Ⅰ 五年级奥数题及答案
1、某班有40名学生,其中有15人参加数学小组,18人参加航模小组,有10人两个小组都参加。那么有多少人两个小组都不参加?
2、某班45个学生参加期末考试,成绩公布后,数学得满分的有10人,数学及语文成绩均得满分的有3人,这两科都没有得满分的有29人。那么语文成绩得满分的有多少人?
3、50名同学面向老师站成一行。老师先让大家从左至右按1,2,3,……,49,50依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转。问:现在面向老师的同学还有多少名?
4、在游艺会上,有100名同学抽到了标签分别为1至100的奖券。按奖券标签号发放奖品的规则如下:(1)标签号为2的倍数,奖2支铅笔;(2)标签号为3的倍数,奖3支铅笔;(3)标签号既是2的倍数,又是3的倍数可重复领奖;(4)其他标签号均奖1支铅笔。那么游艺会为该项活动准备的奖品铅笔共有多少支?
5、有一根长为180厘米的绳子,从一端开始每隔3厘米作一记号,每隔4厘米也作一记号,然后将标有记号的地方剪断。问绳子共被剪成了多少段?
1,因为10人2组都参加,所以只参加数学的5人,只参加航模的8人,加上那10人就是23人,40-23=17,2个小组都不参加的17人
2,同理,数学满分10人,2科都满分的3人,于是只是数学满分的7人,45-7-29=9,这个就是语文满分的人(如果说只是语文满分的则需要减去3)
3,50÷4取整12,50÷6取整8,但是要注意,报4倍数的同时可能是6的倍数,所以还要算出4和6的公倍数,有50÷12(4和6的最小公倍数)=4(取整),所以,应该是50-12-8+4=34
4,100÷2=50,100÷3=33(取整),还是算出2和3的公倍数100÷6=16(取整),然后找出即没不被2整除,也不被3整除的数的个数100-50-33+16=28,所以,准备铅笔为50X2+33X3+28=227
5,180÷3=60,180÷4=45,但是可能2个划线划在一起,也就是要算出他们的公倍数,180÷3÷4=15,所以应该为60+45-15=90
Ⅱ 小学生数学报2014年11月14日1246期答案
现在小学生对于答案的需求那么高啊、
Ⅲ 求小学五年级20道奥数题(有解题过程及答案)
9. 有7个数,它们的平均数是18。去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下的5个数的平均数是20。求去掉的两个数的乘积。
解: 7*18-6*19=126-114=12
6*19-5*20=114-100=14
去掉的两个数是12和14它们的乘积是12*14=168
10. 有七个排成一列的数,它们的平均数是 30,前三个数的平均数是28,后五个数的平均数是33。求第三个数。
解:28×3+33×5-30×7=39。
11. 有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8。问:第二组有多少个数?
解:设第二组有x个数,则63+11x=8×(9+x),解得x=3。
12.小明参加了六次测验,第三、第四次的平均分比前两次的平均分多2分,比后两次的平均分少2分。如果后三次平均分比前三次平均分多3分,那么第四次比第三次多得几分?
解:第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分。因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1(分)。
13. 妈妈每4天要去一次副食商店,每 5天要去一次百货商店。妈妈平均每星期去这两个商店几次?(用小数表示)
解:每20天去9次,9÷20×7=3.15(次)。
14. 乙、丙两数的平均数与甲数之比是13∶7,求甲、乙、丙三数的平均数与甲数之比。
解:以甲数为7份,则乙、丙两数共13×2=26(份)
所以甲乙丙的平均数是(26+7)/3=11(份)
因此甲乙丙三数的平均数与甲数之比是11:7。
15. 五年级同学参加校办工厂糊纸盒劳动,平均每人糊了76个。已知每人至少糊了70个,并且其中有一个同学糊了88个,如果不把这个同学计算在内,那么平均每人糊74个。糊得最快的同学最多糊了多少个?
解:当把糊了88个纸盒的同学计算在内时,因为他比其余同学的平均数多88-74=14(个),而使大家的平均数增加了76-74=2(个),说明总人数是14÷2=7(人)。因此糊得最快的同学最多糊了
74×6-70×5=94(个)。
16. 甲、乙两班进行越野行军比赛,甲班以4.5千米/时的速度走了路程的一半,又以5.5千米/时的速度走完了另一半;乙班在比赛过程中,一半时间以4.5千米/时的速度行进,另一半时间以5.5千米/时的速度行进。问:甲、乙两班谁将获胜?
解:快速行走的路程越长,所用时间越短。甲班快、慢速行走的路程相同,乙班快速行走的路程比慢速行走的路程长,所以乙班获胜。
17. 轮船从A城到B城需行3天,而从B城到A城需行4天。从A城放一个无动力的木筏,它漂到B城需多少天?
解:轮船顺流用3天,逆流用4天,说明轮船在静水中行4-3=1(天),等于水流3+4=7(天),即船速是流速的7倍。所以轮船顺流行3天的路程等于水流3+3×7=24(天)的路程,即木筏从A城漂到B城需24天。
18. 小红和小强同时从家里出发相向而行。小红每分走52米,小强每分走70米,二人在途中的A处相遇。若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇。小红和小强两人的家相距多少米?
解:因为小红的速度不变,相遇地点不变,所以小红两次从出发到相遇的时间相同。也就是说,小强第二次比第一次少走4分。由
(70×4)÷(90-70)=14(分)
可知,小强第二次走了14分,推知第一次走了18分,两人的家相距
(52+70)×18=2196(米)。
19. 小明和小军分别从甲、乙两地同时出发,相向而行。若两人按原定速度前进,则4时相遇;若两人各自都比原定速度多1千米/时,则3时相遇。甲、乙两地相距多少千米?
解:每时多走1千米,两人3时共多走6千米,这6千米相当于两人按原定速度1时走的距离。所以甲、乙两地相距6×4=24(千米)
20. 甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地。求甲原来的速度。
解:因为相遇前后甲、乙两人的速度和不变,相遇后两人合跑一圈用24秒,所以相遇前两人合跑一圈也用24秒,即24秒时两人相遇。
设甲原来每秒跑x米,则相遇后每秒跑(x+2)米。因为甲在相遇前后各跑了24秒,共跑400米,所以有24x+24(x+2)=400,解得x=7又1/3米。
21. 甲、乙两车分别沿公路从A,B两站同时相向而行,已知甲车的速度是乙车的1.5倍,甲、乙两车到达途中C站的时刻分别为5:00和16:00,两车相遇是什么时刻?
解:9∶24。解:甲车到达C站时,乙车还需16-5=11(时)才能到达C站。乙车行11时的路程,两车相遇需11÷(1+1.5)=4.4(时)=4时24分,所以相遇时刻是9∶24。
22. 一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米。坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒?
解:快车上的人看见慢车的速度与慢车上的人看见快车的速度相同,所以两车的车长比等于两车经过对方的时间比,故所求时间为11
23. 甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒可追上乙;若乙比甲先跑2秒,则甲跑4秒能追上乙。问:两人每秒各跑多少米?
