㈠ 小学数学课堂如何渗透数学思想方法
数学思想方法是数学知识的精髓,是对数学本质的认识,是知识转化为能力的桥梁,更是数学学习的一种指导思想和普遍的方法。让学生"获得适应未来社会生活和继续学习所必须的数学基本知识以及基本的数学思想方法"是数学课程标准提出的总体目标之一。因此,为了学生的终身可持续发展,作为小学数学教师,我们不仅要重视显性的数学知识教学,还必须要重视数学思想方法的渗透,不断强化数学思想方法教学,提高数学教学质量。
《小学数学课程标准》中明确提出:在小学数学教学中有意识的地向学生传授一些基本数学思想方法可以加深学生对数学概念、公式、定理、定律的理解,是提高学生数学能力和思维品质的重要手段。小学数学教材中蕴含了很多的数学思想方法,如符号化思想、分类思想、转化思想、统计思想、划归思想等等,学生在学习过程中不单单是学习知识和反复操练,还有一直贯穿始终的数学思想方法。如果说数学教学中知识和技能是一条明显,那么蕴含在其中的数学思想方法就是一条暗线。因此,在小学数学教学中教师注意数学思想方法的渗透,要有目的、有选择、适时地进行渗透,提高数学思想方法教学,让学生掌握好数学思想方法,为学生的可持续发展打下良好的基础。
一、小学数学教学中数学思想方法有效渗透的特点
数学思想方法是以数学知识为载体并对数学知识的进一步概括和提炼,因此它是一种隐性的知识,它需要学生在不断解决问题的实践中通过反复体验去理解和掌握。小学数学教学中有效渗透数学思想方法的特点一般具有:
1.化隐性为显性
在数学教学中数学思想方法隐于知识中,往往只是模糊的表现,在教学中即使直接向学生指出“XX思想”、“XX方法”,也未必能收到好的效果。
如,分数加减法(极限思想)
题1:计算下面各题,并找出得数的规律
题2:应用上面的规律,直接写出下面算式的得数
分析:题目中隐藏着极限的思想,如果继续写下去得数会越来越接近“1”。然而由于学生是第一次接触所以很难体会到其中的极限思想,即使教师向学生指出,他们也不一定就会明白。数学思想方法往往较深的隐藏与知识中,所以教师在教学的应有意识地将这些处于隐性的思想方法显性化,让学生更加清晰的感受到。
2.活动性
教学过程本身就是一个动态的过程,数学思想方法的渗透也应是动态的,需要教师精心设计教学活动,沟通教材与学生的认识,让具有鲜明个性特征的数学思想方法在动态的课堂教学活动中得以更好的呈现。
(1)操作活动
教育家苏霍姆林斯基说过:“儿童的智慧在他们的指尖上。”因为通过动手操作可以促进学生的思维发展。因此小学数学教学可以结合小学生好动、好奇的特点,通过适度的操作活动调动学生多种感官参与认知活动,培养学生的学习能力,促进学生数学思想方法的学习。
如,《圆的面积》教学时,引导学生把圆平均分成8、16、32……等份,然后让学生自己动手拼成一个我们认识的图形。通过这样一个活动性的过程让学生充分体会到把圆平均分成的分数越多,所拼出的图形就越接近长方形,从而让学生进一步体会到极限思想。
(2)观察活动
感知是人们认识事物本质的开端,是人们思维活动的窗户,是对一个刺激做出理解并确定意义的过程。小学生思维仍以形象思维为主,并逐渐由形象思维向抽象思维过渡,在这个阶段中观察是学生发现问题、提出问题、学习新知识的重要途径。在小学数学教学中组织学生进行有序的观察可以让学生更好掌握数学思想方法。
如,仍以《圆的面积》教学为例,在学生动手操作把圆平均分成8、16、32……等份以后,拼成一个近似的长方形时,引导学生进行有序的观察比较,让学生思考拼成的平行四边形与我们已学过的哪个图形越来越接近,再观察这个拼成的图形和原来的圆有什么关系,然后逐步引导学生通过观察得出圆面积的计算公式。
3、加强语言交流活动
爱因斯坦说过:“一个人智力的发展和它形成概念的方法,在很大程度上取决于语言的发展”。小学生由于年龄的小、经验少,他们的语言区域较为狭窄,数学语言就更是缺乏了,而且每个学生的观察角度也可能不同、思考的结果也有不同。因此小学数学教学中要多注意引导学生观察和说,操作与说,听与说相结合,通过这样的教学更好地促进学生对数学思想方法的学习。
二、小学数学教学中思想方法的渗透策略
1、充分挖掘教材中的数学思想方法
由于数学思想方法是一种隐性的本质的知识内容,所以教师在进行教学前必须要深入的钻研教材,充分挖掘教材中所蕴含的思想方法。教师不仅要认真备课,有意识地在教学中渗透数学思想方法,还要做到在平时教学中处处留心,这样会发现很多蕴含在教学内容中的数学思想方法。
2、有目的、有意识地渗透有关数学思想方法
作为小学数学教师在进行数学思想方法教学时,首先我们必须要明确教材中所有的数学思想方法,其次是要对某些重要的思想方法进行分解、细化、让其更具层次性,更加明朗化。这样在教学中教师就可以在具体的教学内容中考虑如何介绍、渗透、突出数学思想方法,以及学生应该是了解、理解、掌握、还是灵活运用这些数学思想方法。
3、有计划、有步骤地渗透数学思想方法
学生的学习时一个循序渐进的过程。因此,在进行教学设计的时候一定要尊重学生的认知规律,要有计划、有步骤地渗透数学思想方法。
(1)反复渗透
首先学生对数学思想方法的理解和掌握是从个别到一般、从具体到抽象、从感性到理性、从低级到高级的认识过程,再者和表层知识相比数学思想方法的抽象概括性更强,因此学生这个认识的过程具有反复性特点。这就是说在小学数学教学中我们不能急功近利,而应遵循反复性原则,一步一步、长期不懈的反复渗透。
如,一年级时就渗透了符号化思想,让学生学会了用原点表示事物的数量,用“()”表示未知数,画“○”的方法进行统计等等,经过如此的反复渗透,不仅可以强化学生对数学思想方法的理解,更促使学生把数学知识有机联系起来。
(2)循序渐进
数学思想方法学习如同数学学习过程一样,是一个认知过程,经历从感性到理性,从领会到形成,从巩固到应用发展的过程,所以在教学中教师可以按照“教师引导――逐步渗透――适时总结,等待顿悟”这一方法,结合教学内容设计教学过程,贯彻循序渐进的原则,由表及里、循序渐进、逐步渗透、结合不同阶段教学内容的知识,有意识的反复渗数学思想方法,螺旋式地再现数学思想方法,切实提高学生的数学素养。
