① 在小学数学教学中怎样渗透转化思想 南京廖华
转化思想是数学思想的重要组成部分。它是指对于直接求解比较困难的问题,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换,将其转化为一个新问题,通过新问题的求解,使原问题得以解决。它是从未知领域发展,通过数学元素之间的因果联系向已知领域转化,从中找出它们之间的本质联系,解决问题的一种思想方法。在解决数学问题时,除极简单的问题外,几乎每个数学问题的解决都是通过转化为已知的问题来实现的。数学学习的过程就是解决数学问题的过程,解决数学问题也就是一次次从未知转化成已知的过程。从这个意义上来讲,小学生学习数学离不开转化的思想方法。所以,教学中逐步渗透转化思想,使学生掌握转化的方法,是提高学生数学学习能力的重要策略。在小学的教学内容中,很多知识点的教学都可以渗透转化的思想。像在五年级上册的《小数乘整数》教学中,教学的基准点就可以定位让学生通过“把小数乘整数”转化为“整数乘整数”,利用知识的迁移作用帮助学生掌握“小数乘整数”的运算方法,;再有分数除法的教学,让学生知道分数除法应转化为分数乘法进行计算;按比例分配应用题转化为分数应用题解答;在三角形的面积计算公式推导时,转化为与它等底等高的平行四边形。
② 小学数学教学中的转化思想是指什么
小学数学教学复中的转化思想制是指把生疏问题转化为熟悉问题,把抽象问题转化为具体问题,把复杂问题转化为简单问题,把一般问题转化为特殊问题,把高次问题转化为低次问题,把未知条件转化为已知条件,把一个综合问题转化为几个基本问题,把顺向思维转化为逆向思维。在小学数学教学中,应当结合具体的教学内容,渗透数学转化思想,有意识地培养学生学会用“转化”思想解决问题,从而提高数学能力。
③ 谈谈在小学数学教学中如何运用转化思想
小学数学修订后的课标在原来“双基”的基础上,提出了“四基”,即基础知识、基本技能、基本思想和基本活动经验。 小学数学思想方法许多,基本的数学思想方法有:转化思想方法、分类思想方法、集合思想方法、统计思想方法、假设思想方法、对应思想方法、比较思想方法、符号化思想方法、类比思想方法、数形结合思想方法、极限思想方法、代换思想方法、可逆思想方法以、化归思想方法、变中抓不变思想方法、数学模型思想方法、整体思想方法等,结合本周教学比武中的课例谈谈数学教学中渗透转化思想方法:
1.化新为旧。根据学生已有的新旧知识的联系,将新知识转化为已有的知识来解决。
如:赖传淇老师执教的《通分》一课中,出示2/5○1/4,进行比较大小。异分母分数大小的比较对学生来说是新的知识,学生不会比较,老师启发学生将新的知识转化成已学过的知识进行解决这个问题。学生进行小组讨论,然后进行汇报,生1:根据分数的基本性质,把这个两个分数化成分母相同的分数,2/5=8/20,1/4=5/20,因为8/20>5/20,所以2/5>1/4;生2:把2/5和1/4这两个分数都化成已学过的小数,2/5=0.4,1/4=0.25,因为0.4>0.25,所以2/5>1/4;生3:根据分数的基本性质,把2/5和1/4这两个分数的分子化成相同,2/5○1/4=2/8,因为2/5>2/8,所以2/5>1/4;生4:将2/5和1/4用线段来表示,画一条长20厘米的线段,平均分成5份,取其中的2份,这两份长8厘米,也就是这条线段总长的2/5,再画一条长20厘米的线段,平均分成4份,取其中的1份,这一份长5厘米,也就是这条线段总长的1/4,因为8厘米>5厘米,所以2/5>1/4。学生运用了化新为旧的转化思想解决了新知。
又如:郭秋妹老师执教的《两位数乘两位数》一课中,学生列出算式24×12后,问学生可以用什么方法计算?学生回答可以用估算、口算、笔算。师问如何口算24×12,学生一时愣住了,郭老师进行引导,可以将它转化成已学过的。学生开始尝试做,不一会儿学生纷纷举手回答。生1:24×3×4=288,把12拆成3×4,就变成已学过的两位数乘一位数的了24×3=72,72×4=288;生2:24×2×6=288;生3:12×4×6=288;生4:12×3×8=288;生5:把24看成20和4的和,20×12=240,4×12=48,240+48=288;生6:把12看成10和2的和,24×10=240,24×2=48,240+48=288;生7:把12看成9和3的和,24×9=216,24×3=72,216+72=288……学生运用了化新为旧的转化思想解决了新知,发散了思维。
2.化难为易。如:蒋友成老师执教的《数学思考》一课中,出示一题20个点最多可以轻连几条线段?学生一时也无从下手,老师进行引导,将问题化难为易,化大为小,化多为少,将20点转化为1,2,3,4,5点,分别能画几条线段?让学生动手操作、小组讨论。然后学生汇报:点数1,条数0(条);点数2,条数1(条);点数3,条数1+2=3(条);点数4,条数1+2+3=6(条);点数5,条数1+2+3+4=10(条)。让学生观察、分析条数与点数的关系,学生通过观、分析、小组讨论发现:条数的计算方法是从1加2加到点数减1的和。学生发现这个规律后,再来解答20个点最多可以轻连几条线段就轻而易举了,学生就很快的说出算式1+2+3+4+……+19=190(条)。师生进行小结:遇到难的题目,可以将它转化为容易的,简单的来解决,接着找出规律,然后运用规律解决较难的题目,这就是运用了化难为易的转化思想方法。