解:甲乙速度差为10/5=2
速度比为(4+2):4=6:4
所以甲每秒跑6米,乙每秒跑4米。
24.甲、乙、丙三人同时从A向B跑,当甲跑到B时,乙离B还有20米,丙离B还有40米;当乙跑到B时,丙离B还有24米。问:
(1) A, B相距多少米?
(2)如果丙从A跑到B用24秒,那么甲的速度是多少?
解:解:(1)乙跑最后20米时,丙跑了40-24=16(米),丙的速度
25. 在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明。已知公共汽车从始发站每次间隔同样的时间发一辆车,问:相邻两车间隔几分?
解:设车速为a,小光的速度为b,则小明骑车的速度为3b。根据追及问题“追及时间×速度差=追及距离”,可列方程
10(a-b)=20(a-3b),
解得a=5b,即车速是小光速度的5倍。小光走10分相当于车行2分,由每隔10分有一辆车超过小光知,每隔8分发一辆车。
26. 一只野兔逃出80步后猎狗才追它,野兔跑 8步的路程猎狗只需跑3步,猎狗跑4步的时间兔子能跑9步。猎狗至少要跑多少步才能追上野兔?
解:狗跑12步的路程等于兔跑32步的路程,狗跑12步的时间等于兔跑27步的时间。所以兔每跑27步,狗追上5步(兔步),狗要追上80步(兔步)需跑[27×(80÷5)+80]÷8×3=192(步)。
27. 甲、乙两人在铁路旁边以同样的速度沿铁路方向相向而行,恰好有一列火车开来,整个火车经过甲身边用了18秒,2分后又用15秒从乙身边开过。问:
(1)火车速度是甲的速度的几倍?
(2)火车经过乙身边后,甲、乙二人还需要多少时间才能相遇?
解:(1)设火车速度为a米/秒,行人速度为b米/秒,则由火车的 是行人速度的11倍;
(2)从车尾经过甲到车尾经过乙,火车走了135秒,此段路程一人走需1350×11=1485(秒),因为甲已经走了135秒,所以剩下的路程两人走还需(1485-135)÷2=675(秒)。
28. 辆车从甲地开往乙地,如果把车速提高20%,那么可以比原定时间提前1时到达;如果以原速行驶100千米后再将车速提高30%,那么也比原定时间提前1时到达。求甲、乙两地的距离。
29. 完成一件工作,需要甲干5天、乙干 6天,或者甲干 7天、乙干2天。问:甲、乙单独干这件工作各需多少天?
解:甲需要(7*3-5)/2=8(天)
乙需要(6*7-2*5)/2=16(天)
30.一水池装有一个放水管和一个排水管,单开放水管5时可将空池灌满,单开排水管7时可将满池水排完。如果放水管开了2时后再打开排水管,那么再过多长时间池内将积有半池水?
31.小松读一本书,已读与未读的页数之比是3∶4,后来又读了33页,已读与未读的页数之比变为5∶3。这本书共有多少页?
解:开始读了3/7 后来总共读了5/8
33/(5/8-3/7)=33/(11/56)=56*3=168页
32.一件工作甲做6时、乙做12时可完成,甲做8时、乙做6时也可以完成。如果甲做3时后由乙接着做,那么还需多少时间才能完成?
解:甲做2小时的等于乙做6小时的,所以乙单独做需要
6*3+12=30(小时) 甲单独做需要10小时
因此乙还需要(1-3/10)/(1/30)=21天才可以完成。
33. 有一批待加工的零件,甲单独做需4天,乙单独做需5天,如果两人合作,那么完成任务时甲比乙多做了20个零件。这批零件共有多少个?
解:甲和乙的工作时间比为4:5,所以工作效率比是5:4
工作量的比也5:4,把甲做的看作5份,乙做的看作4份
那么甲比乙多1份,就是20个。因此9份就是180个
所以这批零件共180个
34.挖一条水渠,甲、乙两队合挖要6天完成。甲队先挖3天,乙队接着
解:根据条件,甲挖6天乙挖2天可挖这条水渠的3/5
所以乙挖4天能挖2/5
因此乙1天能挖1/10,即乙单独挖需要10天。
甲单独挖需要1/(1/6-1/10)=15天。
35. 修一段公路,甲队独做要用40天,乙队独做要用24天。现在两队同时从两端开工,结果在距中点750米处相遇。这段公路长多少米?
36. 有一批工人完成某项工程,如果能增加 8个人,则 10天就能完成;如果能增加3个人,就要20天才能完成。现在只能增加2个人,那么完成这项工程需要多少天?
解:将1人1天完成的工作量称为1份。调来3人与调来8人相比,10天少完成(8-3)×10=50(份)。这50份还需调来3人干10天,所以原来有工人50÷10-3=2(人),全部工程有(2+8)×10=100(份)。调来2人需100÷(2+2)=25(天)。
37.
解:三角形AOB和三角形DOC的面积和为长方形的50%
所以三角形AOB占32%
16÷32%=50
38.
解:1/2*1/3=1/6
所以三角形ABC的面积是三角形AED面积的6倍。
39.下面9个图中,大正方形的面积分别相等,小正方形的面积分别相等。问:哪几个图中的阴影部分与图(1)阴影部分面积相等?
解:(2) (4) (7) (8) (9)
40. 观察下列各串数的规律,在括号中填入适当的数
2,5,11,23,47,( ),……
解:括号内填95
规律:数列里地每一项都等于它前面一项的2倍减1
41. 在下面的数表中,上、下两行都是等差数列。上、下对应的两个数字中,大数减小数的差最小是几?
解:1000-1=999
997-995=992
每次减少7,999/7=142……5
所以下面减上面最小是5
1333-1=1332 1332/7=190……2
所以上面减下面最小是2
因此这个差最小是2。
42. 如果四位数6□□8能被73整除,那么商是多少?
解:估计这个商的十位应该是8,看个位可以知道是6
因此这个商是86。
43. 求各位数字都是 7,并能被63整除的最小自然数。
解:63=7*9
所以至少要9个7才行(因为各位数字之和必须是9的倍数)
44. 1×2×3×…×15能否被 9009整除?
解:能。
将9009分解质因数
9009=3*3*7*11*13
45. 能否用1, 2, 3, 4, 5, 6六个数码组成一个没有重复数字,且能被11整除的六位数?为什么?
解:不能。因为1+2+3+4+5+6=21,如果能组成被11整除的六位数,那么奇数位的数字和与偶数位的数字和一个为16,一个为5,而最小的三个数字之和1+2+3=6>5,所以不可能组成。
46. 有一个自然数,它的最小的两个约数之和是4,最大的两个约数之和是100,求这个自然数。
解:最小的两个约数是1和3,最大的两个约数一个是这个自然数本身,另一个是这个自然数除以3的商。最大的约数与第二大
47.100以内约数个数最多的自然数有五个,它们分别是几?