如,数形结合这一数学思想方法,一年级学习“10以内加减法”的时候就会遇到这一思想方法,而到了三年级学习“和倍应用题”时则以线段图的方式出现数形结合,以便学生可以更快、更好的理解题意和解决问题,等到了高年级的时候再求图形的面积、体积以及解答复杂的数学问题时,就会经常的用到这一数学思想方法,而且对提高学生的问题解决能力和思维能力都有很好的促进作用。教学中只有经过循序渐进的渗透才能更加让数学思想方法清晰化,这对学生日后的学习有着非常重要的影响。
三、结束语
如果把数学知识比喻成金子,那么数学思想方法就是“点金术”。数学知识可以记忆一时,而数学思想方法则会永远发挥作用,让我们终身受益,而这才是数学力量的真正所在。因此,我们要从小学起就注重数学思想方法的渗透,为学生的的可持续发展打下良好的基础。
㈡ 如何在小学数学课堂中渗透数学思想,方法课题研究结题报告 百度
数学思想抄,是指现实世界袭的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。数学思想是对数学事实与理论经过概括后产生的本质认识;基本数学思想则是体现或应该体现于基础数学中的具有奠基性、总结性和最广泛的数学思想,它们含有传统数学思想的精华和现代数学思想的基本特征,并且是历史地发展着的。通过数学思想的培养,数学的能力才会有一个大幅度的提高。掌握数学思想,就是掌握数学的精髓。
㈢ 小学数学思想方法在课堂教学中的渗透
360问答
如何在小学数学课堂教学中渗透数学思想方法
sun1432 LV9
2015-05-28
满意答案
uwkgly
LV10
推荐于2016-06-17
1.渗透数学思想方法的本质
所谓数学思想,是指现实世界的空间形式和数量关系反映到人的意识之中,经过思维活动而产生的结果,它是对数学事实与数学理论的本质认识。所谓数学方法,是指解决数学具体问题时所采用的方式、途径和手段,也可以说是解决数学问题的策略和手段。数学思想是数学方法的灵魂,是数学方法的理论基础,数学方法是数学思想的表现形式和得以实现的手段,由于小学数学是最基本的数学知识,内容简单,所蕴涵的思想和方法很难截然分开,其本质往往是一致的,因此在小学数学教学中可以把数学思想和方法看成一个整体,称之为数学思想方法。
学习数学的目的“就意味着解题”,解题关键在于找到合适的解题思路,数学思想方法就是帮助构建解题思路的指导思想。它对学生以后的学习、生活和工作长期起作用,并使其终生受益。因此,在教学中向学生渗透一些基本的数学思想方法,是数学教学改革的新视角,是培养学生分析问题和解决问题的重要途径,也是促进学生数学思维能力发展的重要方法。
2.及时渗透数学思想方法
为了更好地在小学数学教学中渗透数学思想方法,教师不仅要对教材进行研究,潜心挖掘,而且还要讲究思想渗透的手段和方法。
在践行教学中,我结合教材内容,及时向学生渗透数学思想方法:
(1)在新授知识课中渗透。如在《三角形分类》一课中,先给学生提供三角形学具,然后放手让学生尝试对三角形进行分类,学生从关注三角形的角与边的特征入手,借助学具看一看、比一比、量一量、分一分、寻找特征、抽象共性,在比较中将具有相同特征的三角形归为一类,在分类中抽象出图形的共同特征。这样的教学,学生经历了三角形分类的过程,渗透了分类、集合的数学思想。
(2)在知识的形成过程中渗透。如概念的形成过程,结论的推导过程等,这些都是向学生渗透数学思想和方法的极好机会。例如,在“面积与面积单位”一课教学中,当学生无法直接比较两个图形面积的大小时,引进“小方块”,并把它一个一个地铺在被比较的两个图形上,这样,不仅比较出了两个图形的大小,而且,使两个图形的面积都得到了“量化”。使形的问题转化为数的问题。在这一过程中,学生亲身体验到“小方块”所起的作用。接着又通过“小方块”大小必须统一的教学过程,使学生深刻地认识到:任何量的量化都必须有一个标准,而且标准要统一。很自然地渗透了“单位”思想。
(3)在问题的解决过程中渗透。如:教学“鸡兔同笼”这一课时,在解决问题的过程中,用图表、课件展示的方法让学生逐步领会“假设”这种策略的奥妙所在。如教学“梯形面积”这一单元之后,我及时帮助学生依靠梯形面积的推导过程回忆平行四边形的面积、三角形的面积公式的推导方法,使学生能清楚地意识到:“转化”是解决问题的有效方法。
3.提炼和运用数学思想方法
渗透数学思想方法的教学,不仅是为了指导学生有效地运用数学知识、探寻解题的方向和入口,更是对培养人的思维素质有着特殊不可替代的意义。在教学中,通过数学思想方法的广泛应用,让学生从主观上重视数学思想方法的学习,进而增强自觉提炼数学思想方法的意识。教师对习题的设计也应该从数学思想方法的角度加以考虑,尽量多安排一些能使各种学习水平的学生深入浅出地作出解答的习题,它既有具体的方法或步骤,又能从一类问题的解法去思考或从思想观点上去把握,形成解题方法,进而深化为数学思想。例如;在教学完多边形面积的计算以后,可以由易到难,出几题运用移动、割补等方法解决的实际问题,这样做不仅可以让学生领会到转化的数学思想方法,对提高学生的学习兴趣也大有好处。让学生在操作中掌握,在掌握后领悟,使数学思想方法在知识能力的形成过程中共同生成。
重视加强对学生进行数学思想方法的渗透不但有利于提高课堂教学效率,而且有利于提高学生的数学文化素养和思维能力。因此,在教学过程中,要有机地结合数学知识的内容,做到持之以恒、循序渐进和反复训练,才能真正有效地对学生进行数学思想方法的渗透。
㈣ 浅谈如何在小学数学课堂教学中渗透数学思想方法
数学课程标准总体目标的第一条就明确提出:“让学生获得适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能。”美国教育心理家布鲁纳也指出:掌握基本的数学思想方法,能使数学更易于理解和更利于记忆,领会基本数学思想和方法是通向迁移大道的“光明之路”。在人的一生中,最有用的不仅是数学知识,更重要的是数学的思想方法和数学的意识,因此数学的思想方法是数学的灵魂和精髓。掌握科学的数学思想方法对提升学生的思维品质,对数学学科的后继学习,对其它学科的学习,乃至对学生的终身发展都具有十分重要的意义。在小学数学教学中,教师有计划、有意识地渗透一些数学思想方法,是实施素质教育,发展学生能力,提高数学能力,减轻学生课业负担的重要举措,在课程数学改革中有举足轻重的位置。那么,在小学数学教学中,究竟应如何渗透数学思想方法呢?
