+0.11
=4.35
答:大毛巾的单价是每条4.35元,小毛巾的单价是每条2.12元。
9.
一间长4、8米、宽3、6米的房间,用边长0、15米的正方形瓷砖铺地面,需要768块。在长6米、宽4、8米的房间里,如果用同样的瓷砖来铺,需要多少块?如果在第一个房间改铺边长0、2米的正方形瓷砖,要用多少块?(用比例解)
分析:房间的面积是一定的,每块砖的面积和块数成反比例。
解:设需要x块。
0.15×0.15x
=6×4.8
x
=6×4.8÷0.15÷0.15
x
=1280
答:需要1280块。
解:设需要y块。
0.2×0.2y=4.8×3.6
y=4.8×3.6÷0.2÷0.2
y=432
答:需要432块。
10.一艘轮船所带的柴油最多可以用6小时。驶出时顺风,每小时行驶30千米。驶回时逆风,每小时行驶的路程是顺风时的4/5。这艘轮船最多驶出多远应往回驶?
分析:轮船行驶的路程一定,每小时行驶的路程和时间成反比例。
解:设这艘轮船逆风行驶了x小时。
30×4/5x=30×(6-x)
4/5x=6-x
9/5x=6
x=10/3
30×4/5×10/3=80(千米)
答:这艘轮船最多驶出80千米就应往回驶。
11.
一辆汽车从甲地开往乙地,第一小时行了全程的1/7,第二小时比第一小时多行了16千米,这时距离乙地还有94千米。甲乙两地的公路长多少千米?
分析:“从第二小时比第一小时多行了16千米”可知第二小时行了全程的1/7和16千米。第一小时和第二小时共行全程的(1/7+1/7)和16千米。由此可知(96+16)占全程的(1-1/7-1/7)。
根据上面的分析得:
(96+16)÷(1-1/7-1/7)
=112÷5/7
=112×7/5
=156、8(千米)
答:甲乙两地的公路长156、8千米。
或者用方程解:
解:设甲乙两地的公路长x千米。
(1-1/7-1/7)x=96+16
5/7x=112
x=156、8
答:甲乙两地的公路长156、8千米。
题目改编:若这题中的一个条件改成“这时距离甲地96千米”,其它条件不变,问题也不变。如何解答?
12.一个编织组,原来30人10天生产1500只花篮。现在增加到80人,按原来的工效,生产6000只花篮需要多少天?(用比例解答)
分析:题中说“按原来的工效”,这说明这个纺织组的工作效率是一定的。工作效率一定,工作总量和工作时间成正比例。
解:设需要x天。
1500:(30×50)=6000:(80×x)
1500×(80×x)=6000×(30×50)
x=6000×30×50÷80÷1500
x=6000÷80
x=75
答:需要75天。
13.红光农场有两块麦田,第一块5.5公顷,共收小麦27.3吨,第二块3.6公顷,共收小麦18.2吨,这两块麦田平均每公顷收小麦多少吨?
14.
一辆汽车在山区行驶,上山用了3小时,平均每小时行30千米,下山行完同样的路程,只用了2小时,求这辆汽车上山,下山的平均速度.
15.
甲乙二人同时从同一地点向相反方向背向而行,甲每小时行驶15千米,乙每小时行驶12千米,4.5小时两人相距多少千米?甲比乙多走多少千米?
16.
服装厂计划做1470套服装,已经做了5天,平均每天做150套,剩下的要4.5天完成,剩下的平均每天比原来每天多做多少套?
17.
每套童装用布2.5米,每套成人服装用布4米,现在要做童装5套,成人服装3套,共有布30米,还可以剩下多少米布?如果每条裤子用布1.1米,剩下的这些布可做裤子多少条?
18.超市开展矿泉水“买5送1”的活动。一个旅游团有48人,想每人发一瓶矿泉水,需要购买多少瓶水就够了?
(买5送1
的意思是要6瓶矿泉水只需要买5瓶,48里有8个6,所以只需要8个5就可以了,答案是40瓶。)
19.
一个小数部分是两位的小数,用四舍五入法把它精确到0.1,它的近似值是5.0,那么这个两位小数是什么?
(解析:所求的两位小数是:4.95,4.96,4.97,4.98,4.99,5.00,5.01,5.02,5.03,5.04
20.
一只底面是正方形的长方体铁箱,如果把它的侧面展开,正好得到一个边长是40cm的正方形.求这只铁箱的容积是多少升?
《
40÷4=10
10×10×40÷1000=4》
回答者:
cyg2436
-
高级经理
七级
1-12
15:16
小学5年级奥数题选
填空题
1.计算:0.02+0.04+0.06+0.08+……+19.94+19.96+19.98=________。
2.1×1+2×2+3×3+……1997×1997+1998×1998的个位数字是________。
3.一个两位数,在它的两个数字中间添一个0,就比原来的数多630,这样的两位数共有_______个。
4.现有壹元的人民币4张,贰元的人民币2张,拾元的人民币3张,如果从中至少取1张,至多取9张,那么,共可以配成_______种不同的钱数。
5.一组四位数,每一个数的数字均不为0,并且互不相同,但每个数所有的数字和都为12,将所有这样的四位数从小到大依次排列,第25个数是_______。
6.大猴给小猴分桃子,如果每只小猴分8个桃子,还剩10桃子;如果每只小猴分9个桃子,那么有一只小猴就分不足9个,但仍可以分到桃子,小
8.有一栋居民楼,每家都订2份不同的报纸,该居民楼共订了三种报纸。其中《南通广播电视报》34份,《扬子晚报》30份,《报刊文摘》22份。那么,订《扬子晚报》和《报刊文摘》的共有_______家。
9.强强、芳芳两人在相距120米的直路上来回跑步,强强每秒跑2米,芳芳每秒跑3米。如果两人同时从两端点出发,那么15分钟内他们共相遇_______次。
10.某车间加工一批零件,计划每天加工48个,实际每天比计划多加工12个,结果提前5天完成任务。这批零件共有_______个。
(小数报427期改编)
11.李、孙、王三人今年年龄之和为113岁,王38岁时,孙的年龄是李的2倍,李17岁时,王的年龄是孙的2倍,孙今年_______岁。
(小数报492期,98—9—18)
(小数报475期)
13.有16把锁和20把钥匙,其中20把钥题中的16把是和16把锁一一配对的,但现在锁和钥匙弄乱了。那么,至少需要试_______次才能确保锁和钥匙都配对起来。
(小数报457期,改编)
(小数报475期98—4—10改编)
15.甲、乙、丙、丁四名学生参加南通市小学生数学竞赛。赛前,三位老师进行预测:
一位老师说:丙第一名,甲第二名;
另一位老师说:乙第一名,丁第四名;
还有一位老师:丁第二名,丙第三名。
http://rita.blog.luohue.net/blog/View.aspx?essayID=27351&BlogID=6572
看看满意吗?
