A. 小学六年级奥数题及答案(30道)。
给你一个网址http://www.aoshu.com/z2011/lnjaszsd/
B. 小学6年级奥数题及答案(仔细看问题)
奥数难题卷
姓名: 班级: 出卷人: 施远
1. 填空题(每题5分)
(1)两辆汽车,在相距是300千米的两地往返行驶,甲车去时时速为125千米/时,回时为100千米/时;乙车去时为160千米/时,回时75千米/时。问:( )车平均速度比较快。
(2)甲种糖每千克8.4元,乙种糖每千克7.12元。用5千克乙种糖和若干甲种糖混和,这种糖每千克7.6元。问:在这种混和和糖中,甲种糖有( )千克。
(3)现有浓度为30%的糖水500克,需制成浓度50%的糖水,问:再加入糖( )克。
(4)体育室有足球、篮球、排球三种球。每个同学可以借任意两个球,那么至少要有( )个同学来借球,才能保证有五个人借的球是相同的。
2. 计算题(每题10分)
(1)9992+1999=
(2)100—98+96—94+92—90…+4—2=
(3)a@b表示a和b最小公倍数和最大公因数的差,如:10@7=70-2=68
①12@21=
②6@x=27,x=?
3. 应用题(每题10分)
(1) 五年级同学参加作文比赛,前四名平均分是84.5分,四、五、六名的平均分比前四名的平均分少6.5分,前六名的平均分是82分,问第四名是多少分?
(2) 有甲乙丙三种货物。若购甲3件,乙7件,丙1件共花3.15元,若购甲4件,乙10件,丙1件共花4.2元,现购甲、乙、丙各1件,共须多少元?
(3) 甲对乙说“当我年龄是你现在年龄时,你才5岁。”乙对甲说:“当我年龄是你现在年龄的时候,你62岁。”问甲乙两人现在分别几岁?
(4) 育才小学举行的两次数学竞赛中,第一次及格人数比不及格人数的4倍多3人,第二次及格人数多劳多3人,是不及格人数的6倍,参赛的有多少人?
总分100分,共得( )分
C. 六年级上册奥数题 100道
1.公园只售两种门票:个人票每张5元,l0人一张的团体标每张如元,购买10张以上团体票者可优惠l0%
(1)甲单位45人逛公园,按以上规定买票,最少应付多少钱?
(2)乙单位208人逛公园,按以上规定买票,最少应付多少钱?
2.用无色透明玻璃小正方体和红色玻璃小正方体拼成一个大正方体(如右图),大正方体内的对角线,,,所穿过的小正方体都是红色玻璃小正方 体,其它部分都是无色透明玻璃小正方体,小红正方体共用了40l个.问:无色透明小正方体用了多少个?
3.a是自然数,且17a=,求a的最小值.
4.对一个自然数作如下操作:如果是偶数则除以2,如果是奇数则加l。如此进行直到为l时操作停止。问:经过9次操作变为1的数有多少个?
5.已知m,n,k为自然数,m≥n≥k,是100的倍数,求m+n-k的最小值。
6.1998个小朋友围成一圈,从某人开始,逆时针方向报数,从l报到64,再依次从l报到64,一直报下去,直到每人报过l0次为止。问:
(1)有没有报过5,又报过l0的人?有多少?说明理由;
(2)有没有报过5,又报过ll的人?有多少?说明理由;
1.【解】(1)45个人,应当买4张团体票(每张10人),5张个人票,共用:30×4+5×5=145元(比5张团体票省)。
(2)208个人,可以买21张团体票(每张10人),共用:30×21×(1-10%)=3×21×9=567元,
如果买20张团体票,8张个人票,共用:30×20×(1-10%)+5×8=580元
由于购买10张以上团体票的可以优惠10%,所以208人买21张团体票反而省钱.本题答案应当是567元
2.【解】、、、,四条对角线都穿过在正中央的那个小正方体,
除此而外,每两条对角线没有穿过相同的小正方体,所以每条对角线穿过+1=101个小正方体
这就表明大正方体的每条边由101个小正方体组成因此大正方体由
1013个小正方体组成,其中无色透明的小正方体有
1013-401=1030301—40l=1029900,
即用了1029900个无色透明的小正方体.
3.【解】由除法(不断在右面添写1直到整除为止)得
a的最小值是65359477124183
4.【解】可以先尝试一下,得出下面的图:
其中经1次操作变为1的1个,即2,经2次操作变为1的1个,即4,经3次操作变为1的2个,即3,8,…,经6次操作变为1的8个,即11,24,10,28,13,64,31,30.
于是,经1、2、…次操作变为1的数的个数依次为:1,1,2,3,5,8,…(1)
这一串数有个特点:自第三个开始,每一个等于前两个的和,即:
2=1+1,3=2+1,5=3+2,8=5+3,…
如果这个规律正确,那么8后面的数依次是:
8+5=13,13+8=21,21+13=34,…
即经过9次操作变为1的数有34个。
为什么上面的规律是正确的呢?
道理也很简单.设经过n次操作变为1的数的个数为,则=1,=1,=2,…
从上面的图看出,比大.一方面,每个经过n次操作变为1的数,乘以2,就得出一个偶数,经过n+1次操作变为1;反过来,每个经过n+1次操作变为1的偶数,除以2,就得出一个经过n次操作变为1的数.所以经过n次操作变为1的数与经过n+1次操作变为1的偶数恰好一样多.前者的个数是,因此后者也是个。
另一方面,每个经过n次操作变为1的偶数,减去1,就得出一个奇数,它经过n+1次操作变为1,反过来每个经过n+1次操作变为1的奇数,加上1,就得出一个偶数,它经过n次操作变为1.所以经过n次操作变为1的偶数与经过n+1次操作变为1的奇数恰好一样多.而由上面所说,前者的个数就是,因此后者也是.
经过,n+1次操作变为1的数,分为偶数、奇数两类,所以=+(2)
即上面所说的规律的确成立。
满足规律(2),并且==1的一串数(1)称为斐波那契数.斐波那契(Fibonacci,约1175-1250)是意大利数学家,以他名字命名的这种数列有很广泛的应用
5.【解】首先注意100=22×52
如果,n=k,那么2m是100的倍数,因而是5的倍数,这是不可能的,所以n-k≥1
2m十2n-2k=2k(2m-k+2n-k-1)被22整除,所以k≥2
设a=m-k,b=n-k,则a≥b.而且都是正整数
2a+2b-1被52整除,要求a+b+k=m+n-k的最小值,
不难看出:210+21-1=1025
被25整除,所以a+b+k的最小值≤1O+1十2=13
而且在a=10,b=1,k=2时,上式等号成立
还需证明在a+b≤10时,2a+2b-1不可能被52整除
列表如下:
a≤3时,2a+2b-1<8+8=16不被52整除.其它表中情况,不难逐一检验,均不满足2a+2b-1被25整除的要求
因此a+b+k即m十n-k的最小值是13
6.【解】首先注意:1998=64×31+14(1)
所以第一次报5的人,第二次报5+14,第三次报5+14×2,…,第K+1次报5+14K(K=0,1,…,9),当然在5+14K超过64时,要减去64的倍数,直至差不大于64。因为5是奇数,14,64是偶数,所以5十14K-64H一定是奇数,不可能为10,即没有报过5,又报10的人
每个第一次报5的人.第二、三、四、五、六次依次报
5+14,5+14×2,
5+14×3,5+14×4
5+14×5—64=11.
因为5×1998=9990=156×64+6
所以在前五轮报数中,有157(=156+1)个人报5,这些人在10轮报数中,又报过11,而后五轮报5的人,不可能再报11,在前五轮报1的人,以后报
11+14,11+14×2,11+14×3,11十14×4-64=3,3十14,3+14×2,
3+14×3,3+14×4,3+14×5-64=9不报5
因此,报过5,又报过11人,有157人
希望对你有帮助!
1. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵。已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树。两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?
2. 有三块草地,面积分别是5,15,24亩。草地上的草一样厚,而且长得一样快。第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?
3. 某工程,由甲、乙两队承包,2。4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元。在保证一星期内完成的前提下,选择哪个队单独承包费用最少?
4. 一个圆柱形容器内放有一个长方形铁块。现打开水龙头往容器中灌水。3分钟时水面恰好没过长方体的顶面。再过18分钟水已灌满容器。已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比。
5. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售。两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?
6. 有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5。经过2+1/3小时,A,B两池中注入的水之和恰好是一池。这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?
7. 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校。小明从家到学校全部步行需要多少时间?
8. 甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离。乙车的速度是甲车速度的80%。已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地。最后乙车比甲车迟4分钟到C地。那么乙车出发后几分钟时,甲车就超过乙车。
9. 甲、乙两辆清洁车执行东、西城间的公路清扫任务。甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?
10. 今有重量为3吨的集装箱4个,重量为2。5吨的集装箱5个,重量为1。5吨的集装箱14个,重量为1吨的集装箱7个。那么最少需要用多少辆载重量为4。5吨的汽车可以一次全部运走集装箱?
11. 师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?
12. 一辆大轿车与一辆小轿车都从甲地驶往乙地。大轿车的速度是小轿车速度的80%。已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地。又知大轿车是上午10时从甲地出发的。那么小轿车是在上午什么时候追上大轿车的。
13. 一部书稿,甲单独打字要14小时完成,,乙单独打字要20小时完成。如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时。。。。。。。两人如此交替工作。那么打完这部书稿时,甲乙两人共用多少小时?
14. 黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多?
15. 一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米?
16. 甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨?
17. 甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478。那么甲、乙丙三数之和是几?
18. 一辆车从甲地开往乙地。如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达。甲、乙两地之间的距离是多少千米?
19. 某校参加军训队列表演比赛,组织一个方阵队伍。如果每班60人,这个方阵至少要有4个班的同学参加,如果每班70人,这个方阵至少要有3个班的同学参加。那么组成这个方阵的人数应为几人?
20. 甲、乙、丙三台车床加工方形和圆形的两种零件,已知甲车床每加工3个零件中有2个是圆形的;乙车床每加工4个零件中有3个是圆形的;丙车床每加工5个零件中有4个是圆形的。这天三台车床共加工了58个圆形零件,而加工的方形零件个数的比为4:3:3,那么这天三台车床共加工零件几个?
21. 圈金属线长30米,截取长度为A的金属线3根,长度为B的金属线5根,剩下的金属线如果再截取2根长度为B的金属线还差0。4米,如果再截取2根长度为A的金属线则还差2米,长度为A的等于几米?
22. 某公司要往工地运送甲、乙两种建筑材料。甲种建筑材料每件重700千克,共有120件,乙种建筑材料每件重900千克,共有80件,已知一辆汽车每次最多能运载4吨,那么5辆相同的汽车同时运送,至少要几次?
23. 从王力家到学校的路程比到体育馆的路程长1/4,一天王力在体育馆看完球赛后用17分钟的时间走到家,稍稍休息后,他又用了25分钟走到学校,其速度比从体育馆回来时每分钟慢15米,王力家到学校的距离是多少米?
24. 师徒两人合作完成一项工程,由于配合得好,师傅的工作效率比单独做时要提高1/10,徒弟的工作效率比单独做时提高1/5。两人合作6天,完成全部工程的2/5,接着徒弟又单独做6天,这时这项工程还有13/30未完成,如果这项工程由师傅一人做,几天完成?
25. 六年级五个班的同学共植树100棵。已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是一、二、三、四、五班。又知一班植的棵数是二、三班植的棵数之和,二班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵?
26. 甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米。乙总共跑了多少千米?
27. 有高度相等的A,B两个圆柱形容器,内口半径分别为6厘米和8厘米。容器A中装满水,容器B是空的,把容器A中的水全部倒入容器B中,测得容器B中的水深比容器高的7/8还低2厘米。容器的高度是多少厘米?
28. 有104吨的货物,用载重为9吨的汽车运送。已知汽车每次往返需要1小时,实际上汽车每次多装了1吨,那么可提前几小时完成。
29. 师、徒二人第一天共加工零件225个,第二天采用了新工艺,师傅加工的零件比第一天增加了24%,徒弟增加了45%,两人共加工零件300个,第二天师傅加工了多少个零件?徒弟加工了几个零件?
30. 奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米。去时用了4天,回来时用了3天,问学校距离百花山多少千米?
呵呵就这么多了,希望对你有帮助。选我吧
D. 六年级的奥数题与答案100道
1=1=1=1=1
1+1=2
2=2=2=2=2
2+2=4~~```````
六年级奥数卷子
一、计算(5×5=25分)
1、4 9 16 25 (36) (49) (64)
2、1 3 6 10 (15) (21) (28)
3、2 6 18 54 (162) (486) (1458)
4、654321×123456-654321×123455=654321
5、11111×11111=123454321
二、填空题。(3×25=75分)
1、小于400的自然数中不含数字8的数有(339)个。
2、有9枚铜钱,其中一枚是假的,真假只是质量不同,用无砝码的天平,至少称(8)次,就肯定能够将假铜钱找出来。
3、在公路上每隔100千米有一个仓库,共5个仓库。1号仓库存货10吨,2号仓库存货20吨,5号仓库存货40吨,其余两个仓库是空的,现在想把所有的货物集中放在一个仓库里,若每吨货物运输1千米要1元运费,那么至少要花费(10000)元运费才行。
1号100千米2号100千米3号100千米4号100千米5号
10吨 20吨 40吨
4、六年级共有学生207人,选出男生的2/11 和7名女生参加数学竞赛,剩下的男女生人数相同,六年级有女生(97)人。
5、小兰和小丽玩猜数游戏,小兰在直条上写了一个四位小数,让小丽猜。小丽问:“是6031吗?”小兰说:“猜对了一个数字,且位置正确。”小丽又问:“是5672吗?”小兰说:“猜对了两个数字,且位置都不正确。”小丽再问:“是4796吗?”小兰说:“猜对了四个数字,但位置都不正确。”你能根据以上信息,推断出小兰写的四位数吗?6974
6、如果20只兔子可以换2只羊,8只羊可以换2头猪,8头猪可以换2头牛,那么用4头牛可以换多少只兔子?640
7、蓝蓝今年8岁,爸爸今年38岁,蓝蓝多少岁时,爸爸的年龄正好是蓝蓝的4倍? 10
8、为民冷饮店每3个空汽水瓶可以换1瓶汽水,蓝蓝在暑假里买了99瓶汽水,喝完后又用空瓶换汽水,那么她最多能喝到多少瓶汽水? 147
9、在一道除法算式里,被除数、除数、商、余数四个数的和为75,已知商是8,余数是2,被除数是多少,除数是多少?
58 7
10、有两根同样长的铁丝,第一根减去30厘米,第二根减去18厘米,第二根余下的是第一根所余下长度的2倍,第二根铁丝还剩多少厘米?24
11、有1,2,3,4,5,6,7,8,9的牌,甲、乙、丙各三张,甲说:“我的三张牌的积是48”,乙说:“我的三张牌之和是15”,丙说:“我的三张牌的积是63”,甲、乙、丙各拿什么牌?
238 564 179
12 、用24厘米长的铁丝可以围成几种不同的长方形(长与宽整厘米数且接头处不计),面积分别是多少?再比较一下,你能发现什么? 6
13、 张师傅习惯每工作5天休息2天。最近接到了生产330个零件的任务,他每天生产30个,那么完成这批任务至少需要多少天?15
14、星期天,小辉乘出租车去看望8千米外的外婆。乘车时,他看了出租车上的车费牌价:5千米以内8元;5千米以上每千米2元。小辉到外婆家时,应付车费多少元?