一、转变观念,重视挖掘数学思想方法。
数学概念、法则、公式、性质等知识都明显地写在教材中,是有“形”的,而数学思想方法却隐含在数学知识体系里,是无“形”的,并且不成体系地散见于教材各章节中。教师讲不讲,讲多讲少,随意性较大,常常因教学时间紧而将它作为一个“软任务”挤掉。对于学生的要求是能领会多少算多少。因此,作为教师首先要更新观念,从思想上不断提高对渗透数学思想方法重要性的认识,把掌握数学知识和渗透数学思想方法同时纳入教学目的,把数学思想方法教学的要求融入备课环节。其次要深入钻研教材,努力挖掘教材中可以进行数学思想方法渗透的各种因素,对于每一章每一节,都要考虑如何结合具体内容进行数学思想方法渗透,渗透哪些数学思想方法,怎么渗透,渗透到什么程度,应有一个总体设计,提出不同阶段的具体教学要求。在小学数学教学中,教师不能仅仅满足于学生获得正确知识的结论,而应该着力于引导学生对知识形成过程的理解。让学生逐步领会蕴涵其中的数学思想方法。也就是说,对于数学教学重视过程与重视结果同样重要。教师要站在数学思想方面的高度,对其教学内容,用恰当的语言进行深入浅出的分析,把隐蔽在知识内容背后的思想方法提示出来。例如,圆的认识概念教学,可以按下列程序进行:(1)由实物抽象为几何图形,建立圆的表象;(2)在表象的基础上,指出圆的半径、直径及其特点,使学生对圆有一个更深层次的认识;(3)利用圆的各种表象,分析其本质特征,抽象概括为用文字语言表达的圆的概念;(4)使圆的有关概念符号化。显然,这一数学过程,既符合学生由感知到表象再到概念的认知规律,又能让学生从中体会到教师是如何应用数学思想法,对有联系的材料进行对比的,对空间形式进行抽象概括的,对教学概念进行形式化的。
二、 相机而动,及时引入数学思想方法。
为了更好地在小学数学教学中渗透数学思想方法,教师不仅要对教材进行研究,潜心挖掘,而且还要讲究思想渗透的手段和方法。小学阶段,数学思想方法的渗透一般常用直观法、问题法、反复法和剖析法。所谓直观法就是以图表形式将数学思想方法直观化、形象化。直观法的观点是能将高度抽象的数学思想方法变成学生容易感知具体材料,特别是生动有趣的图画给学生留下鲜明的印象。问题法是指学生在教师的启发下,在探究问题答案的过程中,通过回顾、思考、总结,逐步领会数学问题的规律性,进而加深对解题方法、技巧的认识。反复法是指通过同一类情景的多次出现,让学生持续接受某一数学思想方法的熏陶。剖析法是解剖典型的范例,从方法论的角度用儿童能理解的数学语言去描述数学现象,解释数学规律。在教学过程中,教师应掌握方法,不失时机的向学生渗透数学思想方法。教师可以通过以下途径渗透:(1)在知识的形成过程中渗透。如概念的形成过程,结论的推导过程等,都是向学生渗透数学思想和方法,训练思维,培养能力的极好机会。(2)在问题的解决过程中渗透。如:教学“倒过来推想” 这一课时,在解决问题的过程中,用图表、摘录条件等方法让学生逐步领会“倒过来推想”这种策略的奥妙所在。(3)在复习小结中渗透。在章节小结、复习的数学教学中,我们要注意从纵横两个方面,总结复习数学思想与方法,使师生都能体验到领悟数学思想,运用数学方法,提高训练效果,减轻师生负担,走出题海误区的轻松愉悦之感。如教学完“圆的认识”这一单元之后,可及时帮助学生依靠圆的面积的推导过程回忆多边形面积公式的推导方法,使学生能清楚地意识到:“转化”是解决问题的有效方法。(4)在数学讲座等教学活动中渗透。数学讲座是一种课外教学活动形式,它不仅为广大学生所喜爱,而且是数学教师普遍选用的数学活动方式。特别是在数学讲座等活动中适当渗透数学思想和方法,给数学教学带来了生机,使过去那死水般的应试题海教学一改容颜,焕发了青春,充满了活力。
三、千锤百炼——自觉运用数学思想方法。
数学思想方法的教学,不仅是为了指导学生有效地运用数学知识、探寻解题的方向和入口,更是对培养人的思维素质有着特殊不可替代的意义。它在新授中属于“隐含、渗透”阶段,在练习与复习中进入明确、系统的阶段,也是数学思想方法的获得过程和应用过程。这是一个从模糊到清晰的飞跃。而这样的飞跃,依靠着系统的分析与解题练习来实现。学生做练习,不仅对已经掌握的数学知识以及数学思想方法会起到巩固和深化的作用,而且还会从中归纳和提炼出新的数学思想方法。数学思想方法的教学过程首先是从模仿开始的。学生按照例题师范的程序与格式解答和例题相同类型的习题,实际上是数学思想方法的机械运用。此时,并不能肯定学生已领会了所用的数学思想方法,只当学生将它用于新的情景,解决其他有关的问题并有创意时,才能肯定学生对这一教学本质、数学规律有了深刻的认识。
我们知道,对于学习者来说,最好的学习效果是主动参与,亲自发现,数学思想方法的学习也不例外。在教学中,通过数学思想方法的广泛应用,让学生从主观上重视数学思想方法的学习,进而增强自觉提炼数学思想方法的意识。教师对习题的设计也应该从数学思想方法的角度加以考虑,尽量多安排一些能使各种学习水平的学生深入浅出地作出解答的习题,它既有具体的方法或步骤,又能从一类问题的解法去思考或从思想观点上去把握,形成解题方法,进而深化为数学思想。如在教学完圆环面积的计算以后,可以由易到难,出几题运用移动、割补等方法解决的实际问题,这样做不仅可以让学生领会到转化的数学思想方法,对提高学生的学习兴趣也大有好处。让学生在操作中掌握,在掌握后领悟,使数学思想方法在知识能力的形成过程中共同生成。
数学思想方法是一项系统工程,受诸多因素的影响和制约。我们小学数学教师只有重视对数学思想方法的学习研究,探讨其教学规律,才能适应课程教学改革需要。当然应该看到,数学思想方法的渗透具有长期性、反复性。对学生进行数学思想方法的渗透必定要经历一个循环往复、螺旋上升的过程,往往是几种思想方法交织在一起,在教学过程中教师要依据具体情况,在某一段时间内重点渗透与明确一种数学思想方法,这样反复训练,才能使学生真正地有所领悟。
㈤ 如何在小学课堂中有效渗透数学思想方法
作为一名小学教师,每天的课堂教学我们总是在有意或无意的渗透着数学思想方法。美国教育心理家布鲁纳指出:掌握基本的数学思想方法,能使数学更易于理解和更利于记忆,领会基本数学思想和方法是通向迁移大道的“光明之路”。在人的一生中,最有用的不仅是数学知识,更重要的是数学的思想方法和数学的意识,因此数学的思想方法是数学的灵魂和精髓。掌握科学的数学思想方法对提升学生的思维品质,对数学学科的后继学习,对其它学科的学习,乃至对学生的终身发展都具有十分重要的意义。在小学数学教学中,教师有计划、有意识地渗透一些数学思想方法非常重要。下面我就谈谈在小学数学教学中,我是如何渗透数学思想方法:
一、改变应试教育观念,创新数学思想方法。
数学思想方法隐含在数学知识体系里,是无“形”的,而数学概念、法则、公式、性质等知识都明显地写在教材中,是有“形”的。作为教师首先要改变应试教育观念,从思想上不断提高对渗透数学思想方法重要性的认识,把掌握数学知识和渗透数学思想方法同时纳入教学目的,把数学思想方法教学的要求融入备课环节。其次要深入钻研教材,努力挖掘教材中可以进行数学思想方法渗透的各种因素,对于每一章每一节,都要考虑如何结合具体内容进行数学思想方法渗透,渗透哪些数学思想方法,怎么渗透,渗透到什么程度,应有一个总体设计,提出不同阶段的具体教学要求。在小学数学教学中,教师不能仅仅满足于学生获得正确知识的结论,而应该着力于引导学生对知识形成过程的理解。让学生逐步领会蕴涵其中的数学思想方法。也就是说,对于数学教学重视过程与重视结果同样重要。教师要站在数学思想方面的高度,对其教学内容,用恰当的语言进行深入浅出的分析,把隐蔽在知识内容背后的思想方法提示出来。例如,长方体和正方体的认识概念教学,可以按下列程序进行:(1)由实物抽象为几何图形,建立长方体和正方体的表象;(2)在表象的基础上,指出长方体和正方体特点,使学生对长方体和正方体有一个更深层次的认识;(3)利用长方体和正方体的各种表象,分析其本质特征,抽象概括为用文字语言表达的长方体和正方体的概念;(4)使长方体和正方体的有关概念符号化。显然,这一数学过程,既符合学生由感知到表象,再到概念的认知规律,又能让学生从中体会到教师是如何应用数学思想方法,对有联系的材料进行对比的,对空间形式进行抽象概括的,对教学概念进行形式化的。