解:如果恰有一个质因数,那么约数最多的是26=64,有7个约数;
如果恰有两个不同质因数,那么约数最多的是23×32=72和25×3=96,各有12个约数;
如果恰有三个不同质因数,那么约数最多的是22×3×5=60,22×3×7=84和2×32×5=90,各有12个约数。
所以100以内约数最多的自然数是60,72,84,90和96。
48. 写出三个小于20的自然数,使它们的最大公约数是1,但两两均不互质。
解:6,10,15
49. 有336个苹果、 252个桔子、 210个梨,用这些果品最多可分成多少份同样的礼物?在每份礼物中,三样水果各多少?
解:42份;每份有苹果8个,桔子6个,梨5个。
50. 三个连续自然数的最小公倍数是168,求这三个数。
解:6,7,8。 提示:相邻两个自然数必互质,其最小公倍数就等于这两个数的乘积。而相邻三个自然数,若其中只有一个偶数,则其最小公倍数等于这三个数的乘积;若其中有两个偶数,则其最小公倍数等于这三个数乘积的一半。
51. 一副扑克牌共54张,最上面的一张是红桃K。如果每次把最上面的12张牌移到最下面而不改变它们的顺序及朝向,那么,至少经过多少次移动,红桃K才会又出现在最上面?
解:因为[54,12]=108,所以每移动108张牌,又回到原来的状况。又因为每次移动12张牌,所以至少移动108÷12=9(次)。
52. 爷爷对小明说:“我现在的年龄是你的7倍,过几年是你的6倍,再过若干年就分别是你的5倍、4倍、3倍、2倍。”你知道爷爷和小明现在的年龄吗?
解:爷爷70岁,小明10岁。提示:爷爷和小明的年龄差是6,5,4,3,2的公倍数,又考虑到年龄的实际情况,取公倍数中最小的。(60岁)
53. 某质数加6或减6得到的数仍是质数,在50以内你能找出几个这样的质数?并将它们写出来。
解:11,13,17,23,37,47。
54. 在放暑假的8月份,小明有五天是在姥姥家过的。这五天的日期除一天是合数外,其它四天的日期都是质数。这四个质数分别是这个合数减去1,这个合数加上1,这个合数乘上2减去1,这个合数乘上2加上1。问:小明是哪几天在姥姥家住的?
解:设这个合数为a,则四个质数分别为(a-1),(a+1),(2a-1),(2a+1)。因为(a-1)与(a+1)是相差2的质数,在1~31中有五组:3,5;5,7;11,13;17,19;21,31。经试算,只有当a=6时,满足题意,所以这五天是8月5,6,7,11,13日。
55. 有两个整数,它们的和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位数。求这两个整数。
解:3,74;18,37。
提示:三个数字相同的三位数必有因数111。因为111=3×37,所以这两个整数中有一个是37的倍数(只能是37或74),另一个是3的倍数。
56. 在一根100厘米长的木棍上,从左至右每隔6厘米染一个红点,同时从右至左每隔5厘米也染一个红点,然后沿红点处将木棍逐段锯开。问:长度是1厘米的短木棍有多少根?
解:因为100能被5整除,所以可以看做都是自左向右染色。因为6与5的最小公倍数是30,即在30厘米处同时染上红点,所以染色以30厘米为周期循环出现。一个周期的情况如下图所示:
由上图知道,一个周期内有2根1厘米的木棍。所以三个周期即90厘米有6根,最后10厘米有1根,共7根。
57. 某种商品按定价卖出可得利润960元,若按定价的80%出售,则亏损832元。问:商品的购入价是多少元?
解:8000元。按两种价格出售的差额为960+832=1792(元),这个差额是按定价出售收入的20%,故按定价出售的收入为1792÷20%=8960(元),其中含利润960元,所以购入价为8000元。
58. 甲桶的水比乙桶多20%,丙桶的水比甲桶少20%。乙、丙两桶哪桶水多?
解:乙桶多。
59. 学校数学竞赛出了A,B,C三道题,至少做对一道的有25人,其中做对A题的有10人,做对B题的有13人,做对C题的有15人。如果二道题都做对的只有1人,那么只做对两道题和只做对一道题的各有多少人?
解:只做对两道题的人数为(10+13+15) -25 -2×1=11(人),
只做对一道题的人数为25-11-1=13(人)。
60. 学校举行棋类比赛,设象棋、围棋和军棋三项,每人最多参加两项。根据报名的人数,学校决定对象棋的前六名、围棋的前四名和军棋的前三名发放奖品。问:最多有几人获奖?最少有几人获奖?
解:共有13人次获奖,故最多有13人获奖。又每人最多参加两项,即最多获两项奖,因此最少有7人获奖。
61. 在前1000个自然数中,既不是平方数也不是立方数的自然数有多少个?
解:因为312<1000<322,103=1000,所以在前1000个自然数中有31个平方数,10个立方数,同时还有3个六次方数(16,26,36)。所求自然数共有 1000-(31+10)+3=962(个)。
62. 用数字0,1,2,3,4可以组成多少个不同的三位数(数字允许重复)?
解:4*5*5=100个
63. 要从五年级六个班中评选出学习、体育、卫生先进集体各一个,有多少种不同的评选结果?
解:6*6*6=216种
64. 已知15120=24×33×5×7,问:15120共有多少个不同的约数?
解: 15120的约数都可以表示成 2a×3b×5c×7d的形式,其中a=0,1,2,3,4,b=0,1,2,3,c=0,1,d=0,1,即a,b,c,d的可能取值分别有5, 4, 2, 2种,所以共有约数5×4×2×2=80(个)。
65. 大林和小林共有小人书不超过50本,他们各自有小人书的数目有多少种可能的情况?
解:他们一共可能有0~50本书,如果他们共有n本书,则大林可能有书0~n本,也就是说这n本书在两人之间的分配情况共有(n+1)种。所以不超过 50本书的所有可能的分配情况共有1+2+3…+51=1326(种)。
66. 在右图中,从A点沿线段走最短路线到B点,每次走一步或两步,共有多少种不同走法?(注:路线相同步骤不同,认为是不同走法。)
解:80种。提示:从A到B共有10条不同的路线,每条路线长5个线段。每次走一个或两个线段,每条路线有8种走法,所以不同走法共有 8×10=80(种)。
67.有五本不同的书,分别借给3名同学,每人借一本,有多少种不同的借法?
解:5*4*3=60种
68.有三本不同的书被5名同学借走,每人最多借一本,有多少种不同的借法?
解:5*4*3=60种
69. 恰有两位数字相同的三位数共有多少个?
解:在900个三位数中,三位数各不相同的有9×9×8=648(个),三位数全相同的有9个,恰有两位数相同的有900—648—9=243(个)。
70. 从1,3,5中任取两个数字,从2,4,6中任取两个数字,共可组成多少个没有重复数字的四位数?
解:三个奇数取两个有3种方法,三个偶数取两个也有3种方法。共有 3×3×4!=216(个)。
71. 左下图中有多少个锐角?
解:C(11,2)=55个
72. 10个人围成一圈,从中选出两个不相邻的人,共有多少种不同选法?
解:c(10,2)-10=35种
73. 一牧场上的青草每天都匀速生长。这片青草可供27头牛吃6周,或供23头牛吃9周。那么可供21头牛吃几周?