14
15、 一个小数,如果把它的小数部分扩大4倍,就得到5.4;如果把它的小数部分扩大9倍,就得到8.4,那么这个小数是多少?3、6
16、甲、乙二人的平均身高是1.66米,乙、丙二人的平均身高是1.7米,甲、丙二人的平均身高是1.65米,那么甲乙丙三人的平均身高是多少?
1。67
17、 甲、乙、丙三个数之和为270,甲数是乙数的3倍,乙数是丙数的2倍,问甲、乙、丙三个数各是多少?
180 60 30
18、 有A、B两个煤场,A煤场是B煤场存煤的3倍,若从A煤场运出180吨到B煤场,则两煤场存煤相等,原来A、B两煤场各存煤多少吨?
540 180
19、5个队员排成一列做操,其中1个新来的队员不能站在排首,有多少种不同的排法?
96
20、六(1)班有50人,会游泳的有25人,会体操的有28人,都不会的有5人,既会游泳又会体操的有多少人?8
21、青年号轮船在一条河里顺水而行120千米要用6小时,逆流而行280千米要用20小时。这只轮船在静水中航行340千米要用多少小时?
20
22、将分母为15的所有最简假分数由小到大依次排列,问第99个假分数的分子是多少?
214
23、用96朵红花和72朵白花扎成花束,如果每个花束里红花的朵数相同,白花的朵数也相同,每个花束里至少有多少朵花?
84
2、参加大型团体操的同学共有240名,他们面对教练站成一排,自左至右按1、2、3、4、……依次报数,教练让每个同学记住自己报的数并做以下动作:先让报数字3的倍数的同学向后转,接着又让报数是5的倍数同学向后转,最后让报数是7的倍数的学生向后转,问此时还有多少学生面对教练?34+80+48-16-6-11=162-33=129
1. 山村邮递员从邮局翻过山顶送邮件到用户家共行23.5千米,用了6.5小时.他上山速度为每小时行3千米,下山速度为每小时行5千米.问用不变的上山下山速度原路返回,要用多少时间?
4.7
1. 8 8 3 3 用+ - * / ( )算出24.
2.3 3 7 7用+ - * / ( )算出24.
3.客车长190米,货车长240米,两车分别以每秒20米和每秒23M的速度前进.在双轨铁路上,相遇时从车头相遇到车尾相离需几秒?
AN:10秒.
4.计算1234+2341+3412+4123=?
5. 一个等差数列的首项是5.6 ,第六项是20.6,求它的第4项
6. 求和0.1+0.3+0.5+0.7+.....+0.87+0.89=?
7.现有1分.2分.5分硬币共100枚,总共价值2元.已知2分硬币总价值比一分硬币总价值多13分,三类硬币各几枚?
8.甲、乙两地相距465千米,一辆汽车从甲地开往乙地,以每小时60千米的速度行驶一段后,每小时加速15千米,共用了7小时到达乙地。每小时60千米的速度行驶了几小时?
9..笼中装有鸡和兔若干只,共100只脚,若将鸡换成兔,兔换成鸡,则共92只脚。笼中原有兔、鸡各多少只?
10.蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀。蝉有6条腿和1对翅膀。现在这三种小虫共18只,有118条腿和20对翅膀,每种小虫各几只?
11.学雷锋活动中,同学们共做好事240件,大同学每人做好事8件,小同学每人做好事3件,他们平均每人做好事6件。参加这次活动的小同学有多少人?
12.某班42个同学参加植树,男生平均每人种3棵,女生平均每人种2棵,已知男生比女生多种56棵,男、女生各有多少人?
13.书架上有6本不同的语文书,4本不同的外语书,3本不同的数学书,从中任取语文,外语,数学书各一本,有多少种不同的取法?
14.某班学生植树,共有杉树苗与杨树苗100棵。每小组分杉树苗6棵,杨树苗8棵。这样,杉树苗正好分完,而杨树苗还剩2棵。原来杉树苗与杨树苗各有多少棵?
15.用8千克丝可以织6分米宽的绸4米,现在有10千克丝,要织7.5分米宽的绸,可以织几米?
16.下面是一个11位数,每三个相邻数字之和都是15,你知道问号表示的数是几吗?这个11位数是多少?
17..甲、乙、丙三人一共买了8个面包平均分着吃,甲付5个面包的钱,乙付3个面包的钱,丙没带钱。经计算,丙应该付4元钱,甲应收回多少钱?
18.有甲、乙、丙、丁、戊五个足球代表队进行比赛,每个队都要和其他队赛一场,总共要塞多少场?
19.12枚硬币的总值是1元,其中只有5分和1角两种,问每种硬币多少个?
20..甲乙两人去商店买衣服,甲原有100元钱,乙原有70元钱,两人买了同样价格的衣服后,结果发现甲剩下的钱恰好是乙剩下的钱的4倍。问甲乙买衣服各用了多少元钱?
21.57辆军车排成一列通过一座桥,前后两辆车之间都保持2米的距离。桥长200米,每辆军车长5米。从第一辆车头到最末一辆车尾共长多少米?
22.买18张桌子和6把椅子共要1560元,10张桌子的价钱比6把椅子的价钱多680元,问每张桌子多少钱?每把椅子多少钱?
23. .甲.乙两个储油罐,甲比乙的储油量少,把1/4乙中的1/6输入甲,甲中储油量比乙多2吨.乙原有油多少吨?
24.工厂组织400-450人参加植树活动,平均每人植32棵.男职工平均每人植树48棵,女职工平均每人植树13棵.参加植树的男.女职工各有多少人?(用比例求人数)
25.甲.乙.丙三仓库存有救灾物资,甲有120件,乙是甲.丙两仓库之和,丙是甲.乙仓库的一半,救灾物资一共有多少件?
26..甲.乙.丙三组共装电视机500台.甲.乙两组装配台数的比是5:3,丙比乙少装39台.丙装了几台?(假设丙多装39台)
27.甲.乙两地相距243KM,一辆货车和客车同时从甲.乙两地出发,相向而行,经过1.5小时相遇.货车和客车的速度比是4:5,那么,客车行完全程要多少小时?(两种方法)
28.一个日用化工厂生产洗衣皂9800想,比生产的香皂多5/9.生产洗衣皂和香皂一共多少箱?(变分率巧解题)
29.小明和小聪分别在60米跑道两端同时出发来回跑步,小明每秒跑2米,小聪每秒跑3米,他俩不停地跑了5分钟,这期间他俩迎面相遇几次?
30.小强买了三支铅笔,三支圆珠笔,八本笔记本和十二块橡皮,售货员说共要付13元1角,已知铅笔4角一支,圆珠笔2元8角一支,问售货员的帐有没有算错
31.一项工程,甲独做要3天,乙独坐要5天。现甲先做1天剩下的甲乙合作还要几天完成?
32.乙仓大米是甲仓的4/5,如果从甲仓调4吨大米到乙仓,则甲,乙两仓大米重量的比是3:4,甲。乙两仓原来各存大米多少吨?
33.7点什么分的时候,分针落后时针100度?
34.两辆汽车从A、B两地同时出发、相向而行,甲每小行50千米,乙每小行60千米,经过3.5小时相遇。A、B两地相距多少千米?(用两种方法解答)
35.小明与小清家相距4.5千米,两人同时骑车从家出发相向而行,小明每分钟行50米,小青每分钟行40米,经过几分钟两人相遇?
36.小明与小清家相距4.5千米,两人同时骑车从家出发相向而行,小明每分钟行50米,小青每分钟行40米,经过几分钟两人相遇?
37.客车和货车同时从两城出发,相向而行,客车每小时行45千米,比货车每小时多行3千米,经过4小时两车相遇。两城相距多少千米?
两个工程队同时从两端开一条长850米的隧道,甲队每天开凿26米,乙队每天开凿24米,经过几天就可以打通?