二、课堂教学中及时渗透数学思想方法。
为了更好地在小学数学教学中渗透数学思想方法,教师不仅要对教材进行研究,潜心挖掘,而且还要讲究思想渗透的手段和方法。在教学过程中,我经常通过以下途径及时向学生渗透数学思想方法:(1)在知识的形成过程中渗透。如概念的形成过程,结论的推导过程等,这些都是向学生渗透数学思想和方法的极好机会。例如量的计量教学,首要问题是要合理引入计量单位。作为课本不可能花大气力去阐述这个过程。但是作为教师根据教学的实际情况,适当地展示它的简单过程和所运用的思想方法,有利于培养学生的创造性思维品质和为追求真理而勇于探索的精神。例如,在“面积与面积单位”一课教学中,当学生无法直接比较两个图形面积的大小时,引进“小方块”,并把它一个一个地铺在被比较的两个图形上,这样,不仅比较出了两个图形的大小,而且,使两个图形的面积都得到了“量化”。使形的问题转化为数的问题。在这一过程中,学生亲身体验到“小方块”所起的作用。接着又通过“小方块”大小必须统一的教学过程,使学生深刻地认识到:任何量的量化都必须有一个标准,而且标准要统一。很自然地渗透了“单位”思想。(2)在问题的解决过程中渗透。如:教学“鸡兔同笼” 这一课时,在解决问题的过程中,用图表、课件展示的方法让学生逐步领会“假设”这种策略的奥妙所在。(3)在复习小结中渗透。在章节小结、复习的数学教学中,我们要注意从纵横两个方面,总结复习数学思想与方法,使师生都能体验到领悟数学思想,运用数学方法,提高训练效果,减轻师生负担,走出题海误区的轻松愉悦之感。如教学 “梯形面积”这一单元之后,我及时帮助学生依靠梯形面积的推导过程回忆平行四边形的面积、三角形的面积公式的推导方法,使学生能清楚地意识到:“转化”是解决问题的有效方法。
三、让学生学会自觉运用数学思想方法。
数学思想方法的教学,不仅是为了指导学生有效地运用数学知识、探寻解题的方向和入口,更是对培养人的思维素质有着特殊不可替代的意义。它在新授中属于“隐含、渗透”阶段,在练习与复习中进入明确、系统的阶段,也是数学思想方法的获得过程和应用过程。这是一个从模糊到清晰的飞跃。而这样的飞跃,依靠着系统的分析与解题练习来实现。学生做练习,不仅对已经掌握的数学知识以及数学思想方法会起到巩固和深化的作用,而且还会从中归纳和提炼出新的数学思想方法。数学思想方法的教学过程首先是从模仿开始的。学生按照例题师范的程序与格式解答和例题相同类型的习题,实际上是数学思想方法的机械运用。此时,并不能肯定学生已领会了所用的数学思想方法,只当学生将它用于新的情景,解决其他有关的问题并有创意时,才能肯定学生对这一教学本质、数学规律有了深刻的认识。
我们知道,最好的学习效果是主动参与,亲自发现,数学思想方法的学习也不例外。在教学中,通过数学思想方法的广泛应用,让学生从主观上重视数学思想方法的学习,进而增强自觉提炼数学思想方法的意识。教师对习题的设计也应该从数学思想方法的角度加以考虑,尽量多安排一些能使各种学习水平的学生深入浅出地作出解答的习题,它既有具体的方法或步骤,又能从一类问题的解法去思考或从思想观点上去把握,形成解题方法,进而深化为数学思想。例如;在教学完多边形面积的计算以后,可以由易到难,出几题运用移动、割补等方法解决的实际问题,这样做不仅可以让学生领会到转化的数学思想方法,对提高学生的学习兴趣也大有好处。让学生在操作中掌握,在掌握后领悟,使数学思想方法在知识能力的形成过程中共同生成。
我们小学数学教师只有重视对数学思想方法的学习研究,探讨其教学规律,才能适应新课改的需要。数学思想方法的渗透具有长期性、反复性。对学生进行数学思想方法的渗透必定要经历一个循环往复、螺旋上升的过程,往往是几种思想方法交织在一起,在教学过程中教师要依据具体情况,有效进行数学思想方法的渗透。
㈥ 如何在课堂教学中有效渗透数学思想方法的
作为一名小学教师,每天的课堂教学我们总是在有意或无意的渗透着数学思想方法。美国教育心理家布鲁纳指出:掌握基本的数学思想方法,能使数学更易于理解和更利于记忆,领会基本数学思想和方法是通向迁移大道的“光明之路”。在人的一生中,最有用的不仅是数学知识,更重要的是数学的思想方法和数学的意识,因此数学的思想方法是数学的灵魂和精髓。掌握科学的数学思想方法对提升学生的思维品质,对数学学科的后继学习,对其它学科的学习,乃至对学生的终身发展都具有十分重要的意义。在小学数学教学中,教师有计划、有意识地渗透一些数学思想方法非常重要。下面我就谈谈在小学数学教学中,我是如何渗透数学思想方法:
一、改变应试教育观念,创新数学思想方法。
数学思想方法隐含在数学知识体系里,是无“形”的,而数学概念、法则、公式、性质等知识都明显地写在教材中,是有“形”的。作为教师首先要改变应试教育观念,从思想上不断提高对渗透数学思想方法重要性的认识,把掌握数学知识和渗透数学思想方法同时纳入教学目的,把数学思想方法教学的要求融入备课环节。其次要深入钻研教材,努力挖掘教材中可以进行数学思想方法渗透的各种因素,对于每一章每一节,都要考虑如何结合具体内容进行数学思想方法渗透,渗透哪些数学思想方法,怎么渗透,渗透到什么程度,应有一个总体设计,提出不同阶段的具体教学要求。在小学数学教学中,教师不能仅仅满足于学生获得正确知识的结论,而应该着力于引导学生对知识形成过程的理解。让学生逐步领会蕴涵其中的数学思想方法。也就是说,对于数学教学重视过程与重视结果同样重要。教师要站在数学思想方面的高度,对其教学内容,用恰当的语言进行深入浅出的分析,把隐蔽在知识内容背后的思想方法提示出来。例如,长方体和正方体的认识概念教学,可以按下列程序进行:(1)由实物抽象为几何图形,建立长方体和正方体的表象;(2)在表象的基础上,指出长方体和正方体特点,使学生对长方体和正方体有一个更深层次的认识;(3)利用长方体和正方体的各种表象,分析其本质特征,抽象概括为用文字语言表达的长方体和正方体的概念;(4)使长方体和正方体的有关概念符号化。显然,这一数学过程,既符合学生由感知到表象,再到概念的认知规律,又能让学生从中体会到教师是如何应用数学思想方法,对有联系的材料进行对比的,对空间形式进行抽象概括的,对教学概念进行形式化的。
二、课堂教学中及时渗透数学思想方法。