2. 小学五年级奥数题,及答案
1、某班有40名学生,其中有15人参加数学小组,18人参加航模小组,有10人两个小组都参加。那么有多少人两个小组都不参加?
2、某班45个学生参加期末考试,成绩公布后,数学得满分的有10人,数学及语文成绩均得满分的有3人,这两科都没有得满分的有29人。那么语文成绩得满分的有多少人?
3、50名同学面向老师站成一行。老师先让大家从左至右按1,2,3,……,49,50依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转。问:现在面向老师的同学还有多少名?
4、在游艺会上,有100名同学抽到了标签分别为1至100的奖券。按奖券标签号发放奖品的规则如下:(1)标签号为2的倍数,奖2支铅笔;(2)标签号为3的倍数,奖3支铅笔;(3)标签号既是2的倍数,又是3的倍数可重复领奖;(4)其他标签号均奖1支铅笔。那么游艺会为该项活动准备的奖品铅笔共有多少支?
5、有一根长为180厘米的绳子,从一端开始每隔3厘米作一记号,每隔4厘米也作一记号,然后将标有记号的地方剪断。问绳子共被剪成了多少段?
五年级试题三答案
1,因为10人2组都参加,所以只参加数学的5人,只参加航模的8人,加上那10人就是23人,40-23=17,2个小组都不参加的17人
2,同理,数学满分10人,2科都满分的3人,于是只是数学满分的7人,45-7-29=9,这个就是语文满分的人(如果说只是语文满分的则需要减去3)
3,50÷4取整12,50÷6取整8,但是要注意,报4倍数的同时可能是6的倍数,所以还要算出4和6的公倍数,有50÷12(4和6的最小公倍数)=4(取整),所以,应该是50-12-8+4=34
4,100÷2=50,100÷3=33(取整),还是算出2和3的公倍数100÷6=16(取整),然后找出即没不被2整除,也不被3整除的数的个数100-50-33+16=28,所以,准备铅笔为50X2+33X3+28=227
5,180÷3=60,180÷4=45,但是可能2个划线划在一起,也就是要算出他们的公倍数,180÷3÷4=15,所以应该为60+45-15=90
3. 20道简单的五年级奥数题及答案
有奖励
20道简单的五年级奥数题及答案
急急急!!!
我来答有奖励
138******49
LV.1
聊聊关注成为第1位粉丝
1.有一些糖,每人分5块多10块;如果现有的人数增加到原人数的1.5倍,那么每人4块就少2块.问这些糖共有多少块?
【分析与解】 方法一:设开始共有x人,两种分法的糖总数不变,有5x+10=4×1.5x-2,解得x=12,所以这些糖共有12×5+10=70块.
方法二:人数增加1.5倍后,每人分4块,相当于原来的人数,每人分1.5×4=6块.
有这些糖,每人分5块多10块,每人分6块少2块,所以开始总人数为(10+2)÷(6-5)=12人,那么共有糖12×5+10=70块.
2.甲、乙两个小朋友各有一袋糖,每袋糖不到20粒.如果甲给乙一定数量的糖后,甲的糖就是乙的糖粒数的2倍;如果乙给甲同样数量的糖后,甲的糖就是乙的糖粒数的3倍.那么,甲、乙两个小朋友共有糖多少粒?
【分析与解】 由题意知糖的总数应该是3的倍数,还是4的倍数.即为12的倍数,因为两袋糖每袋都不超过20粒,所以总数不超过40粒.于是糖的总数只可能为12、24或36粒.
如果糖的总数为12的奇数倍,那么“乙给甲同样数量的糖后”,甲的糖为12÷(3+1)×3=9的奇数倍.那么在甲给乙两倍“同样的数量糖”后,甲的糖为12÷(2+1)×2=8的奇数倍.
也就是说一个奇数加上一个偶数等于偶数,显然不可能.所以糖的总数不能为12的奇数倍.
那么甲、乙两个小朋友共有的糖只能为12的偶数倍,即为24粒.
3.甲班有42名学生,乙班有48名学生.已知在某次数学考试中按百分制评卷,评卷结果各班的数学总成绩相同,各班的平均成绩都是整数,并且平均成绩都高于80分.那么甲班的平均成绩比乙班高多少分?
【分析与解】 方法一:因为每班的平均成绩都是整数,且两班的总成绩相等,所以总成绩既是42的倍数,又是48的倍数,所以为[42,48]=336的倍数.
因为乙班的平均成绩高于80分,所以总成绩应高于48×80=3840分.
又因为是按百分制评卷,所以甲班的平均成绩不会超过100分,那么总成绩应不高于42×100=4200分.
在3840~4200之间且是336的倍数的数只有4032.所以两个班的总分均为4032分.
那么甲班的平均分为4032÷42=96分,乙班的平均分为4032÷48=84分.
所以甲班的平均分比乙班的平均分高96-84=12分.
方法二:甲班平均分×42=乙班平均分×48,即甲班平均分×7=乙班平均分×8,因为7、8互质,所以甲班的平均分为某数的8倍,乙班的平均分为某数的7倍,又因为两个班的平均分均超过80分,不高于100分,所以这个数只能为12.