6、师徒两个人合作加工一批零件,师傅每小时加工68个,徒弟每小时加工55个,合作6小时完成任务,这批零件一共有多少个?
7、加工厂用两台磨面机同时磨面17280千克,第一台磨面机每小时磨面364千克,第二台磨面每小时磨面356千克,如果每天加工8小时,磨完这些面粉需要多少天?
二、同时出发,相背而行
1、甲、乙两人同时从学校出发向反方向行去。甲每分钟走60米,乙每分钟走70米,5分钟后两人相距多少米?(用两种方法解答)
第一种方法: 第二种方法:
2、两辆汽车同时从一个工厂出发,相背而行,一辆汽车每小时行33千米,另一辆汽车每小时行42千米。多少分钟后两车相距15千米?
三、同时出发、相向而行,不相遇
1、甲、乙两站间的铁路长560千米,两列火车同时从两站相对开出,一列火车每小时行63.5千米,另一列火车每小时行80.5千米,3小时后两列火车还相距多少千米?
2、货车和客车同时从甲、乙两地相对开出,货车每小时行57.5千米,客车每小时行45.8千米,3小时后两车相距100千米,甲、乙两地相距多少千米?
3、师徒两人共同加工312个零件,师傅每小时加工45个,徒弟每小时加工35个,加工几小时后还剩40个?
四、不同时出发,相向而行
1、甲、乙两列火车从两地相对行驶。甲车每小时行75千米,乙车每小时行69千米,甲车开出1小时后,乙车才出发,5小相遇。两地间的铁路长多少千米?(用两种方法解答)
第一种方法: 第二种方法:
2、甲、乙两港的水路长726千米,一艘货轮从甲港开往乙港,每小时行69千米,1小时后,一艘客轮从乙港开住甲港,每小时行77千米,客轮开出后几小时与货轮相遇?相遇时客轮和货轮各行了多少千米?
3、一批零件478个,甲每小时加工50个,乙每小时加工32个,甲先加工3小时余下的两人合作完成,再过几小时完成任务?
五、同时、同地点出发、同方向行驶
甲、乙两人同时骑车从A地到B地,甲每小时行14.2千米,乙每小时行18.7千米。8小时后两人相距多少千米?(用两种方法解答)
第一种方法: 第二种方法:
行程应用题
1、客货两车分别相距387千米的甲、乙两地相对开出,客车先行1小时,每小时行72千米,货车开出后2.5小时与客车相遇。货车每小时行多少千米?
2、甲、乙两辆汽车同时同向而行,甲汽车每小时行42千米,乙汽车每小时行45千米,2.4小时后两车相距多少千米?
3、甲、乙两船同时从一个码头向相反方向开出,甲船每小时行23.5千米,乙船每小时行21.5千米,航行几个小时后,两船相距315千米?
4、甲、乙两列火车同时从相距453千米的两地相对开出,甲车每小时行45千米。5小时后两车还相距28千米,乙车每小时行多少千米?
5、一辆汽车从甲地开往乙地,每小时行56千米,3小时后距离中点还有6千米,这时这辆汽车距乙地还有多少千米?
6、两列火车同时从甲乙两地相向开出,第一列火车从甲站出发,每小时行50千米,第二列火车从乙站出发,每小时行60千米,两车相遇时,第一列火车正好行了全程的 ,离乙站还有300千米。甲乙两地相距多少千米?
7、甲乙两个同学在400米一圈的运动场跑道上,同时同地反向跑步,甲每秒钟5米,乙每秒钟6米,大约多少秒钟后两人相遇?
8、赵兰步行上学,每分钟行75米,赵兰离家6分钟后,妈妈发现赵兰没戴红领巾,就骑车去追,每分钟行375米,妈妈出发多少分钟后能追上赵兰?
9、甲乙两车同时从两地相向而行,甲每小时行83千米,乙每小时行95千米,两车在距中点24千米处相遇,求两地距离?
10、甲、乙两列火车分别从两个车站相向开出,甲车每小时行48千米,乙车每小时行52千米,如果相遇时,甲车比乙车一共少行20千米,那么两站之间的距离是多少千米
1. 有 28位小朋友排成一行 .从左边开始数第 10位是爱华,从右边开始数他是第几位?
2. 纽约时间是香港时间减 13小时 .你与一位在纽约的朋友约定,纽约时间 4月 1日晚上 8时与他通电话,那么在香港你应几月几日几时给他打电话?
3. 名工人 5小时加工零件 90件,要在 10小时完成 540个零件的加工,需要工人多少人?
4. 大于 100的整数中,被 13除后商与余数相同的数有多少个?
5. 四个房间,每个房间里不少于 2人,任何三个房间里的人数不少 8人,这四个房间至少有多少人?
6. 在 1998的约数(或因数)中有两位数,其中最大的是哪个数?
7. 英文测验,小明前三次平均分是 88分,要想平均分达到 90分,他第四次最少要得几分?
8. 一个月最多有 5个星期日,在一年的 12个月中,有 5个星期日的月份最多有几个月?
9. 将 0, 1, 2, 3, 4, 5, 6, 7, 8, 9这十个数字中,选出六个填在下面方框中,使算式成立,一个方框填一个数字,各个方框数字不相同 .
□ +□□ =□□□
问算式中的三位数最大是什么数?
10. 有一个号码是六位数,前四位是 2857,后两位记不清,即
2857□□
但是我记得,它能被 11和 13整除,请你算出后两位数 .
11. 某学校有学生 518人,如果男生增加 4%,女生减少 3人,总人数就增加 8人,那么原来男生比女生多几人?
12. 陈敏要购物三次,为了使每次都不产生 10元以下的找赎, 5元、 2元、 1元的硬币最少总共要带几个?
(硬币只有 5元、 2元、 1元三种 .)
13. 右图是三个半圆构成的图形,其中小圆直径为 8,中圆直径为 12,
14.幼儿园的老师把一些画片分给 A, B, C三个班,每人都能分到 6张 .如果只分给 B班,每人能得 15张,如果只分给 C班,每人能得 14张,问只分给 A班,每人能得几张?
15. 两人做一种游戏:轮流报数,报出的数只能是 1, 2, 3, 4, 5, 6, 7, 8.把两人报出的数连加起来,谁报数后,加起来的数是 123,谁就获胜,让你先报,就一定会赢,那么你第一个数报几?
16.一本小说的页码,在印刷时必须用1989个铅字,在这一本书的页码中数字1出现多少次?
17.把23个数:3,33,333,…,33…3(23个3)相加,则所得的和的末四位数是多少?
18.将1、1、2、2、3、3、4、4这八个数字排成一个八位数,使得两个1之间有一个数字,两个2之间有二个数字,两个3之间有三个数字,两个4之间有四个数字,那么这样的八位数中最小的是?
19.从 1, 2, 3,…,2004, 2005这些自然数中,最多可以取几个数,才能使其中每两个数的差不等于4?
20.有一个电话号码是六位数,其中左边三个数字相同,右边三个数字是三个连续的自然数,六个数字之和恰好等于末尾的两位数,这个电话号码是多少?
21.若a为自然数,证明10│(a2005-a1949).
22.给出12个彼此不同的两位数,证明:由它们中一定可以选出两个数,它们的差是两个相同数字组成的两位数.
23.求被3除余2,被5除余3,被7除余5的最小三位数.
24.设2n+1是质数,证明:12,22,…,n2被2n+1除所得的余数各不相同.
25.试证不小于5的质数的平方与1的差必能被24整除.
26. 有甲乙两种糖水,甲含糖270克,含水30克,乙含糖400克,含水100克,现要得到浓度是82.5%的糖水100克,问每种应取多少克?
27. 一个容器里装有10升纯酒精,倒出1升后,用水加满,再倒出1升,用水加满,再倒出1升,用水加满,这时容器内的酒精溶液的浓度是?