为了更好地在小学数学教学中渗透数学思想方法,教师不仅要对教材进行研究,潜心挖掘,而且还要讲究思想渗透的手段和方法。在教学过程中,我经常通过以下途径及时向学生渗透数学思想方法:(1)在知识的形成过程中渗透。如概念的形成过程,结论的推导过程等,这些都是向学生渗透数学思想和方法的极好机会。例如量的计量教学,首要问题是要合理引入计量单位。作为课本不可能花大气力去阐述这个过程。但是作为教师根据教学的实际情况,适当地展示它的简单过程和所运用的思想方法,有利于培养学生的创造性思维品质和为追求真理而勇于探索的精神。例如,在“面积与面积单位”一课教学中,当学生无法直接比较两个图形面积的大小时,引进“小方块”,并把它一个一个地铺在被比较的两个图形上,这样,不仅比较出了两个图形的大小,而且,使两个图形的面积都得到了“量化”。使形的问题转化为数的问题。在这一过程中,学生亲身体验到“小方块”所起的作用。接着又通过“小方块”大小必须统一的教学过程,使学生深刻地认识到:任何量的量化都必须有一个标准,而且标准要统一。很自然地渗透了“单位”思想。(2)在问题的解决过程中渗透。如:教学“鸡兔同笼” 这一课时,在解决问题的过程中,用图表、课件展示的方法让学生逐步领会“假设”这种策略的奥妙所在。(3)在复习小结中渗透。在章节小结、复习的数学教学中,我们要注意从纵横两个方面,总结复习数学思想与方法,使师生都能体验到领悟数学思想,运用数学方法,提高训练效果,减轻师生负担,走出题海误区的轻松愉悦之感。如教学 “梯形面积”这一单元之后,我及时帮助学生依靠梯形面积的推导过程回忆平行四边形的面积、三角形的面积公式的推导方法,使学生能清楚地意识到:“转化”是解决问题的有效方法。
三、让学生学会自觉运用数学思想方法。
数学思想方法的教学,不仅是为了指导学生有效地运用数学知识、探寻解题的方向和入口,更是对培养人的思维素质有着特殊不可替代的意义。它在新授中属于“隐含、渗透”阶段,在练习与复习中进入明确、系统的阶段,也是数学思想方法的获得过程和应用过程。这是一个从模糊到清晰的飞跃。而这样的飞跃,依靠着系统的分析与解题练习来实现。学生做练习,不仅对已经掌握的数学知识以及数学思想方法会起到巩固和深化的作用,而且还会从中归纳和提炼出新的数学思想方法。数学思想方法的教学过程首先是从模仿开始的。学生按照例题师范的程序与格式
㈦ 如何在小学数学教学中渗透数学思想方法课题研究总结
1、在小学数学教学中渗透数学思想方法的途径
(1)备课:研读教材、明确目标、设计预案,挖掘数学思想方法
“凡事预则立,不预则废”。如果课前教师对教材内容的教学适合渗透哪些思想方法一无所知,那么课堂教学就不可能有的放矢。受篇幅的限制,教材内容较多显示的是数学结论,对数学结论里面所隐含的数学思想方法以及数学思维活动的过程,并没有在教材里明显地体现。因此教师在备课时,不应只见直接写在教材上的数学基础知识与技能,而是要进一步钻研教材,创造性地使用教材,挖掘隐含在教材中的数学思想方法,并在教学目标中明确写出渗透哪些数学思想方法,并设计数学活动落实在教学预设的各个环节中,实现数学思想方法有机地融合在数学知识的形成过程中,使教材呈现的知识技能这条明线与隐含的思想方法的暗线同时延展。为此,教师在研读教材时,要多问自己几个为什么,将教材的编排思想内化为自己的教学思想,如:怎样让学生经历知识的产生与发展的过程?怎么样才能唤起学生进行深层次的数学思考?如何激发学生主动探究新知识的积极性?如何依据教材适时地渗透数学思想方法等等,教师只有做到胸有成竹,方能有的放矢。
(2)上课:创设情境、建立模型、解释应用,渗透数学思想方法
数学是知识与思想方法的有机结合,没有不包含数学思想方法的数学知识,也没有游离于数学知识之外的数学思想方法。这就要求教师在课堂教学中,在揭示数学知识的形成过程中渗透数学思想方法,在教给学生数学知识的同时,也获得数学思想方法上的点化。教师积极地在课堂中渗透数学思想方法,体现了教师在教学中的大智慧,也为学生的学习开辟了一个广阔的新天地。不同的教学内容,不同的课型,可据其不同特点,恰当地渗透数学思想方法。以下面三种课型为例。
①新授课:探索知识的发生与形成,渗透数学思想方法
数学知识发生、形成、发展的过程也是其思想方法产生、应用的过程。在此过程中,向学生提供丰富的、典型的、正确的直观背景材料,采取“问题情境—建立模型—解释、应用与拓展”的模式,通过实际问题的研究,了解数学知识产生的背景,再现数学形成的过程,揭示知识发展的前景,渗透数学思想,发展学生的思维能力,使学生在掌握数学知识技能的同时,即学会数学概念、公式、定理、法则等的过程中,深入到数学的“灵魂深处”,真正领略数学的精髓——数学思想方法。比如在质数、合数的概念教学中让学生用小正方形拼长 方形,把质数、合数的概念潜藏在图形操作(如右图),明白“质数个”小正方形只能拼成一个长方形,而“合数个”小正方形至少能拼成两个不同形状的长方形(含正方形),渗透数形结合的思想,再通过给这些数分类,引入质数、合数的概念,渗透分类思想。又如在《三角形分类》一课中,教师给学生提供了三角形学具先放手让学生在小组合作中尝试对三角形进行分类,学生从关注三角形的角与边的特征入手,借助学具看一看、比一比、量一量、分一分、想一想,寻找特征、抽象共性,在比较中将具有相同特征的三角形归为一类,在分类中抽象出图形的共同特征。这样的教学,学生经历了三角形分类的过程,渗透了分类、集合的思想,丰富了分类活动的经验,形成分类的基本策略,发展了归纳能力。
②练习课:经历知识的巩固与应用,渗透数学思想方法
数学知识的巩固,技能的形成,智力的开发,能力的培养等需要适量的练习才能实现。练习课的练习不同于新授课的练习,新授课中的练习主要是为了巩固刚学过的新知,习题侧重于知识方面;而练习课中的练习则是为了在形成技能的基础上向能力转化,提高学生运用知识解决实际问题的能力,发展学生的思维能力。因此教师要有数学思想方法教学意识,在练习课的教学中不仅要有具体知识、技能训练的要求,而且要有明确的数学思想方法的教学要求。例如在《6的乘法口诀》练习课中,学生在完成想一想、算一算的练习中,先让学生计算,再通过交流自己的算法,以“7×6+6”为例,借助图片用课件演示来理解式子的意义,运用数形结合启发将式子转化为8×6来计算,渗透变换的思想,懂得两个式子形式虽不同,表示的意义以及结果是相同的。又如让学生算一算每个图中各有多少个格子,之后教师要启发学生怎样将图形转化成同第一个图形那样的图形,可以直接用口诀计算?学生通过实际操作,动手剪一剪、拼一拼,转化成长方形后分别用6×3、4×3来计算,从而感受到转化思想的魅力。
“咱们要教给孩子们什么?”“数学的学习主要是学习思想和方法以及解题的策略”,因此我们要在练习的过程中不断地总结和探索,从中寻找共性,呈现给孩子最有价值、最本质的东西——数学思想方法。
③复习课:学会知识的整理与复习,强化数学思想方法
复习有别于新知识的教学。它是在学生基本掌握了一定的数学知识体系、具备了一定的解题经验,学生基本认识了某些数学思想方法的基础上的复习数学。数学思想方法总是隐含在数学知识中,它与具体的数学知识结合成一个有机整体,但它却无法像数学知识那样编为章节来教学,而是渗透于全部的小学数学知识中。不同章节的数学知识往往蕴含着不同的数学思想方法,有时在一章或一单元的教学中,又涉及很多的数学思想方法。因此教师在上复习课前,教师要能总体把握教材中隐含的思想方法,明确前后知识间的联系,做到“瞻前顾后”,并把数学思想方法的渗透落实到教学计划中。复习时,除了帮助学生掌握好知识与技能,形成良好的认知结构外,还必须加强数学思想方法的渗透,适时地对某种数学思想方法进行揭示、概括和强化,对它的名称、内容及其运用等予以点拨,使学生从数学思想方法的高度把握知识的本质和内在的规律,逐步体会数学思想方法的价值。如在复习多边形的面积推导时,教师可引导学生思考:平行四边形、三角形、梯形的面积计算公式各是怎样推导的?有什么共同点?让学生提炼概括:学习平行四边形面积计算时,我们应用割补法把它转化成学过的长方形来推导;学习三角形和梯形的面积计算时,我们用两个完全相同的图形来拼合或把一个图形割补转化成学过的图形来推导……经过系列概括提炼,学生得出其中重要的思想方法——转化思想。学生一旦掌握了数学思想方法,不仅能使学生的知识结构更完善,还特别有助于今后的学习和运用。因为掌握了数学的思想方法,学生面对新的问题时将懂得怎样去思考,真正实现质的“跃”。