解:将1头牛1周吃的草看做1份,则27头牛6周吃162份,23头牛9周吃207份,这说明3周时间牧场长草207-162=45(份),即每周长草15份,牧场原有草162-15×6=72(份)。21头牛中的15头牛吃新长出的草,剩下的6头牛吃原有的草,吃完需72÷6=12(周)。
74. 有一水池,池底有泉水不断涌出。要想把水池的水抽干, 10台抽水机需抽 8时,8台抽水机需抽12时。如果用6台抽水机,那么需抽多少小时?
解:将1台抽水机1时抽的水当做1份。泉水每时涌出量为
(8×12-10×8)÷(12-8)=4(份)。
水池原有水(10-4)×8=48(份),6台抽水机需抽48÷(6-4)=24(时)。
75. 规定a*b=(b+a)×b,求(2*3)*5。
解:2*3=(3+2)*3=15
15*5=(15+5)*5=100
76. 1!+2!+3!+…+99!的个位数字是多少?
解:1!+2!+3!+4!=1+2+6+24=33
从5!开始,以后每一项的个位数字都是0
所以1!+2!+3!+…+99!的个位数字是3。
77(1).有一批四种颜色的小旗,任意取出三面排成一行,表示各种信号。在200个信号中至少有多少个信号完全相同?
解:4*4*4=64
200÷64=3……8
所以至少有4个信号完全相同。
77. (2)在今年入学的一年级新生中有 370多人是在同一年出生的。试说明:他们中至少有2个人是在同一天出生的。
解:因为一年最多有366天,看做366个抽屉
因为370>366,所以根据抽屉原理至少有2个人是在同一天出生的。
78. 从前11个自然数中任意取出6个,求证:其中必有2个数互质。
证明:把前11个自然数分成如下5组
(1,2,3)(4,5)(6,7)(8,9)(10,11)
6个数放入5组必然有2个数在同一组,那么这两个数必然互质。
79. 小明去爬山,上山时每时行2.5千米,下山时每时行4千米,往返共用3.9时。小明往返一趟共行了多少千米?
80. 长江沿岸有A,B两码头,已知客船从A到B每天航行500千米,从B到A每天航行400千米。如果客船在A,B两码头间往返航行5次共用18天,那么两码头间的距离是多少千米?
解:800千米。 提示:从A到B与从B到A的速度比是5∶4,从A到B用
81. 请在下式中插入一个数码,使之成为等式:
1×11×111= 111111
解答:91*11*111=111111
82.甲、乙、丙三数的和是100,甲数除以乙数与丙数除以甲数的结果都是商5余1。问:乙数是多少?
解:设乙数是x,那么甲数就是5x+1
丙数是5(5x+1)+1=25x+6
因此x+5x+1+25x+6=100
31x=93 x=3
所以乙数是3
83.12345654321×(1+2+3+4+5+6+5+4+3+2+1)是哪个数的平方
解:12345654321=111111的平方
1+2+3+4+5+6+5+4+3+2+1=36=6的平方
所以原式=666666的平方。
84.某剧院有25排座位,后一排比前一排多2个座位,最后一排有70个座位。问:这个剧院一共有多少个座位?
解:第一排有70-24*2=22个座位
所以总座位数是(22+70)*25/2 =1150
85. 某城市举行小学生数学竞赛,试卷共有20道题。评分标准是:答对一道给3分,没答的题每题给1分,答错一道扣1分。问:所有参赛学生的得分总和是奇数还是偶数?为什么?
解:一定是偶数,因为每个人20道题得分都分别是奇数,20个奇数的和一定是偶数。每个人的得分都是偶数,所以无论有多少参赛学生,参赛学生的得分总和一定是偶数。
86. 可以分解为三个质数之积的最小的三位数是几?
解:102=2*3*17
87. 两个质数的和是39,求这两个质数的积。
解:注意到奇偶性可以知道这2个质数分别是2和37
它们的乘积是2*37=74
88. 有1,2,3,4,5,6,7,8,9九张牌,甲、乙、丙各拿了三张。甲说:“我的三张牌的积是48。”乙说:“我的三张牌的和是15。”丙说:“我的三张牌的积是63。”问:他们各拿了哪三张牌?
解:63=7*1*9 所以丙拿的1,7,9
48=2*3*8 所以甲拿的2,3,8
4+5+6=15 因此乙拿的是4,5,6
89. 四个连续自然数的积是3024,求这四个数。
解:考虑末尾数字,1*2*3*4末尾是4
6*7*8*9末尾也是4
其他情况下末尾都是0
11*12*13*14=24024太大
6*7*8*9=3024刚好
所以这4个数是6,7,8,9
90. 证明:任何一个三位数,连着写两遍得到一个六位数,这个六位数一定能被7,11,13整除。
解:该数形如ABCABC=ABC*1001
1001=7*11*13
所以这个六位数一定能被7,11,13整除。
91.在1~100中,所有的只有3个约数的自然数的和是多少?
解:4+9+25+49=87
92. 有一种电子钟,每到正点响一次铃,每过九分钟亮一次灯。如果中午12点整它既响铃又亮灯,那么下一次既响铃又亮灯是什么时间?
解:[60,9]=180
180/60=3
下次是下午3点钟。
93. 有一个数除以3余2,除以4余1。问:此数除以12余几?
解:除以3余2的数是2,5,8,11,14。。。。。。
除以4余1的数是1,5,9,。。。。。。
所以此数除以12余5
94. 把16拆成若干个自然数的和,要求这些自然数的乘积尽量大,应如何拆?
解:16=3+3+3+3+2+2
乘积是3*3*3*3*2*2=324
95. 小明按1~ 3报数,小红按1~ 4报数。两人以同样的速度同时开始报数,当两人都报了100个数时,有多少次两人报的数相同?
解:每12次作为一个周期
1 2 3 1 2 3 1 2 3 1 2 3
1 2 3 4 1 2 3 4 1 2 3 4
每个周期两人有3次报的数一样
100=12*8+4
所以两个人有8*3+3=27次报的数相同。
96. 某自然数加10或减10皆为平方数,求这个自然数。
解:设这个数是x
x+10=m^2
x-10=n^2
m^2-n^2=20 (m+n)(m-n)=20
m=6,n=4
所以x=6^2-10=26
97. 已知某铁路桥长1000米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用120秒,整列火车完全在桥上的时间为80秒。求火车的速度和长度。
解:120秒行驶的距离是桥长+车长
80秒行驶的距离是桥长-车长
所以80(1000+车长)=120(1000-车长)
车长=200米
火车的速度是10米/秒
98. 甲、乙二人按顺时针方向沿圆形跑道练习跑步,已知甲跑一圈要12分,乙跑一圈要15分,如果他们分别从圆形跑道直径的两端同时出发,那么出发后多少分甲追上乙?
解:(1/2)/(1/12-1/15)=(1/2)/(1/60)=30分钟
99. 甲、乙比赛乒乓球,五局三胜。已知甲胜了第一局,并最终获胜。问:各局的胜负情况有多少种可能?