28. 有若干千克4%的盐水,蒸发了一些水分后变成了10%的盐水,在加300克4%的盐水,混合后变成6.4%的盐水,问最初的盐水是多少千克?
29.已知盐水若干克,第一次加入一定量的水后,盐水浓度变为3%,第二次加入同样多的水后,盐水浓度变为2%。求第三次加入同样多的水后盐水的浓度。
30.有A、B、C三种盐水,按A与B的数量之比为2:1混合,得到浓度为13%的盐水;按A与B的数量之比为1:2混合,得到浓度为14%的盐水;按A、B、C的数量之比为1:1:3混合,得到浓度为10.2%的盐水,问盐水C的浓度是多少?
[ 答案 ]
1. 从右边开始数,他是第 19位 .
2. 4 月2 日上午9 时.
3.9名工人 .
4.有 5个 .
13× 7+7=98< 100,商数从 8开始 .但余数小于 13,最大是 12,有 13× 8+ 8= 112, 13× 9+ 9= 126, 13× 10+ 10=140, 13× 11+ 11=154, 13× 12+ 12= 168,共 5个数 .
5.至少有 11人 .
人数最多的房间至少有 3人,其余三个房间至少有 8人,总共至少有 11人 .
6.最大的两位约数是 74.
1998= 2× 3× 3× 3× 37
7.第四次最少要得 96分 .
88+( 90- 88)× 4=96(分)
8.最多有 5个月有 5个星期日 .
1月 1日是星期日,全年就有 53个星期日 .每月至少有 4个星期日, 53-4× 12=5,多出 5个星期日,在 5个月中 .
9.105.
和的前两位是 1和 0,两位数的十位是 9.因此加数的个位最大是 7和 8.
10.后两位数是 14.
285700÷( 11× 13) =1997余 129
余数 129再加 14就能被 143整除 .
11.男生比女生多 32人 .
男生 4%是 3+ 8=11(人),男生有 11÷ 4% =275(人),女生有 518-275=243(人), 275-243=32(人) .
12.最少 5元、 2元、 1元的硬币共 11个 .
购物 3次,必须备有 3个 5元、 3个 2元、 3个 1元 .为了应付 3次都是 4元,至少还要 2个硬币,例如 2元和 1元各一个,因此,总数 11个是不能少的 .准备 5元 3个, 2元 5个, 1元 3个,或者 5元 3个, 2元 4个, 1元 4个就能三次支付 1元至 9元任何钱数 .
14.A班每人能得 35张 .
设三班总人数是 1,则 B班人数是 6/15, C班人数是 6/14,因此 A班人数是:
15.第一个数报 6.
对方至少要报数 1,至多报数 8,不论对方报什么数,你总是可以做到两人所报数之和为 9.
123÷ 9= 13…… 6.
你第一次报数 6.以后,对方报数后,你再报数,使一轮中两人报的数和为 9,你就能在 13轮后达到 123.
16.4
17.甲26又2/3天,乙40天
18.21
19.14又1/3
20.10
21.甲、乙两地相距540千米,原来火车的速度为每小时90千米。
22.750
23.384
24.600
25.一班48人,二班42人
26.15
27.82
28.312
29.最少5个,最多7个
30.784
E. 六年级上册数学100道奥数题
1、一个四位数3()7()能同时被9和4整除,求这样的四位数中最大数十多少?最小是多少?
2、要使六位数15ABC能被36整除,而且所得的商最小,问A、B、C、各代表什么数字?商最大呢?
3、从0、3、5、7这四个数字中任选3个数,排成能同时被2、3、5整除的三位数,这样的三位数有哪些?
4、用2、3、4、5四个数字组成的四位数中,能被11整除的数都有哪些,请按从大到小排列出来。
5、个位数字为6,且能被3整除的四位数共有多少?
6、把若干个自然数1,2,3,。。。。。。乘在一起,如果已知这个成绩的最末13位恰好都是0,那么最后那个自然数最小应该是多少?
7.一件商品按原价的8折出售,能获利20%,由于成本降低,先按原价的75折出售,能获利25%,那么现在的成本比原来降低了几分之几?
8.某校四年级原有两个班,现在重新编为三个班,将原一班的1/3和原二班的1/4组成新一班,将原一班的1/4和原二班的1/3组成新二班,余下的30人组成新三班。如果新一班的人数比新二班的人数多10%。新一班有多少人?
9.已知甲、乙两车分别从相距300千米的A、B两地同时出发,相向而行。其中甲到B以后立即反回,甲去时用了3小时,返回时用了15/4小时。乙车较慢,甲返回后,再过一会才到A地。当他们行驶与各自的出发地距离相等时,都用了9/2小时,求他们何时相遇。
10.小刚和小明从家出发相向而行,小刚每分钟走52米,小明每分钟走70米,两人在途中A相遇,若小刚提前4分钟出发,且速度不变,小明每分钟走90米,两人仍然在A处相遇,两家距离多少米?
11.某车间共有86名工人,已知每人平均每天可加工甲种部件15个,或乙种部件12个,或丙种部件9个,要使加工后的部件按3个甲种部件、2个乙种部件和1个丙种部件配套,则应安排多少人加工甲种部件,多少人加工乙种部件,多少人加工丙种部件。
12.女儿每天放学后,父亲都准时去接.某日女儿提前放学步行回家.而父亲当天因事晚10分钟出发接女儿.女儿在步行8分钟后遇到父亲,然后一起回家.结果到家时间比平时晚了3分钟,假设父亲的速度保持恒定,求女儿提前多少分钟放学?
13.用0,1,2,…,9十个数字组成五个两位数,每个数字只能用一次,要求它们的和是一个奇数,并且尽可能的大,两位数的和是多少?
14.某商品成本为每个80元,如果按每个100元卖,可卖出1000个。当这种商品每个涨价1元,销售量就减少20个。为了赚取最多的利润,售价应定为每个多少元。
15.甲乙两人分别从A,B 两地出发,相向而行,出发时他们的速度比是3:2,他们第一次相遇后,甲的速度提高了20% ,乙的速度提高了30% ,这样,当甲到达B地时,乙离地A地还有14千米 ,那么AB两地之间的距离是多少?
16甲乙丙三根管子共长360m,甲的1/4在水面上,乙1/9在水面上,丙1/6在水面上,问水深
F. 小学六年级奥数题及答案
甲的年龄是另外三人年龄和的1/2,也就是另外三人年龄和是甲的2倍,
甲占四人年龄和的:1÷(1+2)=1/3
乙的年龄是另外三人年龄和的1/3,也就是另外三人年龄和是乙的3倍,
乙占四人年龄和的:1÷(1+3)=1/4
丙的年龄是另外三个人年龄和的1/4,也就是另外三人年龄和是丙的4倍,
丙占四人年龄和的:1÷(1+4)=1/5
那么丁占四人年龄和的:1-1/3-1/4-1/5=13/60
四人年龄和是:26÷13/60=120岁
甲年龄是:120×1/3=40岁
G. 我想要一些小学六年级下册的奥数题及答案~!
牛吃草问题
例1:
一片青草地,每天都匀速长出青草,这片青草可供27头牛吃6周或23头牛吃9周,那么这片草地可供21头牛吃几周?
这片草地上的草的数量每天都在变化,解题的关键应找到不变量——即原来的草的数量。因为总草量可以分成两部分:原有的草与新长出的草。新长出的草虽然在变,但应注意到是匀速生长,因而这片草地每天新长出的草的数量也是不变的。
假设1头牛一周吃的草的数量为1份,那么27头牛6周需要吃27×6=162(份),此时新草与原有的草均被吃完;23头牛9周需吃23×9=207(份),此时新草与原有的草也均被吃完。而162份是原有的草的数量与6周新长出的草的数量的总和;207份是原有的草的数量与9周新长出的草的数量的总和,因此每周新长出的草的份数为:(207-162)÷(9-6)=15(份),所以,原有草的数量为:162-15×6=72(份)。这片草地每周新长草15份相当于可安排15头牛专吃新长出来的草,于是这片草地可供21 头牛吃72÷(21-15)=12(周)
例2:
由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少。已知某块草地上的草可供20头牛吃5天或可供15头牛吃6天。照此计算,可供多少头牛吃10天?