(3)作业:掌握知识、形成技能、发展智力,应用数学思想方法
精心设计作业也是渗透数学思想方法的一条途径。把作业设计好,设计一些蕴含数学思想方法的题目,采取有效的练习方式,既巩固了知识技能,又有机地渗透了数学思想方法,一举两得。为此教师布置作业要有讲究,在学生作业后,要不失时机地恰当地点评,让学生不仅巩固所学知识、习得解题技能,更重要的是能悟出其中的数学规律、数学思想方法。再如一位六年级老师布置了下面这道课后思考题。
在作业讲评中,教师不仅要给出答案,更重要的是启发学生思考:你是怎样算的?是怎么想的?其中运用了什么思想方法? 结合上图引导学生概括出其中的思想与方法:类比思想、数学建模思想、极限的思想、数形结合的思想。
(4)课外:培养兴趣、增长见识、培养能力,提升数学思想方法
学校开展数学课外活动是课内教学的重要补充。根据学生的学习水平在年段里开设有关数学思想方法内容的讲座,如果平时教学中的数学思想方法的点滴渗透是“美味点心”的话,那么专题讲座对学生来说就是“丰盛大餐”了,学生比较系统地了解了常见的数学思想方法以及应用,拓展学生的眼界;数学思想方法的渗透和数学课外实践活动相结合可以使二者相得益彰,定期开展数学实践活动可以发展学生的动手实践能力和创新意识,发展学生应用数学思想方法解决问题的能力;定期开展数学智力竞赛,不但激发优生学习数学的积极性,也考察学生掌握数学思想方法的情况;学生编数学小报、出板报等活动,可以增长学生见识,了解较多相关知识。形式多样的数学课外活动,使数学思想方法潜移默化,引导学生在学与用中提升了对数学思想方法的认识。
㈧ 如何在小学数学课堂中渗透数学思想方法
数学思想方法是解决数学问题所采用的方法。它是数学概念的建立、数学规律的归纳、数学知识的掌握和数学问题解决的基础。在人的数学研究中,最有用的不仅仅是数学知识,更重要的是数学思想方法。小学数学中常用的数学思想方法有数形结合思想方法、对应思想方法、符号化思想方法、化归思想方法等。下面我就如何向学生渗透这些数学思想方法分别举例说明。
1数形结合的数学思想方法。
数和形是数学研究的两个主要对象,两者既有区别,又有联系,互相促进。所谓数形结合的思想方法就是通过具体事实的形象思维过渡到抽象思维的方法。数形的结合是双向的,一方面,抽象的数学概念、复杂的数量关系,借助图形使之直观化、形象化、简单化;另一方面,复杂的形体可以用简单的数量关系表示。用图解法分析问题就是运用这种方法。我从二年级开始就教学生画线段图分析应用题的数量关系。例如《现代小学数学》第三册的例题:“南庄小学秋季种树53棵,比春季多种8棵。春季种树多少棵?”先让学生找到关健句,弄清谁与谁比,谁多谁少,画出线段图:
这样做学生比较容易找到数量关系,列出正确版式,同时有克服见“多”就“加”,见“少”就“减”的思维定势。
2对应的思想方法。
对应是人们对两上集合元素之间的联系的一种思想方法。为此在教学中,我充分发挥教材优势,结合教学内容逐步渗透“对应”的数学思想方法。例如《现代小学数学》第一册的“多和少”,课本先出示散乱排列的等量的茶杯和茶杯盖图,接着重新排列整理,使每一个茶杯盖与每一个茶杯对应,直观看到“茶杯与茶杯盖相比,一个对一个,一个也不多,一个也不少”,我们就说茶杯与茶杯盖同样多。使学生初步接触一一对应的思想,初步感知两个集合的各元素之间能一一对应,它们的数量就是“同样多”。
3符号化数学思想方法。
数学的一个突出特点是符号加逻辑。而符号化思想是数学信息的载体,能大大简化运算或推理过程,加快思维的速度,提高学习效率。因此在教学中,要尽量把实际问题用数学符号来表达,还要充分把握每个数学符号所蕴含的丰富内涵和实际意义。例如《现代小学数学》中关于“1”的认识,先让学生从1架飞机、1棵树、1个女孩等具体事物中,概括出数字符号“1”,从具体的量到抽象的数。然后再从抽象的数学符号“1”到具体量,让学生列举表示“1”的具体事物,1把椅、1顶帽子、1件衣服………。
又如,教学“小于和大于”一课,从左右相等的积木的左端拿一个积森到右端。
这时右边的积木块数增多,“=”右边开口张大;左边积木数减少,“=”左边的开口缩小,边说边用左手的食指、中指摆成一个小于号,使学生认识小于号。再用同样的方法认识“大于号”。直观形象地引导学生掌握表示大小关第的符号,从中渗透符号化数学思想方法。
4“化归”的数学思想方法。
化归思想能增长学生智慧与创造能力,是数学中最普遍使用的一种思想方法。即先挖掘内在联系,把问题A转化为熟悉的问题B,再通过问题的解决方法去获得问题A的解。这样做能把问题化难为易、化生为熟、化繁为简、化整为零、化曲为直,可以促使学生提高解决问题的速度。
例如第四册《思维训练》例1,计算一个乒乓球重多少克?
本题直接求解较难。我从数学思想方法的角度去引导学生将奁、右各种球一一对应进行比较:
得出:左右两图的足球、羽毛球的个数相等,乒乓球个数不等,右图的乒乓球个数比左图的多2个,引起右边重了6克,从而把问题化归为“两个乒乓球重6克,一个乒乓球重多少克?”这样一个非常简单的算术问题,学生很容易就解决了。
实践证明,在教学中,如果我们注意从数学思想方法的角度去启发、引导学生思考,就会使学生对新知识不但能快速学会,而且能加深理解、应用,从而提高解决问题的能力,发展学生的思维能力。
㈨ 如何在小学数学教学中渗透数学思想方法
《领悟数学思想方法,让课堂绽放魅力,让学生展现风采》
——小学数学教学中渗透数学思想方法思考与实践
汇报:兆麟小学 农丰小学 兰陵小学
今天由我们三人汇报的题目是:《领悟数学思想方法,让课堂绽放魅力,让学生展现风采》
中国科学院院士、著名数学家张景中曾指出:“小学生学的数学很初等,很简单。但尽管简单,里面却蕴含了一些深刻的数学思想。”
数学知识和数学思想方法作为小学数学学习的两条线索,一明一暗,相互支撑,其中数学思想方法提示了数学的本质和发展规律,可以说是数学的精髓。下面我们就谈谈数学思想方法。
一、为什么要在教学中渗透数学思想方法
1、基本数学思想方法对学生的发展具有重要意义
一位教育学家曾指出:“作为知识的数学出校门不到两年可能就忘了,惟有深深铭记在头脑中的是数学煌精神和数学的思想、研究方法、着眼点等,这些随时随地发生作用使学生终身受益。”
数学的思想方法是数学的灵魂和精髓,掌握科学的数学思想方法对提升学生思维品质,对数学学科的后继学习,对其他学得的学习,乃至学生的终身发展有十分重要的意义。在小学数学教学中有意识地渗透一些基本数学思想方法,是增强学生数学观念,形成良好思维素质的关键。不仅能使学生领悟数学的真谛,懂得数学的价值学会数学地思考和解决问题,还可以把知识的学习与能力的培养、智力的发展有机地统一起来。
2.渗透基本数学思想方法是落实新课标精神的需求
数学课程标准把“四基”:基本知识、基本技能、基本思想、基本活动经验作为目标体系。基本思想是数学学习的目标之一,其重要性不言而喻。新教材是把一些重要的数学思想方法通过学生日常生活中最简单的事例呈现出来,并运用操作、实验等直观手段解决这些问题。从而加深学生对数学概念、公式、定理、定律的理解,提高学生数学能力和思维品质,这是数学教育实现从传授知识到培养学生分析问题、解决问题能力的重要途径,也是小学数学新课程改革的真正内涵之在。
二、课教材渗透了哪些数学思想
小学数学中最上位的思想就是演绎和归纳,是数学教学的主线。还有一些常用的数学思想方法:
对应思想、——是指对两个集合元素之间联系的把握。许多数学方法来源于对应思想。比如学生在计算练习时常常有 10 ?