解:甲 甲 甲
甲 甲 乙 甲
甲 甲 乙 乙 甲
甲 乙 甲 甲
甲 乙 甲 乙 甲
甲 乙 乙 甲 甲
经枚举发现共有6种可能。
100. 甲、乙二人 2时共可加工 54个零件,甲加工 3时的零件比乙加工4时的零件还多4个。问:甲每时加工多少个零件?
解:甲乙二人一小时共可加工零件27个
设甲每小时加工x个,那么乙每小时加工27-x个
根据条件得3x=4(27-x)+4
7x=112 x=16
答:甲每小时加工零件16个。
Ⅳ 五年级上册的奥数题(要有解释和答案)
1、金工车间有两班职工,甲班职工比乙班职工少9人,因工作需要,从甲调出3人到乙班,这时甲班职工比乙班少3/8,两个班原来各有职工多少人?20.29
2、光明小学六年级上学期男生人数占总人数的55%,今年开学初转走了3名男生,又转来了3名女生,这时女生占总人数的48%,光明小学六年级现在有女生多少人?100
3、水果店运来一批梨,第一天比第二天多卖出1/5,第二天比第一天少卖出152千克,两天正好卖完,这批梨有多少千克?1670
4、王师傅加工一批零件,第一天每小时加工20个,第二天每小时加工30个,两天加工的数量同样多,共用了13。5小时,这批零件共有多少个?324
5、哥哥和弟弟共有图书若干本,哥哥的图书占总图书的3/5,若哥哥给弟弟9本,则两人的图书同样多,哥哥原来有图书多少本?54
6、甲乙丙三个同学参加储蓄,甲存款是乙的4/5,丙存款比乙少40%,已知甲存了500元,丙存了多少元?240
7、小王和小李共同加工一批儿童服装,小王单独做要18天完成,小李每天加工16件,当完成任务时,小王做了这批服装的5/9,这批儿童服装共有多少件?
8、东风农场原来有旱田108公顷,水田36公顷,为了提高产量,将一部分旱田改为水田,使水田的面积是旱田的5/7,问:将多少公顷旱田改为水田?
9、东风农场原有水田面积是旱田的1/3,为了提高产量把24公顷旱田改为水田,现在的水田面积是旱田的5/7,东风农场现在有水田多少公顷?
10、水果店运进一批水果,运进的苹果重量的40%等于梨重量的1/3,已知运进的梨比苹果重3.6吨,运进苹果多少吨?
11、一根钢筋,锯下20%后,又接上2米,这时钢筋比原来短1/10,原来这根钢筋有多长?
12、业余体校新购进三种球,其中篮球占总数的1%3,足球的个数与其它两种球个数的比是1:5,排球有150个,三种球共有多少个?
13、粮店中的大米占粮食总量的3/7,卖出600千克大米后,大米占粮食总量的1/3,这个粮店原来共有粮食多少千克?
14、六一班共有学生40人,其中女生占全班人数的2/5,后来又转来几名女生,这时女生人数占全班人数的7/15,又转来几名女生?
15、加工一批零件,如果师傅单独做20小时完成,师徒二人合作12小时完成,现在师徒二人合作,完成任务时,师傅比徒弟多做了960个,这批零件有多少个?
16、育红小学高年级学生人数占全校学生总数的36%,中年级学生人数是高年级的5/9,低年级比中年级多84人,育红小学共有学生多少人?
17、六一班有一部分学生参加运动会,其中2/7是女生,男生是20人,已知全班男生有4/5参加了运动会,没有参加运动会的占全班人数的9/23,这个班有多少名女生?
18、学校植树,第一天完成了计划的3/8,第二完成余下的2/3,第三天植树55棵,结果超过计划1/4完成任务,原计划植树多少棵?
19、有两个粮仓,从甲仓取出它的1/4,从乙仓取出它的1/5,剩下的粮食,甲仓是乙仓的3倍,甲仓原有粮食480吨,乙仓原有粮食多少吨?
20、两个搬运队共同搬运一批货物,甲队每天搬运这批货物的1/16,乙队每天运18吨,当完成任务时,甲队运了总数的5/8,这批货物共有多少吨?
21、参加六一联欢的少先队员中,女队员占3/7,男队员比女队员的2/3多40人,女队员有多少人?
22、一天某班第一节缺席的人数是出席人数的1/6,课间又有一位同学请假离去,于是缺席人数占出席人数的1/5,这个班有多少名学生?
23、某厂的工人中,女工比男工多2/3,后来又把45名男工换为女工,使得女工人数达到总人数的20/29,这时有多少名女工?
24、阅览室里有36名同学在看书,其中4/9是女生,后来又转来了几名女生,使得女生人数达到总人数的9/19,又来了几名女生?
Ⅳ 30道数学奥数题和答案
问题1 如果一个四位数与一个三位数的和是1999,并且四位数和三位数是由7个不同的数字组成的。那么,这样的四位数最多能有多少个?
这是北京市小学生第十五届《迎春杯》数学竞赛决赛试卷的第三大题的第4小题,也是选手们丢分最多的一道题。
得到a=1,b+e=9,(e≠0),c+f=9,d+g=9。
为了计算这样的四位数最多有多少个,由题设条件a,b,c,d,e,f,g互不相同,可知,数字b有7种选法(b≠1,8,9),c有6种选法(c≠1,8,b,e),d有4种选法(d≠1,8,b,e,c,f)。于是,依乘法原理,这样的四位数最多能有(7×6×4=)168个。
在解答完问题1以后,如果再进一步思考,不难使我们联想到下面一个问题。
问题2 有四张卡片,正反面各写有1个数字。第一张上写的是0和1,其他三张上分别写有2和3,4和5,7和8。现在任意取出其中的三张卡片,放成一排,那么一共可以组成多少个不同的三位数?
此题为北京市小学生第十四届《迎春杯》数学竞赛初赛试题。其解为:
后,十位数字b可取其他三张卡片的六种数字;最后个位数c可取剩余两张卡片的四种数字。综上所述,一共可以组成不同的三位数共(7×6×4=)168个。
如果从甲仓库搬67吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的2倍;如果从甲仓库搬17吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的5倍,原来两仓库各存货物多少吨?
67×(2+1)-17×(5+1)
=201-102
=99(吨)
99÷〔(5+1)-(2+1)〕
=99÷3
=33(吨)答:原来的乙有33吨。
(33+67)×2+67
=200+67
=267(吨)答:原来的甲有267吨。
分析:
1、如果从甲仓库搬67吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的2倍;
甲和乙总的数量没有变,总的数量包括2+1=3个现在的乙,现在的乙是原来的乙加上67得来。所以总的数量就包括3个原来的乙和3个67〔67×(2+1)=201〕。
2、如果从甲仓库搬17吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的5倍,
理由同上,总的数量包括5+1=6个原来的乙和6个17(即17×(5+1)=102)
3、从1和2可看出,原来3个乙和原来6个乙只相差3个乙,而这三个乙正好相差201-102=99吨。可求出原来的乙是多少,99÷3=33吨。
4、再求原来的甲即可。
甲每小时行12千米,乙每小时行8千米.某日甲从东村到西村,乙同时从西村到东村,以知乙到东村时,甲已先到西村5小时.求东西两村的距离
甲乙的路程是一样的,时间甲少5小时,设甲用t小时
可以得到
1. 12t=8(t+5)
t=10
所以距离=120千米
小明和小芳围绕着一个池塘跑步,两人从同一点出发,同向而行。小明:280米/分;小芳:220/分。8分后,小明追上小芳。这个池塘的一周有多少米?