与例1不同的是,不仅没有新长出的草,而且原有的草还在减少,但是,我们同样可以利用与例1类似的方法求出每天减少的草和原来的草的总量。
设1头牛1天吃的草为1份,20头牛5天吃100份,15头牛6天吃90份,100-90=10(份),说明寒冷的天气使牧场1天减少青草10份,也就是寒冷导致的每天减少的草量相当于10头牛在吃草。由“草地上的草可供20头牛吃5天”,再加上寒冷导致的每天减少的草量相当于10头牛同时在吃草,所以原有草两有(20+10)×5=150(份),由150÷10=15知道,牧场原有的草可供15头牛吃10天。由寒冷导致的原因占去10头牛吃的草,所以可供5头牛吃10天。
例3:
自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼。已知男孩每分钟走20级台阶,女孩每分钟走15级台阶,结果男孩用5分钟到达楼上,女孩用了6分钟到达楼上。问:该扶梯共有多少级台阶?
与前两个题比较,“总的草量”变成了“扶梯的台阶总数”,“草”变成了“台阶”,“牛”变成了“速度”,也可以看成是牛吃草问题。
上楼的速度可以分为两部分:一部分是男、女孩自己的速度,另一部分是自动扶梯的速度。男孩5分钟走了20×5=100(级),女孩6分钟走了15×6=90(级),女孩比男孩少走了100—90=10(级),多用了6—5=1(分钟),说明电梯1分钟走10级。因男孩5分钟到达楼上,他上楼的速度是自己的速度与扶梯的速度之和。所以,扶梯共有(20+10)×5=150(级)
例题4:
一只船有一个漏洞,水以均匀的速度进入船内,发现漏洞时已经进了一些水。如果用12人舀水,3小时舀完。如果只有5个人舀水,要10小时才能舀完。现在要想2小时舀完,需要多少人?
已漏进的水,加上3小时漏进的水,每小时需要(12×3)人舀完,也就是36人用1小时才能舀完。已漏进的水,加上10小时漏进的水,每小时需要(5×10)人舀完,也就是50人用1小时才能舀完。通过比较,我们可以得出1小时内漏进的水及船中已漏进的水。
1小时漏进的水,2个人用1小时能舀完:
(5×10—12×3)÷(10—3)=2
已漏进的水:(12—2)×3=30
已漏进的水加上2小时漏进的水,需34人1小时完成:
30+2×2=34
用2小时来舀完这些水需要17人:34÷2=17(人)
例题5:
有三块草地,面积分别为5,6,和8公顷。草地上的草一样厚,而且长得一样快。第一块草荐地可供11头牛吃10天,第二块草地可供12头牛吃14天。问第三块草地可供19头牛吃多少天?
前几天我们接触的是在同一块草地上,同一个水池中,现在是三块面积不同的草地。为了解决这个问题,只需将三块草地的面积统一起来。即
[5,6,8]=120
这样,第一块5公顷可供11头牛吃10天,120÷5=24,变为120公顷草地可供11×24=264(头)牛吃10天
第二块6公顷可供12头牛吃14天,120÷6=20,变为120公顷草地可供12×20=240(头)牛吃14天。
120÷8=15。问题变成:120公顷草地可供19×15=285(头)牛吃几天?
因为草地面积相同,可忽略具体公顷数,原题可变为:
一块草地匀速生长,可供264头牛吃10天或供240头牛吃14天, 那么可供285头牛齿及天?即
每天新长出的草:(240×14—264×10)÷(14—10)=180(份)
草地原有草:(264—180)×10=840(份)
可供285头牛吃的时间:840÷(285—180)=8(天)
答:第三块草地可供19头牛吃8天。
H. 我要六年级奥数题100道,不要太容易,要学过的知识,但不要解方程。要有答案。
. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?
2. 有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?
3. 某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少?
4. 一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.
5. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售.两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?
6. 有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?
7. 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间?
8. 甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车.
9. 甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?
10. 今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个.那么最少需要用多少辆载重量为4.5吨的汽车可以一次全部运走集装箱?
小学数学应用题综合训练(02)
11. 师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?
12. 一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的.
13. 一部书稿,甲单独打字要14小时完成,,乙单独打字要20小时完成.如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时.......两人如此交替工作.那么打完这部书稿时,甲乙两人共用多少小时?
14. 黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多?
15. 一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米?
16. 甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨?
17. 甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478.那么甲、乙丙三数之和是几?
18. 一辆车从甲地开往乙地.如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达.甲、乙两地之间的距离是多少千米?
19. 某校参加军训队列表演比赛,组织一个方阵队伍.如果每班60人,这个方阵至少要有4个班的同学参加,如果每班70人,这个方阵至少要有3个班的同学参加.那么组成这个方阵的人数应为几人?
20. 甲、乙、丙三台车床加工方形和圆形的两种零件,已知甲车床每加工3个零件中有2个是圆形的;乙车床每加工4个零件中有3个是圆形的;丙车床每加工5个零件中有4个是圆形的.这天三台车床共加工了58个圆形零件,而加工的方形零件个数的比为4:3:3,那么这天三台车床共加工零件几个?
小学数学应用题综合训练(03)
21. 圈金属线长30米,截取长度为A的金属线3根,长度为B的金属线5根,剩下的金属线如果再截取2根长度为B的金属线还差0.4米,如果再截取2根长度为A的金属线则还差2米,长度为A的等于几米?
22. 某公司要往工地运送甲、乙两种建筑材料.甲种建筑材料每件重700千克,共有120件,乙种建筑材料每件重900千克,共有80件,已知一辆汽车每次最多能运载4吨,那么5辆相同的汽车同时运送,至少要几次?
23. 从王力家到学校的路程比到体育馆的路程长1/4,一天王力在体育馆看完球赛后用17分钟的时间走到家,稍稍休息后,他又用了25分钟走到学校,其速度比从体育馆回来时每分钟慢15米,王力家到学校的距离是多少米?
24. 师徒两人合作完成一项工程,由于配合得好,师傅的工作效率比单独做时要提高1/10,徒弟的工作效率比单独做时提高1/5.两人合作6天,完成全部工程的2/5,接着徒弟又单独做6天,这时这项工程还有13/30未完成,如果这项工程由师傅一人做,几天完成?
25. 六年级五个班的同学共植树100棵.已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是一、二、三、四、五班.又知一班植的棵数是二、三班植的棵数之和,二班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵?
26. 甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米.乙总共跑了多少千米?
27. 有高度相等的A,B两个圆柱形容器,内口半径分别为6厘米和8厘米.容器A中装满水,容器B是空的,把容器A中的水全部倒入容器B中,测得容器B中的水深比容器高的7/8还低2厘米.容器的高度是多少厘米?
28. 有104吨的货物,用载重为9吨的汽车运送.已知汽车每次往返需要1小时,实际上汽车每次多装了1吨,那么可提前几小时完成.
29. 师、徒二人第一天共加工零件225个,第二天采用了新工艺,师傅加工的零件比第一天增加了24%,徒弟增加了45%,两人共加工零件300个,第二天师傅加工了多少个零件?徒弟加工了几个零件?
30. 奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米.去时用了4天,回来时用了3天,问学校距离百花山多少千米?
小学数学应用题综合训练(04)
31. 某地收取电费的标准是:每月用电量不超过50度,每度收5角;如果超出50度,超出部分按每度8角收费.每月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?
32. 王师傅计划用2小时加工一批零件,当还剩160个零件时,机器出现故障,效率比原来降低1/5,结果比原计划推迟20分钟完成任务,这批零件有多少个?