20 ×2 ?
30 ?
40 ?
50 ?
形式出现,这其实就体现了对应的思想。如数轴上的一个点就对应一个数,任何一个数都能在数轴上找到相对应的点,一一对应,呈现完美。
符号化思想、——数学发展到今天,已成为一个符号的世界。英国著名数学家素曾说:“什么是数学?数学就是符号加逻辑。”符号化思想即指人们有意识地、普遍地运用符号化的语言去表述研究的对象。符号化思想在整个小学都有较多的渗透,
例如:阿拉伯数字:1、2、3、5、6、……
+、–、 、 等运算符号;
>、<</SPAN>、=、等表示关系的符号;
( )、[ ] 等括号;
表示数的字母:x、y、z等。
字母表示公式:长方形、正方形的面积S=ab S=a²
字母表示计量单位符号:m\cm\dm\mm\g\km等。
集合思想——把一组对象放在一起作为讨论的范围,这就是集合的思想。如:一年级教材在教孩子认数的时候,用一个圈把一些图画圈在里面,这就是孩子最初所接触到集合雏形,
也是第一次对小学生渗透这种集合思想。在以后后的教学中慢慢体现并集、差集、空集等思想。
极限思想——我国古代就对极限思想的思考,古代杰出的数学家刘徽的“割圆术”就是利用极奶子思想的典型。极限思想是研究变量在无限变化中的变化趋势的思想,运用这一思想,人们的思维可以从有限空间向无限空间,从静态向动态发展,从具体到抽象升华。
统计思想——小学数学中的统计思想主要体现在:简单的数据整理和求平均数,简单的统计表和统计图,学生在会整理、制表、作图的同时要能从数据、图表中发现数学问题和数学信息,得出相关的结论。、
假设思想——是先对题目标中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
比较思想——是数学教学中常见的思想方法之一,也是促进学生思维发展的手段。在数学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快找到解题途径。
类比思想——是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边行面积公式和三角形面积公式。这种思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然和简洁。
转化思想——是一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到。
分类思想——体现对数学对象的分类及其分类的标准如自然数的分类,三角形按边分按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。
数形结合思想——数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。在解应用题中常常借助线段图的帮助分析数量关系。
代换思想——他是方程解法的重要原理,解题时可将某个条件用别的条件进行代换。如学校买了4张桌子和9把椅子,共用504元,一张桌子和3把椅子的价钱正好相等,桌子和椅子的单价各是多少?
可逆相思——它是逻辑思维中的基本思想,当顺向思维难于解答时,可以从条件或问题思维寻求解题的方法,有时可以代线段图逆推。如:一辆汽车从甲地开往乙地,第一小时行了1/7,第二小时比第一小时多行了16千米,还有94千米,求甲乙之距。
化归思想方法——把有可能解决或示解决的问题,通过转化过程,归结为一类以便解决可较易解决的问题,以求得解决,这就是“化归”。而数学知识联系紧密,新知识往往是旧知识的引申和扩展。让学生面对新知会用化归思想方法去思考问题,对独立获得新知能力的提高无疑是有很大帮助。
变中抓不变的思想方法——在纷繁复杂的变化中如何把握数量关系,抓不变的量为突破口,往往问了就迎刃而解,如:科技书和文艺书共630本,其中科技书20%,后来又买来一些科技书,这时科技书占30%,又买来科技书多少本?
数学模型的思想方法——是对于现实世界的某一特定对象,从它特定的生活原型出发,充分运用观察、实验、操作、比较、分析等过程,得到简化和假设,它是生活中实际问题转化为数学问题模型的一种思想方法。培养学生用数学的眼光认识和处理周围或数学问题乃数学的最高境界,也是学生高数学素养所追求的目标。
这些数学思想方法是数学的本质之所在、是数学的精髓,只有方法的掌握、思想的形成,才能使学生受益终生。下面我们就结合自己对数学思想方法的学习与实践,与大家一起交流。
三、让课堂彰显思想的魅力
首先说说备课:备课时要研读教材、明确目标、设计预案,充分挖掘数学思想方法
如果课前教师对教材内容的教学适合渗透哪些思想方法一无所知,那么课堂教学就不可能有的放矢。因此我们在备课时,不应只见直接写在教材上的数学基础知识与技能,而是要进一步钻研教材,创造性地使用教材,挖掘隐含在教材中的数学思想方法,并在教学目标中明确写出渗透哪些数学思想方法,并设计数学活动落实在教学预设的各个环节中,实现数学思想方法有机地融合在数学知识的形成过程中。其实,每册教材都有数学思想方法的渗透,我们每册选取有代表性的单元。
这相对所有教学内容只是冰山一角。为此,我在研读教材时,常常要多问自己几个为什么,将教材的编排思想内化为自己的教学思想,如:怎样让学生经历知识的产生与发展的过程?怎么样才能唤起学生进行深层次的数学思考?如何激发学生主动探究新知识的积极性?如何依据教材适时地渗透数学思想方法等等。只有我自己做到胸有成竹,方能给学生渗透相应的数学思想。
2上课:创设情境、建立模型、解释应用,渗透数学思想方法
数学是知识与思想方法的有机结合,没有不包含数学思想方法的数学知识,也没有游离于数学知识之外的数学思想方法。这就要求教师在课堂教学中,在揭示数学知识的形成过程中渗透数学思想方法,在教给学生数学知识的同时,也获得数学思想方法上的点化。教师积极地在课堂中渗透数学思想方法,体现了教师在教学中的大智慧,也为学生的学习开辟了一个广阔的新天地。不同的教学内容,不同的课型,可据其不同特点,恰当地渗透数学思想方法。以下面三种课型为例。
①新授课:探索知识的发生与形成,渗透数学思想方法
如在《三角形分类》一课中,教师给学生提供了三角形学具先放手让学生在小组合作中尝试对三角形进行分类,学生从关注三角形的角与边的特征入手,借助学具看一看、比一比、量一量、分一分、想一想,寻找特征、抽象共性,在比较中将具有相同特征的三角形归为一类,在分类中抽象出图形的共同特征。这样的教学,学生经历了三角形分类的过程,渗透了分类、集合的思想,丰富了分类活动的经验,形成分类的基本策略,发展了归纳能力。
在数学教学中,解题是最基本的活动形式。任何一个问题,从提出直到解决,需要具体的数学知识,但更多的是依靠数学思想方法。因此,在数学问题的探究发现过程中,要精心挖掘数学的思想方法。
如我在教学三年级“植树问题”时,首先呈现:在一条100米长的路的一侧,如果两端都种,每2米种一棵,能种几棵?面对这一挑战性的问题,学生纷纷猜测,有的说种50棵,有的说种51棵。到底有几棵?我们能否从“种2、3棵……”出发,先来找一找其中的规律呢?随着问题的抛出,学生陷入了沉思。如果把你们的一只手5指叉开看作5棵树,每两棵树之间就有一个“间隔”(板书),一共有几个间隔?学生若有所思地回答是4个。如果种6棵、7棵……,棵数与间隔的个数有怎样的关系呢?于是我启发学生通过动手摆一摆、画一画、议一议,发现了在两端都种时棵数和间隔数之间的数量关系(棵数=间隔数+1),顺利地解决了上述问题。然后又将问题改为“只种一端、两端不种时分别种几棵”,学生运用同样的方法兴趣盎然地找到了答案。以上问题解决过程给学生传达这样一种策略:当遇到复杂问题时,不妨退到简单问题,然后从简单问题的研究中找到规律,最终来解决复杂问题。通过这样的解题活动,渗透了探索归纳、数学建模的思想方法,使学生感受到思想方法在问题解决中的重要作用。