所以甲班的平均分比乙班的平均分高12×(8-7)=12分.
4.某乡水电站按户收取电费,具体规定是:如果每月用电不超过24度,就按每度9分钱收费;如果超过24度,超出的部分按每度2角钱收费.已知在某月中,甲家比乙家多交了电费9角6分钱(用电按整度计算),问甲、乙两家各交了多少电费?
【分析与解】 如果甲、乙两家用电均超过24度,那么他们两家的电费差应是2角钱的整数倍;
如果甲、乙两家用电均不超过24度,那么他们两家的电费差应是9分钱的整数倍.
现在9角6分既不是2角钱的整数倍,又不是9分钱的整数倍,所以甲家的用电超过了24度,乙家的用电不超过24度.
设甲家用了24+x度电,乙家用了24-y度电,有20x+9y=96,得x=3,y=4.
即甲家用了27度电,乙家用了20度电,那么乙家应交电费20×9=180分=1元8角,则甲家交了180+96=276分=2元7角6分.
即甲、乙两家各交电费2元7角6分,1元8角.
5.一小、二小两校春游的人数都是10的整数倍,出行时两校人员不合乘一辆车,且每辆车尽量坐满.现在知道,若两校都租用有14个座位的旅游车,则两校共需租用这种车72辆;若两校都租用19个座位的旅游车,则二小要比一小多租用这种车7辆.问两校参加这次春游的人数各是多少?
【分析与解】 设二小春游人数为m,一小春游人数为n.由已知乘19座面包车二小比一小多租用7辆.所以 19×6+1≤m-n≤19×8-1,即115≤m-n≤151.
又已知两校共需租用14座面包车72辆,所以 70×14+2≤m+n≤72×14,即982≤m+n≤1008.
同时已知m与n都是10的倍数,于是有
, 解得 , 另外四组因为解得m、n不是10的倍数.
经检验只有 满足.
所以,一小参加春游430人,二小参加春游570人.
6.某游客在10时15分由码头划出一条小船,他欲在不迟于13时回到码头.河水的流速为每小时1.4千米,小船在静水中的速度为每小时3千米,他每划30分钟就休息15分钟,中途不改变方向,并在某次休息后往回划.那么他最多能划离码头多远?
【分析与解】 从10时15分出发,不迟于13时必须返回,所以最多可划行2小时45分,即165分钟.165=4×30+3×15,最多可划4个30分钟,休息3个15分钟.
顺流速度为3+1.4=4.4千米/4,时;所以顺流半小时划行路程为4.4×0.5=2.2千米;
逆流速度为3-1.4=1.6千米/4,时;所以逆流半小时划行路程为1.6×0.5=0.8千米.
休息15分钟,则船顺流漂行的路程为1.4×0.25=0.35千米.
第一种情况:当开始顺流时,至少划行半小时,行驶2.2千米,而在休息的3个时问内船又顺流漂行0.35×3=1.05千米的路程,所以逆流返回时需划行2.2+1.05=3.25千米.
3.25÷1.6=2.03125小时=121.875分钟.即最少需30+15×3+121.875=196.875分钟>165分钟,来不及按时还船.不满足.
第二种情况:当开始逆流时,每逆流半小时,则行驶0.8千米,则3次逆流后,行驶了0.8×3=2.4千米,船在游客休息时顺流漂行了1.05千米,所以回划时只用划行2.4-1.05=1.35千米的路程,需1.35÷4.4≈0.3068小时≈18.41分钟.共需3×30+3×15+18.41=153.41分钟<165分钟,满足.
于是,只有第二种情况满足,此时最远的路程为休息了2次后第3次逆流所至的地点,为0.8×3-0.35×2=1.7千米.
所以,他最多能划离码头1.7千米.
7. 机械厂计划生产一批机床,原计划每天生产40台,可在预定的时间内完成任务,实际每天生产48台,结果提前4天完成任务,求这批机床有多少台?
48×[40×4÷(48-40)]=960(台)
8. 某印刷厂计划用24天装订一批书,每天装订12000本,实际提前4天完成了任务,实际比原计划每天多装订多少本?
【分析与解】12000×24÷(24-4)-12000=2400(本)
9. 甲、乙两砖厂,甲厂原存砖87500块,乙厂比甲厂多存砖4500块,某日甲厂卖出25000块,乙厂比甲厂少卖出3000块,这时哪厂存砖多?多多少块?
【分析与解】甲厂存砖:87500-25000=62500(块)
乙厂存砖:(87500+4500)-(25000-3000)=70000(块)
∴ 乙厂存砖多,多 70000-62500=7500(块)
10. 一筐苹果连筐共重45千克,卖出一半后,剩下的苹果连筐共重24千克,求原来有苹果多少千克?
【分析与解】(45-24)×2=42(千克)
11.小明上午8时骑自行车以每小时12千米的速度从A地到B地,小强上午8时40分骑自行车以每小时16千米的速度从B地到A地,两人在A、B两地的中点处相遇,A、B两地间的路程是多少千米?
【分析与解】这是一个相向而行相遇求路程的问题。但两人不是同时出发,如果能转换成同时出发,并且求出行多少小时相遇,就可以用数学课学的方法解答。
两人在两地间的路程的中点相遇,但小明比小强多行了40分钟,如果两人同时出发,相遇时,小明行的路程就比小强少12÷60×40=8(千米),就是当小强出发时,小明已经行了8千米,从8时40分起两人到两人相遇,由于小明每小时比小强少行16-12=4(千米),说明两人相遇时间是8÷4=2(小时),那么,A、B两地间的路程是8+(12+16)×2=64(千米)。
答:A、B两地间的路程是64千米。
12:甲、乙两村相距3550米,小伟从甲村步行往乙村,出发5分钟后,小强骑自行车从乙村前往甲村,经过10分钟遇见小伟。小强骑车每分钟行的比小伟步行每分钟多160米,小伟每分钟走多少米?