280*8-220*8=480
这时候如果小明是第一次追上的话就是这样多
这时候小明多跑一圈...
1.用3.5.7.0组成一个两位数,( )乘( )的积最大.( )乘( )的积最小.
2.有一些积木的块数比50多,比70少,每7个一堆,多了一块,每9个一堆,还是多1块,这些积木有多少块?
3.6盆花要摆成4排,每排3盆,应该怎样摆?
4.4(1)班有4个人参加4X50米接力赛,问有多少种不同的安排方法?
5.能否从右图中选出5个数,使它们的和为60?为什么? 15 25 35
25 15 5
5 25 45
6.5饿连续偶数的和是240,这5个偶数分别是多少?
7.某人从甲地到乙地,先骑12小时摩托车,再骑9小时自行车正好到达.返回时,先骑21小时自行车,再骑8小时摩托车也正好到达.从甲地到乙地如果全骑摩托车需要多少时间?
1 70*53最大 30*75最小
2 64块
3 五角星形
4 4*3*2*1=24
5不能,因为都是奇数,奇数个奇数相加不可能得偶数
6.240/5=48,则其余偶数是:48-2=46,48-4=44,48+2=50,48+4=52
7.摩托车的速度是xkm/h,自行车速是ykm/h 。
21y+8x=12x+9y
4x=12y
x=3y
所以摩托车共需12+9/3=15小时
数出图中含有"*"号的长方形个数(含一个或二个都可以)
* * *
第1题儿子算出来是8+16+8=32个,答案却是30个.
第2题儿子算出来是(12+24+24+12)*2,然后减去2*重复的,9+18+9=36,答案说应该减去48个,为什么呢?
一、填空题
1.有两列火车,一列长102米,每秒行20米;一列长120米,每秒行17米.两车同向而行,从第一列车追及第二列车到两车离开需要几秒?
2.某人步行的速度为每秒2米.一列火车从后面开来,超过他用了10秒.已知火车长90米.求火车的速度.
3.现有两列火车同时同方向齐头行进,行12秒后快车超过慢车.快车每秒行18米,慢车每秒行10米.如果这两列火车车尾相齐同时同方向行进,则9秒后快车超过慢车,求两列火车的车身长.
4.一列火车通过440米的桥需要40秒,以同样的速度穿过310米的隧道需要30秒.这列火车的速度和车身长各是多少?
5.小英和小敏为了测量飞驶而过的火车速度和车身长,他们拿了两块跑表.小英用一块表记下了火车从她面前通过所花的时间是15秒;小敏用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是20秒.已知两电线杆之间的距离是100米.你能帮助小英和小敏算出火车的全长和时速吗?
6.一列火车通过530米的桥需要40秒,以同样的速度穿过380米的山洞需要30秒.求这列火车的速度与车身长各是多少米.
7.两人沿着铁路线边的小道,从两地出发,以相同的速度相对而行.一列火车开来,全列车从甲身边开过用了10秒.3分后,乙遇到火车,全列火车从乙身边开过只用了9秒.火车离开乙多少时间后两人相遇?
8. 两列火车,一列长120米,每秒行20米;另一列长160米,每秒行15米,两车相向而行,从车头相遇到车尾离开需要几秒钟?
9.某人步行的速度为每秒钟2米.一列火车从后面开来,越过他用了10秒钟.已知火车的长为90米,求列车的速度.
10.甲、乙二人沿铁路相向而行,速度相同,一列火车从甲身边开过用了8秒钟,离甲后5分钟又遇乙,从乙身边开过,只用了7秒钟,问从乙与火车相遇开始再过几分钟甲乙二人相遇?
二、解答题
11.快车长182米,每秒行20米,慢车长1034米,每秒行18米.两车同向并行,当快车车尾接慢车车尾时,求快车穿过慢车的时间?
12.快车长182米,每秒行20米,慢车长1034米,每秒行18米.两车同向并行,当两车车头齐时,快车几秒可越过慢车?
13.一人以每分钟120米的速度沿铁路边跑步.一列长288米的火车从对面开来,从他身边通过用了8秒钟,求列车的速度.
14.一列火车长600米,它以每秒10米的速度穿过长200米的隧道,从车头进入隧道到车尾离开隧道共需多少时间?
———————————————答 案——————————————————————
一、填空题
120米
102米
17x米
20x米
尾
尾
头
头
1. 这题是“两列车”的追及问题.在这里,“追及”就是第一列车的车头追及第二列车的车尾,“离开”就是第一列车的车尾离开第二列车的车头.画线段图如下:
设从第一列车追及第二列车到两列车离开需要x秒,列方程得:
102+120+17 x =20 x
x =74.
2. 画段图如下:
头
90米
尾
10x
设列车的速度是每秒x米,列方程得
10 x =90+2×10
x =11.
头
尾
快车
头
尾
慢车
头
尾
快车
头
尾
慢车
3. (1)车头相齐,同时同方向行进,画线段图如下:
则快车长:18×12-10×12=96(米)
(2)车尾相齐,同时同方向行进,画线段图如下:
头
尾
快车
头
尾
慢车
头
尾
快车
头
尾
慢车
则慢车长:18×9-10×9=72(米)
4. (1)火车的速度是:(440-310)÷(40-30)=13(米/秒)
(2)车身长是:13×30-310=80(米)
5. (1)火车的时速是:100÷(20-15)×60×60=72000(米/小时)
(2)车身长是:20×15=300(米)
6. 设火车车身长x米,车身长y米.根据题意,得
①②
解得
7. 设火车车身长x米,甲、乙两人每秒各走y米,火车每秒行z米.根据题意,列方程组,得
①②
①-②,得:
火车离开乙后两人相遇时间为:
(秒) (分).
8. 解:从车头相遇到车尾离开,两车所行距离之和恰为两列车长之和,故用相遇问题得所求时间为:(120+60)¸(15+20)=8(秒).
9. 这样想:列车越过人时,它们的路程差就是列车长.将路程差(90米)除以越过所用时间(10秒)就得到列车与人的速度差.这速度差加上人的步行速度就是列车的速度.
90÷10+2=9+2=11(米)
答:列车的速度是每秒种11米.
10. 要求过几分钟甲、乙二人相遇,就必须求出甲、乙二人这时的距离与他们速度的关系,而与此相关联的是火车的运动,只有通过火车的运动才能求出甲、乙二人的距离.火车的运行时间是已知的,因此必须求出其速度,至少应求出它和甲、乙二人的速度的比例关系.由于本问题较难,故分步详解如下:
①求出火车速度 与甲、乙二人速度 的关系,设火车车长为l,则:
(i)火车开过甲身边用8秒钟,这个过程为追及问题:
故 ; (1)
(i i)火车开过乙身边用7秒钟,这个过程为相遇问题:
故 . (2)
由(1)、(2)可得: ,
所以, .