33. 妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张1.20元.用这些钱买甲种卡要比买乙种卡多8张,买乙种卡要比买丙种卡多买6张.妈妈给了红红多少钱?乙种卡每张多少钱?
34. 一位老人有五个儿子和三间房子,临终前立下遗嘱,将三间房子分给三个儿子各一间.作为补偿,分到房子的三个儿子每人拿出1200元,平分给没分到房子的两个儿子.大家都说这样的分配公平合理,那么每间房子的价值是多少元?
35. 小明和小燕的画册都不足20本,如果小明给小燕A本,则小明的画册就是小燕的2倍;如果小燕给小明A本,则小明的画册就是小燕的3倍.原来小明和小燕各有多少本画册?
36. 有红、黄、白三种球共160个.如果取出红球的1/3,黄球的1/4,白球的1/5,则还剩120个;如果取出红球的1/5,黄球的1/4,白球的1/3,则剩116个,问(1)原有黄球几个?(2)原有红球、白球各几个?
37. 爸爸、哥哥、妹妹三人现在的年龄和是64岁,当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁.当哥哥的年龄是妹妹年龄的2倍时,爸爸是34岁.现在三人的年龄各是多少岁?
38. B在A,C两地之间.甲从B地到A地去送信,出发10分钟后,乙从B地出发去送另一封信.乙出发后10分钟,丙发现甲乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间?
39. 甲、乙两个车间共有94个工人,每天共加工1998竹椅.由于设备和技术的不同,甲车间平均每个工人每天只能生产15把竹椅,而乙车间平均每个工人每天可以生产43把竹椅.甲车间每天竹椅产量比乙车间多几把?
40. 甲放学回家需走10分钟,乙放学回家需走14分钟.已知乙回家的路程比甲回家的路程多1/6,甲每分钟比乙多走12米,那么乙回家的路程是几米?
小学数学应用题综合训练(05)
41. 某商品每件成本72元,原来按定价出售,每天可售出100件,每件利润为成本的25%,后来按定价的90%出售,每天销售量提高到原来的2.5倍,照这样计算,每天的利润比原来增加几元?
42. 甲、乙两列火车的速度比是5:4.乙车先发,从B站开往A站,当走到离B站72千米的地方时,甲车从A站发车往B站,两列火车相遇的地方离A,B两站距离的比是3:4,那么A,B两站之间的距离为多少千米?
43. 大、小猴子共35只,它们一起去采摘水蜜桃.猴王不在的时候,一只大猴子一小时可采摘15千克,一只小猴子一小时可采摘11千克.猴王在场监督的时候,每只猴子不论大小每小时都可以采摘12千克.一天,采摘了8小时,其中只有第一小时和最后一小时有猴王在场监督,结果共采摘4400千克水蜜桃.在这个猴群中,共有小猴子几只?
44. 某次数学竞赛设一、二等奖.已知(1)甲、乙两校获奖的人数比为6:5.(2)甲、乙来年感校获二等奖的人数总和占两校获奖人数总和的60%.(3)甲、乙两校获二等奖的人数之比为5:6.问甲校获二等奖的人数占该校获奖总人数的百分数是几?
45. 已知小明与小强步行的速度比是2:3,小强与小刚步行的速度比是4:5.已知小刚10分钟比小明多走420米,那么小明在20分钟里比小强少走几米?
46. 加工一批零件,原计划每天加工15个,若干天可以完成.当完成加工任务的3/5时,采用新技术,效率提高20%.结果,完成任务的时间提前10天,这批零件共有几个?
47. 甲、乙二人在400米的圆形跑道上进行10000米比赛.两人从起点同时同向出发,开始时甲的速度为8米/秒,乙的速度为6米/秒,当甲每次追上乙以后,甲的速度每秒减少2米,乙的速度每秒减少0.5米.这样下去,直到甲发现乙第一次从后面追上自己开始,两人都把自己的速度每秒增加0.5米,直到终点.那么领先者到达终点时,另一人距离终点多少米?
48. 小明从家去学校,如果他每小时比原来多走1.5千米,他走这段路只需原来时间的4/5;如果他每小时比原来少走1.5千米,那么他走这段路的时间就比原来时间多几分几之?
49. 甲、乙、丙、丁现在的年龄和是64岁.甲21岁时,乙17岁;甲18岁时,丙的年龄是丁的3倍.丁现在的年龄是几岁?
50. 加工一批零件,原计划每天加工30个.当加工完1/3时,由于改进了技术,工作效率提高了10%,结果提前了4天完成任务.问这批零件共有几个?
小学数学应用题综合训练(06)
51. 自动扶梯以均匀的速度向上行驶,一男孩与一女孩同时从自动扶梯向上走,男孩的速度是女孩的2倍,已知男孩走了27级到达扶梯的顶部,而女孩走了18级到达顶部.问扶梯露在外面的部分有多少级?
52. 两堆苹果一样重,第一堆卖出2/3,第二堆卖出50千克,如果第一堆剩下的苹果比第二堆剩下的苹果少,那么两堆剩下的苹果至少有多少千克?
53. 甲、乙两车同时从A地出发,不停的往返行驶于A、B两地之间.已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都杂途中C地,甲车的速度是乙车的几倍?
54. 一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行8千米,因此第二小时比第一小时多行6千米.求甲、乙两地的距离.
55. 甲、乙两车分别从A、B两地出发,并在A,B两地间不断往返行驶.已知甲车的速度是15千米/小时,甲、乙两车第三次相遇地点与第四次相遇地点相差100千米.求A、B两地的距离.
56. 某人沿着向上移动的自动扶梯从顶部朝底下用了7分30秒,而他沿着自动扶梯从底朝上走到顶部只用了1分30秒.如果此人不走,那么乘着扶梯从底到顶要多少时间?如果停电,那么此人沿扶梯从底走到顶要多少时间?
57. 甲、乙两个圆柱体容器,底面积比为5:3,甲容器水深20厘米,乙容器水深10厘米.再往两个容器中注入同样多的水,使得两个容器中的水深相等.这时水深多少厘米?
58. A、B两地相距207千米,甲、乙两车8:00同时从A地出发到B地,速度分别为60千米/小时,54千米/小时,丙车8:30从B地出发到A地,速度为48千米/小时.丙车与甲、乙两车距离相等时是几点几分?
59. 一个长方形的周长是130厘米,如果它的宽增加1/5,长减少1/8,就得到一个相同周长的新长方形.求原长方形的面积.
60. 有一长方形,它的长与宽的比是5:2,对角线长29厘米,求这个长方形的面积.
小学数学应用题综合训练(07)
61. 有一个果园,去年结果的果树比不结果的果树的2倍还多60棵,今年又有160棵果树结了果,这时结果的果树正好是不结果的果树的5倍.果园里共有多少棵果树?
62. 小明步行从甲地出发到乙地,李刚骑摩托车同时从乙地出发到甲地.48分钟后两人相遇,李刚到达甲地后马上返回乙地,在第一次相遇后16分钟追上小明.如果李刚不停地往返于甲、乙两地,那么当小明到达乙地时,李刚共追上小明几次?
63. 同样走100米,小明要走180步,父亲要走120步.父子同时同方向从同一地点出发,如果每走一步所用的时间相同,那么父亲走出450米后往回走,还要走多少步才能遇到小明?
64. 一艘轮船在两个港口间航行,水速为6千米/小时,顺水航行需要4小时,逆水航行需要7小时,求两个港口之间的距离.
65. 有甲、乙、丙三辆汽车,各以一定的速度从A地开往B地,乙比丙晚出发10分钟,出发后40分钟追上丙;甲比乙又晚出发10分钟,出发后60分钟追上丙,问甲出发后几分钟追上乙?