【分析与解】如果小强每分钟少行160米,他行的速度就和小伟步行的速度相同,这样小强10分钟就少行了160×10=1600(米),小伟(5+10)分钟和小强10分钟一共行走的路程是3550-1600=1950(米),那么小伟每分钟走的路是1950÷(5+10+10)=78(米)。
答:小伟每分钟走78米。
13:客车从东城和货车从西城同时开出,相向而行,客车每小时行44千米,货车每小时行36千米,客车到西城比货车到东城早2小时。两车开出后多少小时在途中相遇?
【分析与解】当客车到西城时,货车离东城还有2×36=72(千米),而货车每小时行的比客车少44-36=8(千米),客车行东西城间的路程用的时间是72÷8=9(小时),因此东西城相距44×9=396(千米),两车从出发到相遇用的时间是;396÷(44+36)=4.95(小时)
答:两车开出后4.95小时在途中相遇。
14:甲、乙二人同一天从北京出发沿同一条路骑车往广州,甲每天行100千米,乙第一天行70千米,以后每天都比前一天多行3千米,直到追上甲,乙出发后第几天追上甲?
【分析与解】二人同时、同地出发同向而行,但开始时,乙比甲行得慢,当乙的速度增加到与甲相同前,两人间的距离越拉越大,当乙的速度超过甲时,两人间的距离又越来越近,直到乙追上甲。
开始时,乙一天行的比甲少100-70=30(千米),以后乙每天多行3千米,到与甲速相同要经过30÷3=10(天),即前10天,甲、乙之间的距离是逐天拉大的,第11天两人速度相同,从第12天起,乙的速度开始比甲快,与甲的距离逐天拉近,所以,乙追上甲用的时间是:10×2+1=21(天)。
答:乙出发后第21天追上甲。
15:甲、乙两地相距10千米,快、慢两车都从甲地开往乙地,快车开出时,慢车已行了1.5千米,当快车到达乙地时,慢车距乙地还有1千米,那么快车在距乙地多少千米处追上慢车?
【分析与解】慢车行了1.5千米,快车才开出,而快车到达乙地时,慢车距乙地还有1千米,就是在快车行10千米的时间里,比慢车多行的路程为1.5+1=2.5(千米)。快车每行1千米比慢车多2.5÷10=0.25(千米)。
16. 有7个数,它们的平均数是18。去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下的5个数的平均数是20。求去掉的两个数的乘积。
【分析与解】7*18-6*19=126-114=12
6*19-5*20=114-100=14
去掉的两个数是12和14它们的乘积是12*14=168
17. 有七个排成一列的数,它们的平均数是 30,前三个数的平均数是28,后五个数的平均数是33。求第三个数。
【分析与解】28×3+33×5-30×7=39。
18. 有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8。问:第二组有多少个数?
【分析与解】设第二组有x个数,则63+11x=8×(9+x),解得x=3。
19.小明参加了六次测验,第三、第四次的平均分比前两次的平均分多2分,比后两次的平均分少2分。如果后三次平均分比前三次平均分多3分,那么第四次比第三次多得几分?
【分析与解】第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分。因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1(分)。
20. 妈妈每4天要去一次副食商店,每 5天要去一次百货商店。妈妈平均每星期去这两个商店几次?(用小数表示)
【分析与解】每20天去9次,9÷20×7=3.15(次)。
编辑于 2020-02-13
查看全部8个回答
数学考试题,数学题目大全,0元试听,总结高效提分方法。
值得一看的数学相关信息推荐
数学考试题,掌门1对1拥有10000+教研人员,1对1针对性教学,查缺补漏,快速提升!数学考试题,初高中在线1对1辅导,好老师1对1辅导教出好成绩。
上海掌小门教育科技..广告
掌门优课在线高二数学题目及答案辅导_一线名师在线教学
名师高二数学题目及答案辅导,全程视频互动,结合地域差异,个性化教学,2节精品小班课免费领!
上海掌小门教育科技..广告
相关问题全部
广告数学题五年级_数学冲刺高分的秘籍_名师来告诉你
数学题五年级_作业帮,紧扣当地教材,快速吃透教材重难点,短时冲刺高分必备。学完就测评孩子成绩提升看得见!