②火车头遇到甲处与火车遇到乙处之间的距离是:
.
③求火车头遇到乙时甲、乙二人之间的距离.
火车头遇甲后,又经过(8+5×60)秒后,火车头才遇乙,所以,火车头遇到乙时,甲、乙二人之间的距离为:
④求甲、乙二人过几分钟相遇?
(秒) (分钟)
答:再过 分钟甲乙二人相遇.
二、解答题
11. 1034÷(20-18)=91(秒)
12. 182÷(20-18)=91(秒)
13. 288÷8-120÷60=36-2=34(米/秒)
答:列车的速度是每秒34米.
14. (600+200)÷10=80(秒)
答:从车头进入隧道到车尾离开隧道共需80秒.
平均数问题
1. 蔡琛在期末考试中,政治、语文、数学、英语、生物五科的平均分是 89分.政治、数学两科的平均分是91.5分.语文、英语两科的平均分是84分.政治、英语两科的平均分是86分,而且英语比语文多10分.问蔡琛这次考试的各科成绩应是多少分?
2. 甲乙两块棉田,平均亩产籽棉185斤.甲棉田有5亩,平均亩产籽棉203斤;乙棉田平均亩产籽棉170斤,乙棉田有多少亩?
3. 已知八个连续奇数的和是144,求这八个连续奇数。
4. 甲种糖每千克8.8元,乙种糖每千克7.2元,用甲种糖5千克和多少乙种糖混合,才能使每千克糖的价钱为8.2元?
5. 食堂买来5只羊,每次取出两只合称一次重量,得到十种不同的重量(千克):47、50、51、52、53、54、55、57、58、59.问这五只羊各重多少千克?
等差数列
1、下面是按规律排列的一串数,问其中的第1995项是多少?
解答:2、5、8、11、14、……。 从规律看出:这是一个等差数列,且首项是2,公差是3, 这样第1995项=2+3×(1995-1)=5984
2、在从1开始的自然数中,第100个不能被3除尽的数是多少?
解答:我们发现:1、2、3、4、5、6、7、……中,从1开始每三个数一组,每组前2个不能被3除尽,2个一组,100个就有100÷2=50组,每组3个数,共有50×3=150,那么第100个不能被3除尽的数就是150-1=149.
3、把1988表示成28个连续偶数的和,那么其中最大的那个偶数是多少?
解答:28个偶数成14组,对称的2个数是一组,即最小数和最大数是一组,每组和为: 1988÷14=142,最小数与最大数相差28-1=27个公差,即相差2×27=54, 这样转化为和差问题,最大数为(142+54)÷2=98。
4、在大于1000的整数中,找出所有被34除后商与余数相等的数,那么这些数的和是多少?
解答:因为34×28+28=35×28=980<1000,所以只有以下几个数:
34×29+29=35×29
34×30+30=35×30
34×31+31=35×31
34×32+32=35×32
34×33+33=35×33
以上数的和为35×(29+30+31+32+33)=5425
5、盒子里装着分别写有1、2、3、……134、135的红色卡片各一张,从盒中任意摸出若干张卡片,并算出这若干张卡片上各数的和除以17的余数,再把这个余数写在另一张黄色的卡片上放回盒内,经过若干次这样的操作后,盒内还剩下两张红色卡片和一张黄色卡片,已知这两张红色的卡片上写的数分别是19和97,求那张黄色卡片上所写的数。
解答:因为每次若干个数,进行了若干次,所以比较难把握,不妨从整体考虑,之前先退到简单的情况分析: 假设有2个数20和30,它们的和除以17得到黄卡片数为16,如果分开算分别为3和13,再把3和13求和除以17仍得黄卡片数16,也就是说不管几个数相加,总和除以17的余数不变,回到题目1+2+3+……+134+135=136×135÷2=9180,9180÷17=540, 135个数的和除以17的余数为0,而19+97=116,116÷17=6……14, 所以黄卡片的数是17-14=3。
6、下面的各算式是按规律排列的:
1+1,2+3,3+5,4+7,1+9,2+11,3+13,4+15,1+17,……, 那么其中第多少个算式的结果是1992?
解答:先找出规律: 每个式子由2个数相加,第一个数是1、2、3、4的循环,第二个数是从1开始的连续奇数。 因为1992是偶数,2个加数中第二个一定是奇数,所以第一个必为奇数,所以是1或3, 如果是1:那么第二个数为1992-1=1991,1991是第(1991+1)÷2=996项,而数字1始终是奇数项,两者不符, 所以这个算式是3+1989=1992,是(1989+1)÷2=995个算式。
7、如图,数表中的上、下两行都是等差数列,那么同一列中两个数的差(大数减小数)最小是多少?
解答:从左向右算它们的差分别为:999、992、985、……、12、5。 从右向左算它们的差分别为:1332、1325、1318、……、9、2, 所以最小差为2。
8、有19个算式:
那么第19个等式左、右两边的结果是多少?
解答:因为左、右两边是相等,不妨只考虑左边的情况,解决2个问题: 前18个式子用去了多少个数? 各式用数分别为5、7、9、……、第18个用了5+2×17=39个, 5+7+9+……+39=396,所以第19个式子从397开始计算; 第19个式子有几个数相加? 各式左边用数分别为3、4、5、……、第19个应该是3+1×18=21个, 所以第19个式子结果是397+398+399+……+417=8547。
9、已知两列数: 2、5、8、11、……、2+(200-1)×3; 5、9、13、17、……、5+(200-1)×4。它们都是200项,问这两列数中相同的项数共有多少对?
解答:易知第一个这样的数为5,注意在第一个数列中,公差为3,第二个数列中公差为4,也就是说,第二对数减5即是3的倍数又是4的倍数,这样所求转换为求以5为首项,公差为12的等差数的项数,5、17、29、……, 由于第一个数列最大为2+(200-1)×3=599; 第二数列最大为5+(200-1)×4=801。新数列最大不能超过599,又因为5+12×49=593,5+12×50=605, 所以共有50对。
11、某工厂11月份工作忙,星期日不休息,而且从第一天开始,每天都从总厂陆续派相同人数的工人到分厂工作,直到月底,总厂还剩工人240人。如果月底统计总厂工人的工作量是8070个工作日(一人工作一天为1个工作日),且无人缺勤,那么,这月由总厂派到分厂工作的工人共多少人?
解答:11月份有30天。 由题意可知,总厂人数每天在减少,最后为240人,且每天人数构成等差数列,由等差数列的性质可知,第一天和最后一天人数的总和相当于8070÷15=538 也就是说第一天有工人538-240=298人,每天派出(298-240)÷(30-1)=2人, 所以全月共派出2*30=60人。
12、小明读一本英语书,第一次读时,第一天读35页,以后每天都比前一天多读5页,结果最后一天只读了35页便读完了;第二次读时,第一天读45页,以后每天都比前一天多读5页,结果最后一天只需读40页就可以读完,问这本书有多少页?