66. 甲、乙合作完成一项工作,由于配合的好,甲的工作效率比单独做时提高1/10,乙的工作效率比单独做时提高1/5,甲、乙合作6小时完成了这项工作,如果甲单独做需要11小时,那么乙单独做需要几小时?
67. A、B、C、D、E五名学生站成一横排,他们的手中共拿着20面小旗.现知道,站在C右边的学生共拿着11面小旗,站在B左边的学生共拿着10面小旗,站在D左边的学生共拿着8面小旗,站在E左边的学生共拿着16面小旗.五名学生从左至右依次是谁?各拿几面小旗?
68. 小明在360米长的环行的跑道上跑了一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米,问他后一半路程用了多少时间?
69. 小英和小明为了测量飞驶而过的火车的长度和速度,他们拿了两块秒表,小英用一块表记下火车从他面前通过所花的时间是15秒,小明用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是18秒,已知两根电线杆之间的距离是60米,求火车的全长和速度.
70. 小明从家到学校时,前一半路程步行,后一半路程乘车;他从学校到家时,前1/3时间乘车,后2/3时间步行.结果去学校的时间比回家的时间多20分钟,已知小明从家到学校的路程是多少千米?
小学数学应用题综合训练(08)
71. 数学练习共举行了20次,共出试题374道,每次出的题数是16,21,24问出16,21,24题的分别有多少次?
72. 一个整数除以2余1,用所得的商除以5余4,再用所得的商除以6余1.用这个整数除以60,余数是多少?
73. 少先队员在校园里栽的苹果树苗是梨树苗的2倍.如果每人栽3棵梨树苗,则余2棵;如果每人栽7棵苹果树苗,则少6棵.问共有多少名少先队员?苹果和梨树苗共有多少棵?
74. 某人开汽车从A城到B城要行200千米,开始时他以56千米/小时的速度行驶,但途中因汽车故障停车修理用去半小时,为了按时到达,他必须把速度增加14千米/小时,跑完以后的路程,他修车的地方距离A 城多少千米?
75. 甲、乙两人分别从A、B两地同时出发,相向而行,乙的速度是甲的2/3,两人相遇后继续前进,甲到达B地,乙到达A地立即返回,已知两人第二次相遇的地点距离第一次相遇的地点是3000米,求A、B两地的距离.
76. 一条船往返于甲、乙两港之间,已知船在静水中的速度为9千米/小时,平时逆行与顺行所用时间的比为2:1.一天因下雨,水流速度为原来的2倍,这条船往返共用10小时,问甲、乙两港相距多少千米?
77. 某学校入学考试,确定了录取分数线,报考的学生中,只有1/3被录取,录取者平均分比录取分数线高6分,没有被录取的同学其平均分比录取分数线低15分,所有考生的平均分是80分,问录取分数线是多少分?
78. 一群学生搬砖,如果有12人每人各搬7块,其余的每人搬5块,那么最后余下148块;如果有30人每人各搬8块,其余的每人搬7块,那么最后余下20块.问学生共有多少人?砖有多少块?
79. 甲、乙两车分别从A、B两地同时相向而行,已知甲车速度与乙车速度之比为4:3,C地在A、B之间,甲、乙两车到达C地的时间分别是上午8点和下午3点,问甲、乙两车相遇是什么时间?
80. 一次棋赛,记分方法是,胜者得2分,负者得0分,和棋两人各得1分,每位选手都与其他选手各对局一次,现知道选手中男生是女生的10倍,但其总得分只为女生得分的4.5倍,问共有几名女生参赛?女生共得几分?
小学数学应用题综合训练(09)
81. 有若干个自然数,它们的算术平均数是10,如果从这些数中去掉最大的一个,则余下的算术平均数为9;如果去掉最小的一个,则余下的算术平均数为11,这些数最多有多少个?这些数中最大的数最大值是几?
82. 某班有少先队员35人,这个班有男生23人,这个班女生少先队员比男生非少先队员多几人?
83. 小东计划到周口店参观猿人遗址.如果他坐汽车以40千米/小时的速度行驶,那么比骑车去早到3小时,如果他以8千米/小时的速度步行去,那么比骑车晚到5小时,小东的出发点到周口店有多少千米?
84. 甲、乙两船在相距90千米的河上航行,如果相向而行,3小时相遇,如果同向而行则15小时甲船追上乙船.求在静水中甲、乙两船的速度.
85. 二年级两个班共有学生90人,其中少先队员有71人,一班少先队员占本班人数的75%,二班少先队员占本班人数的5/6.一班少先队员人数比二班少先队员人数多几人?
86. 一个容器中已注满水,有大、中、小三个球.第一次把小球沉入水中,第二次把小球取出,把中球沉入水中,第三次把中球取出,把小球和大球一起沉入水中,现知道每次从容器中溢出水量的情况是:第一次是第二次的1/2,第三次是第二次的1.5倍.求三个球的体积之比.
87. 某人翻越一座山用了2小时,返回用了2.5小时,他上山的速度是3000米/小时,下山的速度是4500米/小时.问翻越这座山要走多少米?
88. 钢筋原材料每根长7.3米,每套钢筋架子用长2.4米、2.1米和1.5米的钢筋各一段.现需要绑好钢筋架子100套,至少要用去原材料多少根?
89. 有一块铜锌合金,其中铜和锌的比2:3.现知道再加入6克锌,熔化后共得新合金36克,新合金中铜和锌的比是多少?
90. 小明通常总是步行上学,有一天他想锻炼身体,前1/3路程快跑,速度是步行速度的4倍,后一段的路程慢跑,速度是步行速度的2倍.这样小明比平时早35分到校,小明步行上学需要多少分钟?
小学数学应用题综合训练(10)
91. 甲、乙、丙三人,甲的年龄比乙的年龄的2倍还大3岁,乙的年龄比丙的年龄的2倍小2岁,三个人的年龄之和是109岁,分别求出甲、乙、丙的年龄.
92. 快车以60千米/小时的速度从甲站向乙站开出,1.5小时后,慢车以40千米/小时的速度从乙站行甲站开出,.两车相遇时,相遇点离两站的中点70千米.甲、乙两站相距多少千米?
93. 甲、乙两车先后离开学校以相同的速度开往博物馆,已知8:32分甲车与学校的距离是乙车与学校距离的3倍,8:39分甲车与学校的距离是乙车与学校距离的2倍,求甲车离开学校的时间.
94. 有一个工作小组,当每个工人在各自的工作岗位上工作时,7小时可生产一批零件,如果交换工人甲、乙的岗位,其他人不变,那么可提前1小时,完成这批零件,如果交换工人丙、丁的岗位,其他人不变,也可提前1小时,问如果同时交换甲与乙、丙与丁的岗位,其他人不变,那么完成这批零件需多长的时间.
95. 用10块长7厘米、宽5厘米、高3厘米的长方体积木,拼成一个长方体,这个长方体的表面积最小是多少?
96. 公圆只售两种门票:个人票每张5元,10人一张的团体票每张30元,购买10张以上的团体票的可优惠10%.(1)甲单位45人逛公园,按以上规定买票,最少应付多少钱?(2)乙单位208人逛公园,按以上的规定买票,最少应付多少钱?
97. 甲、乙、丙三人,参加一次考试,共得260分,已知甲得分的1/3,乙得分的1/4与丙得分的一半减去22分都相等,那么丙得分多少?
98. 一项工程,甲、、乙两人合作4天后,再由乙单独做5天完成,已知甲比乙每天多完成这项工程的1/30.甲、乙单独做这项工程各需要几天?
99. 有长短两支蜡烛,(相同时间中燃烧长度相同),它们的长度之和为56厘米,将它们同时点燃一段时间后,长蜡烛同短蜡烛点燃前一样长,这时短蜡烛的长度又恰好是长蜡烛的2/3.点燃前长蜡烛有多长?
100. 一批苹果平均分装在20个筐中,如果每筐多装1/9,可省下几只筐?