572020-06-03
20道五年级下学期奥数题(简单一点的)不要答案
第六届小学“希望杯”全国数学邀请赛一、填空题(每小题5分,共60分)1、(1 +2 +8 )÷(1 +2 +8 )= 2、奥运吉祥物中的5个“福娃”取“北京欢迎您”的谐音:贝贝、京京、欢欢、迎迎、妮妮。如果在盒子中从左向右放5个不同的“福娃”,那么,有 种不同的放法。3、有一列数:1,1,3,8,22,60,164,448……其中的前三个数是1,1,3,从第四个数起,每个数都是这个数前面两个数之和的2倍。那么,这列数中的第10个数是 4、有一排椅子有27个座位,为了使后去的人随意坐在哪个位置都有人与他相邻,则至少要先坐 人。5、一个拧紧瓶盖的瓶子里装着一些水(如图1),由图中的数据可推知瓶子的容积是 立方厘米;( 取3.14)6、某小区有一块如图2所示的梯形空地,根据图中的数据计算,空地的面积是 平方米。 7、如图3,棱长分别为1厘米,2厘米,3厘米,5厘米的四个正方体紧贴在一起,则所得到的多面体的表面积是 平方厘米。8、五年级一班共有36人,每人参加一个兴趣小组,共有A,B,C,D,E五个小组,若参加A组的有15人,参加B组的仅次于A组,参加C组、D组的人数相同。参加E组的人数最少,只有4人,那么,参加B组的有 人。 9、菜地里的西红柿获得丰收,摘了全部的 时,装满了3筐还多16千克。摘完其余部分后,又装满6筐,则共收得西红柿 千克。10、工程队修一条公路,原计划每天修720米,实际每天比原计划多修80米。因而提前3天完成任务。这条路全长 千米。11、王叔叔开车从北京到上海,从开始出发,车速即比原计划的速度提高了 ,结果提前一个半小时到达;返回时,按原计划的速度行驶280千米后,将车速提高 ,于是提前1小时40分到达北京。北京、上海两市间的路程是 千米。12、两个完全相同长方体的长、宽、高分别是5厘米、4厘米、3厘米,把它们拼在一起可组成一个新长方体,在这些长方体中,表面积最小的是 平方厘米。二、解答题(本大题共4小题,每小题15分,共60分)要求:写出推算过程13、著名的哥德巴赫猜想:“任意一个大于4的偶数都可以表示为两个质数的和”。如6=3+3,12=5+7,等。那么自然数100可以写成多少种两个不同质数和的形式?请分别写出来(100=3+97和100=97+3算作同一种形式)14、如图4(a),ABCD是一个长方形,其中阴影部分是由一副面积为100平方厘米的七巧板(图4(b))拼成。那么,长方形ABCD的面积是多少平方厘米? 15、号码分别为2005、2006、2007、2008的4名运动员进行乒乓球赛,规定每2人比赛的场数是他们号码的和被4除所得的余数。那么2008号运动员比赛了多少场?16、有一个蓄水池装了9根相同的水管,其中一根是进水管,其余8根是出水管。开始时,进水管以均匀的速度不同地向蓄水池注水。后来,想打开出水管,使池内的水全部排光。如果同时打开8根出水管,则3小时可排尽池内的水;如果仅打开5根出水管,则需6小时才能排尽池内的水。若要在4.5小时内排尽池内的水,那么应当同时打开多少根出水管第二届华博士小学数学奥林匹克网上竞赛试题及答案选择正确的答案: (1)在下列算式中加一对括号后,算式的最大值是( )。7 × 9 + 12 ÷ 3 - 2 A 75 B 147 C 89 D 90(2)已知三角形的内角和是180度.一个五边形的内角和应是( )度.A 500 B 540 C 360 D 480(3)甲乙两个数的和是15.95,甲数的小数点向右移动一位就等于乙数,那么 甲数是( ). A 1.75 B 1.47 C 1.45 D 1.95(4)一个顾客买了6瓶酒,每瓶付1.3元,退空瓶时,售货员说,每只空瓶钱比酒钱 少1.1元,顾客应退回的瓶钱是( )元.A 0.8 B 0.4 C 0.6 D 1.2(5)两数相除得3余10,被除数,除数,商与余数之和是143,这两个数分别是( ) 和( ). A 30和100 B 110和30 C 100和34 D 95和40(6) 今年爸爸和女儿的年龄和是44岁,10年后,爸爸的年龄是女儿的3倍,今年女儿是多少岁? A16 B11 C9 D10 (7)一个两位数除250,余数是37,这样的两位数是( ).A 17 B38 C 71 D 91(8)把一条细绳先对折,再把它所折成相等的三折,接着再对折,然后用剪刀在折过三次的绳中间剪一刀,那么这条绳被剪成( )段.A 13 B 12 C 14 D 15(9) 把两个表面积都是6平方厘米的正方体拼成一个长方体,这个长方体的表面积( ). A 12 B 18 C10 D11(10)一昼夜钟面上的时针和分针重叠( )次.A 23 B 12 C 20 D13(11)某车间四月份实际生产机器76台,其中原计划生产的台数比超产台数多60台, 求四月份比原计划超产多少台机器?A 16 B 8 C 10 D 12(12)一块红砖长25厘米,宽15厘米,用这样的红砖拼成一个正方形最少需要多少块? A 15 B 12 C 75 D 8 E(13)图中ABCD是长方形,已知AB=4厘米,BC=6厘米,三角形EFD的面积比三角形ABF的面积大6平方厘米,求ED=?厘米A 9 B 7 C 8 D 6 F DA BC (14)一天,甲乙丙三人去郊外钓鱼已知甲比乙多钓6条,丙钓的是甲的2 倍,比乙多钓22条,问他们三人一共钓了多少条?A 48 B 50 C 52 D 58(15)张师傅以1元钱4个苹果的价格买进苹果若干个,又以2元钱5个苹果有价格把这些苹果卖出,如果他要赚得15元钱的利润,那么他必须卖出苹果多少个?A 10 B 100 C 20 D 1602006年“希望杯”全国数学大赛(时间:90分钟 满分:120分)题 号一二其中:总 分13141516得 分 得分评卷人 一、填空题。(每题6分,共72分。) 1.计算:1+++++++++…+++…++…++=____________。2.8+88+888+…+88…8的和的个位上的数字是____________。3.有四个连续奇数的和是2008,则其中最小的一个奇数是____________。4.张阿姨把相同数量的苹果和橘子分给若干名小朋友,每名小朋友分得1个苹果和3个橘子。最后橘子分完了,苹果还剩下12个。那么一共分给了____________名小朋友。5.有这样一种算式:三个不同的自然数相乘,积是100。这样的算式有____________种。(交换因数位置的算同一种。)6.在右边的数阵中,如果按照从上往下,从左往右的顺序数数,可以知道第1个数是1,第3个数是2,第6个数是3,……那么第99个数是____________。7.一天,小慧和刘老师一起谈心。小慧问:“老师,您今年有多少岁?”刘老师回答说:“你猜猜,当我像你这么大时,你才1岁;当你到我这么大时,我就34岁了。”刘老师今年的年龄是____________岁。