因此,教师对数学问题的设计应从数学思想方法的角度加以考虑,尽量安排一些有助于加深学生对数学思想方法体验的问题,并注意在解决问题之后引导学生进行交流,深化对解题方法的认识。
②练习课:经历知识的巩固与应用,渗透数学思想方法
数学知识的巩固,技能的形成,智力的开发,能力的培养等需要适量的练习才能实现。练习课的练习不同于新授课的练习,新授课中的练习主要是为了巩固刚学过的新知,习题侧重于知识方面;而练习课中的练习则是为了在形成技能的基础上向能力转化,提高学生运用知识解决实际问题的能力,发展学生的思维能力。因此教师要有数学思想方法教学意识,在练习课的教学中不仅要有具体知识、技能训练的要求,而且要有明确的数学思想方法的教学要求。例如在《6的乘法口诀》练习课中,学生在完成想一想、算一算的练习中,先让学生计算,再通过交流自己的算法,以“7×6+6”为例,借助图片用课件演示来理解式子的意义,运用数形结合启发将式子转化为8×6来计算,渗透变换的思想,懂得两个式子形式虽不同,表示的意义以及结果是相同的。又如让学生算一算每个图中各有多少个格子,之后教师要启发学生怎样将图形转化成同第一个图形那样的图形,可以直接用口诀计算?学生通过实际操作,动手剪一剪、拼一拼,转化成长方形后分别用6×3、4×3来计算,从而感受到转化思想的魅力。
“咱们要教给孩子们什么?”“数学的学习主要是学习思想和方法以及解题的策略”,因此我们要在练习的过程中不断地总结和探索,从中寻找共性,呈现给孩子最有价值、最本质的东西——数学思想方法。
如我在教学四年级“看谁算得巧”一课时,学生计算“1100÷25”主要采用了以下几种方法:①竖式计算②1100÷25=(1100×4)÷(25×4)③1100÷25=1100÷5÷5 ④1100÷25=11×(100÷25) ⑤1100÷25=1100÷100×4 ⑥ 1100÷25=1000÷25+100÷25。在学生陈述了各自的运算依据后,引导学生比较上述方法的异同,结果发现方法①是通法,方法②——⑥是巧法。方法②——⑥虽各有千秋,方法③、④、⑥运用了数的分拆,方法②属等值变换,方法⑤类似于估算中的“补偿”策略,但殊途同归,都是抓住数据特点,运用学过的运算定律、性质转化为容易计算的问题。学生对各种方法的评价与反思,就是去深究方法背后的数学思想,从而获得对数学知识和方法的本质把握。
新课程所倡导的“算法多样化”的教学理念,就是让学生在经历算法多样化的学习过程中,通过对算法的归纳与优化,深究背后的数学思想,最终能灵活运用数学思想方法解决问题,让数学思想方法逐步深入人心,内化为学生的数学素养。
③复习课:学会知识的整理与复习,强化数学思想方法
复习有别于新知识的教学。它是在学生基本掌握了一定的数学知识体系、具备了一定的解题经验,学生基本认识了某些数学思想方法的基础上的复习数学。数学思想方法总是隐含在数学知识中,它与具体的数学知识结合成一个有机整体,但它却无法像数学知识那样编为章节来教学,而是渗透于全部的小学数学知识中。不同章节的数学知识往往蕴含着不同的数学思想方法,有时在一章或一单元的教学中,又涉及很多的数学思想方法。因此教师在上复习课前,教师要能总体把握教材中隐含的思想方法,明确前后知识间的联系,做到“瞻前顾后”,并把数学思想方法的渗透落实到教学计划中。复习时,除了帮助学生掌握好知识与技能,形成良好的认知结构外,还必须加强数学思想方法的渗透,适时地对某种数学思想方法进行揭示、概括和强化,对它的名称、内容及其运用等予以点拨,使学生从数学思想方法的高度把握知识的本质和内在的规律,逐步体会数学思想方法的价值。
数学思想方法随着学生对数学知识的深入理解表现出一定的递进性。在课堂小结、单元复习和知识运用时,教师要引导学生自觉地检查自己的思维活动,反思自己是怎样发现和解决问题的,运用了哪些基本的思想方法等,及时对某种数学思想方法进行概括与提炼,使学生从数学思想方法的高度把握知识的本质,提升课堂教学的价值。
如我在教学五年级“平面图形的面积复习”时,让学生写出各种平面图形(长方形、正方形、平行四边形、三角形、梯形和菱形)的面积计算公式后提问:这些计算公式是如何推导出来的?每位同学选择1~2种图形,利用学具演示推导过程,然后在小组内交流。交流之后我又指出:你能将这些知识整理成知识网络吗?当学生形成知识网络后(如下图),再次引导学生将这些平面图形面积计算。如在复习多边形的面积推导时,教师可引导学生思考:平行四边形、三角形、梯形的面积计算公式各是怎样推导的?有什么共同点?让学生提炼概括:学习平行四边形面积计算时,我们应用割补法把它转化成学过的长方形来推导;学习三角形和梯形的面积计算时,我们用两个完全相同的图形来拼合或把一个图形割补转化成学过的图形来推导……经过系列概括提炼,学生得出其中重要的思想方法——转化思想。学生一旦掌握了数学思想方法,不仅能使学生的知识结构更完善,还特别有助于今后的学习和运用。因为掌握了数学的思想方法,学生面对新的问题时将懂得怎样去思考,真正实现质的“飞跃”。
(3)作业:掌握知识、形成技能、发展智力,应用数学思想方法
精心设计作业也是渗透数学思想方法的一条途径。把作业设计好,设计一些蕴含数学思想方法的题目,采取有效的练习方式,既巩固了知识技能,又有机地渗透了数学思想方法,一举两得。为此教师布置作业要有讲究,在学生作业后,要不失时机地恰当地点评,让学生不仅巩固所学知识、习得解题技能,更重要的是能悟出其中的数学规律、数学思想方法。再如一位六年级老师布置了下面这道课后思考题。
在作业讲评中,教师不仅要给出答案,更重要的是启发学生思考:你是怎样算的?是怎么想的?其中运用了什么思想方法? 结合上图引导学生概括出其中的思想与方法:类比思想、数学建模思想、极限的思想、数形结合的思想。
(4)课外:培养兴趣、增长见识、培养能力,提升数学思想方法
学校开展数学课外活动是课内教学的重要补充。根据学生的学习水平在年段里开设有关数学思想方法内容的讲座,如果平时教学中的数学思想方法的点滴渗透是“美味点心”的话,那么专题讲座对学生来说就是“丰盛大餐”了,学生比较系统地了解了常见的数学思想方法以及应用,拓展学生的眼界;数学思想方法的渗透和数学课外实践活动相结合可以使二者相得益彰,定期开展数学实践活动可以发展学生的动手实践能力和创新意识,发展学生应用数学思想方法解决问题的能力;定期开展数学智力竞赛,不但激发优生学习数学的积极性,也考察学生掌握数学思想方法的情况;学生编数学小报、出板报等活动,可以增长学生见识,了解较多相关知识。形式多样的数学课外活动,使数学思想方法潜移默化,引导学生在学与用中提升了对数学思想方法的认识。
㈩ 如何在小学课堂教学中有效渗透数学思想方法的
关键是看你的具体课程渗透了哪些数学思想方法,比如:数形结合思想在小学体现较多,但是像极限思想估计要相对少些,希望你吃透课本。然后因教而施。