解答:第一方案:35、40、45、50、55、……35 第二方案:45、50、55、60、65、……40 二次方案调整如下: 第一方案:40、45、50、55、……35+35(第一天放到最后惶熘腥ィ?/P>第二方案:40、45、50、55、……(最后一天放到第一天) 这样第二方案一定是40、45、50、55、60、65、70,共385页。
13、7个小队共种树100棵,各小队种的查数都不相同,其中种树最多的小队种了18棵,种树最少的小队最少种了多少棵?
解答:由已知得,其它6个小队共种了100-18=82棵, 为了使钌俚男《又值氖髟缴僭胶茫
Ⅵ 五年级奥数题,有答案
●小学五年级奥数题
悬赏分:0 - 解决时间:2007-3-18 21:29
提问者: 糖糖恋恋 - 魔法学徒 一级 最佳答案
1.五张卡片上分别写有数字:0,0,1,2,3,可以用它们组成许多不同的五位数,求所有这些五位数的平均数是多少。
2.小兔子和小猫咪一起上楼梯,小猫咪的速度是小兔子的速度的2倍,问:当小兔子上到第四层楼时,小猫咪上到第( )层楼。
3.一种野草,每天长高1倍,12天能长到48毫米,当这种野草长到6毫米时需要( )天。
4.小强有两包糖果,一包有48粒,另一包有12粒,他每次从多的一包里取出3粒,放到少的一包里去,经过( )次,才能使两包糖果的粒数相等。
5.紧接着4444后面写一串数字,写下的每个数字都是它前面两个数字乘积的个位数。例如:4×4=16,在4的后面写6,4×6=24,在6的后面写4,……得到一串数字:4444644644……,这串数字从1开始往右数,第4444个数字是( )。
6.妈妈在平底锅上煎鸡蛋,鸡蛋的两面都要煎,每煎完一面需要30秒钟,这个锅上只能同时煎两个鸡蛋,现在需要煎三个鸡蛋,至少需要( )秒钟。
7.有两堆水果,一堆苹果一堆梨。如果用1个苹果换1个梨,那么还多2个苹果,如果用1个梨换2个苹果,那么还多1个梨,想想看,原来有( )个苹果,( )个梨。
8. 修一条路,还剩下2.6千米没有修,已知没修的比修好的一半还多0.2千米。这条马路全长是( )千米。
9. 一桶油连桶重5.6千克,用去一半油后连桶还重3.1克。这桶油净重( )千克。
10. 农药厂生产一批农药,每天生产0.24吨。如果每500克售价28.5元。这个厂每天生产的农药值( )元。
11. 已知甲、乙、丙、丁四个数都不是零,又知道:
甲数÷乙=0.5 丁数÷乙数=1.01 丙数÷0.4=乙数
甲数÷1.25=丙数
比较甲、乙、丙、丁四个数的大小,按从大到小的顺序排列,排在第三位的是( )。
12. 3.704小数点后面第100位上的数字是( )。
13. 1993×199.2-1992×199.1=( )
14. 15.37×7.88-9.37×7.88-15.37×2.12+9.37×2.12=( )
15. 有甲、乙、丙三人,甲每分钟走50米,乙每分钟走40米,丙每分钟走60米。甲、乙从东村,丙从西村,同时出发相对而行。甲出发40发钟后与丙相遇,乙出发( )后与丙相遇。
回答者: deviland11 - 首席运营官 十二级 3-18 21:28
●谁能给我提供小学五年级奥数题!!
悬赏分:10 - 解决时间:2007-3-17 19:05
急急急急急急急急急急!!!!!!!!
问题补充:8858
提问者: 陈征911 - 魔法学徒 一级 最佳答案
我为你提供几题:以下AN表示答案
1客车长190米,货车长240米,两车分别以每秒20米和每秒23M的速度前进.在双轨铁路上,相遇时从车头相遇到车尾相离需几秒?
AN:10秒.
2 计算1234+2341+3412+4123=?
AN:11110
3 一个等差数列的首项是5.6 ,第六项是20.6,求它的第4项
AN:14.6
4 求和0.1+0.3+0.5+0.7+.....+0.87+0.89=?
AN:22.5
5 求解下列同余方程:
(1)5X≡3(mod 13) (2)30x≡33(mod 39) (3)35x≡140(mod 47) (4)3x+4x≡45(mod 4)
AN:(1)x≡11(mod 13) (2)x≡5(mod 39) (3)x≡4(mod 47) (4)x≡3(mod 4)
6 请问数2206525321能否被7 11 13 整除?
AN:能
7现有1分.2分.5分硬币共100枚,总共价值2元.已知2分硬币总价值比一分硬币总价值多13分,三类硬币各几枚?
AN:一分币51`枚.二分币32枚.5分币17枚.
8 找规律填数:
0 , 3,8,15,24,35,___,63 AN: 48
9 100条直线最多能把平面分为几个部分?
AN:5051
10 A B两人向大洋前进,每人备有12天食物,他们最多探险___天
AN:8天
11 100以内所有能被2或3或5或7整除的自然数个数
AN:78个
12 1/2 + 1/2+3 + 1/2+3+4 + ......+ 1/2+3+4+....+10=?
AN:343/330
13 从1,2,3,......2003,2004这些数中最多可取几个数,让任意两数差不等于9?
AN:1005
14 求360的全部约数个数. AN: 24
15 停车场上,有24辆车,汽车四轮,摩托车3轮,共86个轮.三轮摩托车____辆. AN :10辆.
16 约数共有8个的最小自然数为____. AN:24
17求所有除4余一的两位数和 AN;1210
18 把一笔奖金分给甲乙两个组,平均每人得6元.如果只分给甲组每人得10元,只分给乙每人得___元.
AN:15元.
19有一个工厂春游,有若干辆车,每车乘65人,有15人不能去,每车多乘5人,余一辆车.车___辆,共____人
AN:17,1120
20 AB两市学生乘车参观C地,每车可乘36人,AB两市学员坐满若干台车后,来自A的学生中余下的11人与来自B的余下若干人坐满了一辆车.在C地,来自A地和来自B地的学生两两合影留念,每个胶卷只能拍36张相片.那么全部拍完后相机中残余胶卷能拍____张照片.
AN:13张.
21 36A+4/24A+3是否为最简分数?
AN:是
22 一个长方体体积为374,其长.宽.高均为质数,其表面积为___
23 求1246与624的最大公约数. AN:2
24 小茜买了椰子和芒果,共用43元,椰子每斤7元,芒果每斤5元,她买了椰子和芒果斤数都是整数.那么他买了椰子和芒果共___斤
AN:7
25 100只鸡啄100粒米 大鸡啄3粒米,中鸡啄2粒,小鸡啄1/3 粒,那么小鸡共____只. AN:60或63或66或69或72或75(答案必须完整)
26 2002全部约数和是___ AN:33
最后为你推荐几个网站:
www.rdfz.com
www.mpw91.com
参考资料:<<小学奥数>>5年级
回答者: 快乐女孩包青天 - 秀才 三级 3-17 19:03