8.小华同学为了在“希望杯”数学大赛中取得好成绩,自己做了四份训练题(每份训练题满分为120分)。他第一份训练题得了90分,第二份训练题得了100分,那么第三份训练题至少要得____________分才能使四份训练题的平均成绩达到105分。9.某小学五年级有9名同学进入了“希望杯”数学大赛的决赛。已知他们在初赛中前3名同学的平均分比前6名同学的平均分多3分,后6名同学的平均分比后3名同学的平均分多3分。那么前3名同学的总分比后3名同学的总分多____________分。10.在右图中,已知正方形ABCD的面积是正方形EFGH面积的4倍,正方形AMEN的周长是4厘米,那么正方形ABCD的周长是____________厘米。11.一个自然数各个数位上的数字之和是15。如果它 的各个数位上的数字都不相同,那么符合条件的最大数是____________,最小数是____________。12.对自然数作如下操作:如果是偶数就除以2,如果是奇数就减去1,如此操作直到结果变成0为止。那么经过6次操作后使结果变成0的数有______个,分别是_____________________________________。得分评卷人 二、解答题。(每题12分,共48分。) 13.五名裁判员给一名体操运动员评分,去掉一个最高分和一个最低分后平均得分是9.38分。若去掉一个最高分平均得分为9.26分;若去掉一个最低分平均得分为9.46分。这名体操运动员的最高分和最低分分别是多少分?14.小狗给动物王国编一本童话故事书。 我编这本书一共用了666个数字。小狗编的这本书一共有多少页?15.学校合唱团全部是来自甲、乙、丙三个班的同学,其中来自甲、乙两班的同学共有60人。合唱团中不是甲班的同学有100人,不是乙班的同学有90人。问:(1)合唱团中来自甲、乙两班的同学各有多少人?(2)合唱团的同学一共有多少人?16.下面是一些“神秘等式”。式中的“+”、“-”、“×”、“÷”等运算符号的意义都与普通的用法相同,但0、1、2、3、……、9等数字所代表的意义则与普通的不同。① 1×5=1 ② 7×2=96 ③ 99-5=3④ 83÷4=4 ⑤ 5×5…×5=6 ⑥ 9+(7×8)=97(1)请你破解出这些“神秘等式”中的秘密,找出其中每个数字所代表的普通意义。(2)普通意义的2006用“神秘等式”中数字所代表的意义来表示,怎样表示?(3)如果采用“神秘等式”中数字所代表的意义,那么,60+06等于多少?
1 浏览560
求,,,20道小学五年级的奥数题及答案!
1.甲乙丙三人同时从同一地点出发沿同一路线追赶前面的小明;他们三人分别用9分,15分,20分追上小明,已知甲每小时行24千米,以每小时行20千米,求丙每小时行多少千米? 甲9分追上时行走了24*9/60=3.6,乙9分时行走了20*9/60=3,说明在9分时,乙和小明距离为0.6,15分时乙追上,用了6分追了0.6千米,说明乙比小明每分多走0.1千米,乙速度为20,则小明为14千米每小时,则设丙速度为x 9/60*x+11/60*(x-14)=3.6 x=18.5(千米每小时) 2.甲乙两人同时从山脚开始爬山,到达山顶后就立即下山,甲乙两人下山的速度都是各自上山速度的二倍,嫁到山顶是一句山顶还有500米,甲回到山脚是乙刚好下到半山腰,求从山脚到山顶的路程。 甲乙两人下山的速度都是各自上山速度的二倍,甲到山顶时乙距山顶还有500米,甲到山脚时乙距离山脚距离为500*(1+2)=1500米。 甲回到山脚是乙刚好下到半山腰,所以,从山脚到山顶的路程为3000米 3.甲一分钟能洗3个盘子或9个碗,乙一分钟能洗2个盘子或7个碗,甲乙两人合作,20分钟洗了134个盘子和碗,问洗了几个盘子几个碗? 设甲乙各用x、y分钟洗盘子,则 3x+9(20-x)+2y+7(20-y)=134 6x+5y=186 x<=20,y<=20 x=16, y=18 所以,盘子=16*3+18*2=84个,碗=4*9+2*7=50个 4.全班有30名学生,其中17人会骑自行车,16人会游泳,11人会滑冰,
4. 最新版小学数学奥赛起跑线五年级分册的参考答案
小学5年级奥数题选
填空题
1.计算:0.02+0.04+0.06+0.08+……+19.94+19.96+19.98=________。
2.1×1+2×2+3×3+……1997×1997+1998×1998的个位数字是________。
3.一个两位数,在它的两个数字中间添一个0,就比原来的数多630,这样的两位数共有_______个。
4.现有壹元的人民币4张,贰元的人民币2张,拾元的人民币3张,如果从中至少取1张,至多取9张,那么,共可以配成_______种不同的钱数。
5.一组四位数,每一个数的数字均不为0,并且互不相同,但每个数所有的数字和都为12,将所有这样的四位数从小到大依次排列,第25个数是_______。
6.大猴给小猴分桃子,如果每只小猴分8个桃子,还剩10桃子;如果每只小猴分9个桃子,那么有一只小猴就分不足9个,但仍可以分到桃子,小
8.有一栋居民楼,每家都订2份不同的报纸,该居民楼共订了三种报纸。其中《南通广播电视报》34份,《扬子晚报》30份,《报刊文摘》22份。那么,订《扬子晚报》和《报刊文摘》的共有_______家。
9.强强、芳芳两人在相距120米的直路上来回跑步,强强每秒跑2米,芳芳每秒跑3米。如果两人同时从两端点出发,那么15分钟内他们共相遇_______次。
10.某车间加工一批零件,计划每天加工48个,实际每天比计划多加工12个,结果提前5天完成任务。这批零件共有_______个。
5. 小学五年级数学奥赛题及答案
、(1)A、1991+199.1+19.91+1.991=1991+199+19.+1+(0.1+0.91+0.991)=2212.001。
B、1995+1996+1997+1998+1999+2000 +2001+2002+2003+2004=19995。
(2)设想:1、同时参加语文、数学两科竞赛的最多有23人,同时参加语文、英语两科竞赛的最多有5人,只参加英语竞赛的有15人,另外7人什么也不参加,那么参加两科竞赛的最多有28人。2、同时参加语文、英语两科竞赛的最多有20人,同时参加语文、数学两科竞赛的最多有8人,只参加数学竞赛的有15人,另外7人什么也不参加,那么参加两科竞赛的最多有28人。其它设想也会得出最多有28人的答案。
(3)五个是连续自然数的最小合数为24、25、26、27、28,和最小是130。
(4)火车从上桥到离桥需要(1200+300)÷20=75秒钟。
(5)连续n个偶数之和 应为2+4+6+8+ ……=n×(n+1)
则2+4+6+8+ ……+1000=500×(500+1)=250500。
(6)沿圆形轨道飞行了2×(6400+343)×3.14×10≈ 420000千米.
2、居民区A 。
街道 _____________s_点为奶站________________
。居民区B
3、 如图:中间空出的小正方形边长为5厘米,长方形板的宽为
6厘米,长方形板的面积是66平方厘米。
20米
31.5米
4、如上右图,把三条道路平移至菜地边上,则用于种菜的面积就是长为31.5米,宽为20米的长方形面积,是630平方米。
5、汽船顺中流而下速度为440÷4=110(里),则汽船在静水中的速度为110-45=65(里),汽船从沿岸返回速度为65-25=40(里),从沿岸返回原处需440÷40=11小时。
6、解法1、由题意知每6个和尚要用6个饭碗,3个菜碗,2个汤碗,即用11个碗,则55个碗是11的5倍,共有和尚6×5=30个。解法2、每一个和尚要用一个饭碗、二分之一个菜碗,三分之一个汤碗,即共用116个碗,共有和尚55÷116=30个。
7.解法1、240只羊吃草6天=牧场中原有的和6天新长出的草吃=1只羊吃1440天的草,210只羊吃草8天=牧场中原有的和8天新长出的草吃=1只羊吃1680天的草,两者之差是2天新长出的草=1只羊吃240天的草,1天新长出的草=1只羊吃120天的草;牧场中原有的草=1只羊吃144天的草—6天新长出的草(1只羊吃72天的草)=1只羊吃720天的草,18天要吃掉牧场中原有的+18天新长出的草=1只羊吃720天的草+18×1只羊吃120天的草=1只羊吃2880天的草,要用2880÷18=160只羊。160只羊18天即可把牧场中原有的和新长出的草吃完。解法2、每天新长出的草=120只羊可当天吃完,也就是说不管吃草天数多长,专用120只羊可吃掉每天新长出的草,则18天中要吃掉牧场中原有的草要用的羊数+120只羊(当天吃掉新长出的草)就是答案,
牧场中原有的草=1只羊吃720天的草=40只羊吃18天的草, 要用40+120=160只羊
18天即可把牧场中原有的和新长出的草吃完。解法3、本题也可用三元一次方程组求解。设:牧场中原有的草为a和新长出的草为b,c只羊18天即可把牧场中原有的和新长出的草吃完。则有a+6b=240×6 (1)式; a+8b=210×8 (2)式 a+18b=c×18 (3)式可解出c=160只羊。
8、本月水费=15×0.8+10×0.8×2=28元。
9、要用大树为0.28×20×50000000÷(3.14×10×10×2000)≈446棵=0.004万棵,毁灭0.0004平方公里的森林。使用一次性筷子毁灭森林、污染环境,造成生态灾难。我们应当拒绝使用一次性筷子,保护森林、保护生态环境,建议使用消毒竹筷替代一次性筷子。
10、(1)题中的数据可制成条形、折线、扇形统计图均可;(2)城市垃圾的数量年年增加,说明了我国经济社会高速发展,人民生活水平年年提高;(3)我国每年都有这么多的垃圾 ,1)选择填埋,一次性处理;2)应该变废为宝,建立垃圾综合分检处理厂,分类分检回收利用各种有用的工业材料,制造化肥等,保护生态环境。
11、 (1)图形的面积90平方厘米。
(2) 解1:如图半圆面积减掉三角形面积=2个半片叶面积
=3.5625平方厘米。
5 则四叶阴影面积=
12 8 13.5625×4=14.25平方厘米
10 解2:四叶阴影面积=4个半圆面积减掉正形面积
=39.25—25=14.25平方厘米
12、据题意知:三个班分别为(3个、3个、8个节目)的情况共有3种;(3个、4个、7个节目)的情况共有6种;(3个、5个、6个节目)的情况共有6种;(4个、4个、6个节目)的情况共有3种;(4个、5个、5个节目)的情况共有3种。这三个班演出节目数的不同情况共有3+6+6+3+3=21种。
13、最终能获得5个正方形,边长分别是15厘米、6厘米、6厘米、3厘米、3厘米
6. 小学五年级数学奥数题的答案
1.( 6 )÷12=1:( 2 )=3/( 6 )=0.5=( 50 )%
2.把0.13万改写成以“一”为单位的数是(1300 ),读作( 一千三百 )。
3.在括号里填上合适的单位名称。
(1)一个鸡蛋重50( 克 );(2)一枝粉笔的长度接近1( 分米 );
(3)我国的陆地面积约是960万( 平方千米 )。
4.食堂有煤5吨,平均每天烧1/5吨,可以烧( 10 )天。
5.2008年奥运会将在中国北京举行,这一年有( 366 )天。
6.如果2a=b/3,那么a:b=( 1 ):( 6 )
7.有一个机器零件长5毫米,画在设计图纸上长2厘米,这副图的比例尺是( 1:4 )。
8.我国伟大的数学家( 祖冲之 )是世界上第一个把圆周率的值计算精确到7位小数的人。
9.小东、小明和小军三人同在一张球桌上练习打乒乓球,他们轮流上场打了一小时,平均每人打球( 20 )分钟。
10.一张长为11厘米,宽为8厘米的长方形红纸,要剪成直角边分别是4厘米和2厘米的三角形小红旗,一共可以剪( 20 )面。
11.用铁皮做一个底面直径为6分米,高为8分米的圆柱形无盖水桶,至少要用(178.98 )平方分米的铁皮,这个水桶最多能装水( 226.08 )升。
三、计算。(40分)
1.脱式计算。(每小题4分,共16分)
①91-91÷13 ②6÷0.5×4 ③1-0.125÷1/8 ④(5/8+1/2)÷25%
=91—7 =6*1/2*4 =1-1/8÷1/8 =(5/8+1/2)÷1/4
=84 =12 =1-1 =5/8 *4+1/2 *4
=0 =5/2+ 2
=4又1/2
2.用简便方法计算。(写出主要过程)(每小题2分,共8分)
①4.2-1.8+0.8 ②2-3/4-1/4 ③ 118÷25 ④ 4.2× 97+12.6
=4.2+0.8-1.8 =2-(3/4+1/4) =118*0.04 =4.2× 97+4.2*3
=5-1.8 =2-1 =4.72 =4.2×(97+3)
=3.2 =1 =420
3.求未知数х的值。(每小题1分,共4分)
① χ+2/3=2 ②111χ=3 ③ χ/5-13=0 ④ 1.2:χ=4/3
x=2-2/3 x=3/111 x/5=13 4x=1.2*3
x=1又1/3 x=65 x=0.9
4.列式计算。(每小题6分,共12分)
① 125与它的1/5的差是多少?
125-125*1/5
=125*(1-1/5)
=125*4/5
=100
②一个数的1/4比2.8多1.2,
求这个数
解:设这个数为x
1/4x-2.8=1.2
1/4x=4
x=16
附加题(15分)
一个圆柱形容器的容积为V立方米开始用一根小水管向容器内注水水面高度达到容器高度一半后改用一根口径为小水管2倍的大水管注水向容器中注满水的全过程共用时间t分求两根水管各自注水的速度。
答:因为大水管的口径为小水管的2倍,所用的时间是小水管1/4。那么大水管所用的时间是1/5t,小水管所用的时间是4/5t。
大水管:1/2V/(1/5t)=2.5v/t
小水管:1/2V/(4/5t)=5/8v/t
7. 奥赛数学思维训练检测卷(小学5年级)答案
小学生究竟要不要学奥数?这个颇受争议的话题,不仅困扰着很多家长,教育界人士也多有发声,他们大多认为“小学奥数题”增加负担,没有学习的必要。
而自2009年成都最先对奥数挥刀,颁布了“五项封杀禁令”全面封杀“疯狂奥数”开始,国家教育部也出台了一系列政策限制小学奥数,“奥数热”逐渐降温。
作为家长,一边拒绝小学奥数,认为这是 “提前上战场”;一边又担心,跟不上节奏,被别的孩子赶超。因此,家长对小学奥数真的是既爱又恨。
但是,站在教育工作者的角度,奥数没有所谓的该不该学,而是作为家长,想让孩子学习奥数的目的是什么,更重要的是,孩子是否愿意去学,这点非常关键!
如果家长还在纠结到底要不要让孩子从小学学习奥数,请先看完此文再做决定。
小学学奥数弊端
教育功利化奥数本是一项积极向上的数学运动,最初以选拔数学人才为目的,但在快速发展中奥数学习却逐渐偏离轨道,成了某些学校招收“好学生”的评判标准,择校焦虑被迫从家长身上转移到孩子身上,导致教育资源分配不公,教育功利化,扭曲学习奥数本身的意义,引发恶意竞争。
孩子数学学习兴趣缺失名校资源有限,参与学生却越来越多,因奥数引发的教育资源“战争”,导致绝大部分怀揣期望的孩子名校梦碎。还有一部分孩子因为被迫学习奥数产生反叛心理,加上奥数本身并不简单,导致对数学的兴趣大大降低,成绩很可能也一落千丈,对孩子未来数学的学习和发展影响巨大。这对奥数学习来说,完全本末倒置。
家庭经济压力变大目前,由于“小学奥数热”,市场上各种奥数辅导班横行,都是按课时、按师资计费,价格不菲,成百上千。而除此之外,还有其他各种兴趣班、辅导班,对于大部分普通家庭来说,这绝对是很大的经济压力。而这样的教育投资却成为了孩子择校标准,既不理智,又不公平。
小学学奥数好处
发掘数学天赋我国的数学竞赛史是从1956年,在华罗庚、苏步青等著名数学家领导下开始的。而奥数竞赛的最初目的仅仅是为了发现哪些孩子具有超常的智力,发掘他们的数学天赋,培养数学人才。因此,对那些对奥数感兴趣,以及具有数学能力的孩子,非常有好处。
拓展数学思维学习奥数,不仅能让孩子计算能力和应试经验得到提升,更能让孩子拥有高度灵活的思维和创造力。小学奥数学习阶段,多为逻辑推理游戏,智力趣题等,都是以游戏形式不知不觉中传达给孩子,让孩子在玩耍中思考,并且喜欢上数学。高年级奥数则是对一般的教学进行延伸和拓展,通过解决一些有趣的、结合实际的问题,来提高孩子多种数学能力,引导孩子主动钻研和探索难题。
燃起孩子挑战的决心和斗志奥数学习也是培养孩子意志的一个好方法。不少孩子在面对难题时一筹莫展,几近崩溃,或者干脆放弃,这不仅对数学,对各科学习都没有好处,而奥数在激发孩子数学学习兴趣的同时,更能燃起孩子挑战难题的决心和斗志,培养他强势的自信心和意志力。未来无论面对什么,他都有自信在一个领域攀到顶峰。
最后
如果孩子喜爱奥数,那么奥数就是最大的鼓励,并不会成为负担和压力,反而成为他的动力,那当然是要学的。但是,如果孩子不愿意学奥数,那么奥数所有的好处都将变得毫无意义,甚至会变成阻碍孩子学习的毒药。
因此,我们写此文的目的不是为了鼓吹奥数,或者激起家长的焦虑,而是为了让家长冷静分析,认真考虑,你的孩子想不想学奥数,要不要学奥数,为什么学奥数。我们不能让奥数做压坏骆驼的稻草,更不能埋没积极汲取养分的天才。