3.化数为形。如:在计算1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256+1/512中,通过引导学生化数为形,画一个正方形, 1/2涂上色,空白的也是1/2,涂色部分可以用1减去空白的;接着在空白的1/2上再涂色一半,涂色部分就是1/2+1/4,涂色部分可以用1减去空白的, 涂色部分就是1-1/4,接着在空白的1/4上再涂色一半,涂色部分就是1/2+1/4+1/8,涂色部分可以用1减去空白的, 涂色部分就是1-1/8。从刚才的过程可以发现规律,涂色部分可以用1减去空白的,因此,1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256+1/512=1-1/512=511/512。通过化数为形,可以把这个算式转化成1-1/512=511/512。
4.为曲为直。如:圆的面积公式的推导,就要用到化曲为直的思想方法,通过将圆分割成若干等份,拼成近似的长方形,由圆的半径与面积的关系转化为长方形的长宽与面积的关系,由长方形的面积公式,推导出圆的面积的公式。这里,就是将长方形的面积公式转化为圆的面积公式。在学习圆柱的体积计算时,学生也能很快悟到立体图形之间的联系,感悟到圆柱体积的计算公式。
陶行知先生曾说过:“我以为好的先生不是教书,不是教学生,乃是教学生学。”任何功课最终的目的就是要达到不需要教,需要有会学习的能力、会学习的方法,而数学思想的形成及运用就会产生好的方法,就会提高学习的能力,就会为不教奠定基础。因此,小学数学教师要拓展视野,在教学中渗透数学思想,为学生的终身发展奠基。
④ 浅谈如何运用转化思想来提高小学数学解题的教学效率
事物之间存在着普遍的联系,又是可以相互转化的。转化是数学中最常用最基本的思想方法之一,所谓转化,就是指在解题的过程之中,通过转化解题的方向,从不同的思考角度、不同的分析侧面去探讨问题的性质、寻找最佳的方法去解答。转化就是对于某些直接求解比较困难的问题,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法进行转化变换,将原问题转化为一个已掌握的比较容易的问题,通过对转化出来的问题的求解,达到解决原问题的目的。转化是一种有效的思想方法,是数学思想的核心和精髓部分,是数学思想的灵魂所在。因此,教师应把这种思想方法体现在教学的每个环节中,让学生更轻松更高效的学习。
一、在教学过程中注重渗透转化思想
矛盾是普遍存在的,又是可以相互转化的。在具体的教学活动中,教师应该让学生了解,有很多新的知识都是建立在旧的知识基础上的,是旧知识的延伸和拓展。因此,教师在引进新知识的时候,应注意与新旧知识的衔接,一方面复习巩固旧知识,在新知识中寻找旧知识的影子,另一方面利用旧知识来间接的解决新知识,进而使新的困难的问题从旧知中转化出来,达到解答新问题的目的。通过教师在教学过程中的介绍和渗透,让转化的思想方法逐步在学生的头脑中生根萌芽,这样,日积月累就让学生形成用转化思想方法解疑答难的思维方式。
例如,在教学平行四边形的面积计算方法的时候,通过转化思想的指导,学生能够将平行四边形的面积计算方法转化成长方形的面积计算方法;之后在三角形、梯形面积的计算时,转化成平行四边形,从而形成了固定的转化思维。再到学习圆的面积的计算以及体积和容积的计算时,学生很容易想到到了转化的思想方法进行新知识的学习,从而大大提高了学习效率。
二、小学数学教学中常用的转化方式
1.计算中的转化,化繁为简,优化解题策略
在处理和解决一些数学问题的时候,常常会遇到一些复杂的运算或数量关系非常混乱的问题,这时教师需要转化一下解题策略,运用各种运算法则、运算定律及性质进行化繁为简,也就是常说的化简。
例如:(267+123×894)÷(894×124-627)因为算式中有一个相同的因数894,所以我们可以转化为:(267+123×894)÷(894×124-627)=(267+123×894)÷(894×123+894-627)=(267+123×894)÷[(894×123)+(894-627)]=(267+123×894)÷(894×123+267)=1
又如在教学小数的除法时,是通过把小学转化为整数进行计算;在教学分数的除法时是通过把把除法转化为乘法来进行运算的。只要能找到突破之处,做一些同性质间问题的相互转换,就会使复杂的问题简单化,从而收到事半功倍的效果,使自己豁然开朗。
2.数量与图形间的转化
数量与图形间的转化运用很广泛,中学有函数的数形结合的思想方法,小学阶段表现在我们在讲授新知识或解决数学问题时,为了直观形象,通过画图的方式来表示数量关系,利用数量关系在图上的分部和变换规律从而解决问题。如各类图形面积的计算方法,公式的由来,均采用让学生动手实验,先将图形转化为已经学过的图形,在图上观察探索转化后的图形与原来图形的关联。如平行四边形面积的推导,是在图上把平行四边形变换成长方形,从而得到平行四边形的面积与长方形面积的计算是同一个道理。
又如,对于低年级中9的口诀,可组织学生在10乘l0的方格纸上涂色。1个9,第一行涂9个,l0少1;2个9,涂2行,20少2……如此下去,简明直观,一目了然。这就把把抽象的数学知识与具体的图形结合起来,便于年幼的学生理解,让每个孩子都能积极主动的参与教学活动,提高学习效率。
3.等量转化
等量转化是通过数量间相等或相比的数值一致,来进行换位思考,从而把已知的数据通过等量关系转换成待求的未知数量。例如,小明买了4千克橙子和5千克苹果共花52元,已知每千克橙子的价格是每千克苹果的2倍,两种水果每千克各多少元?
这道题给出了两种水果的数量和它们各自的总价,求它们的单价,学生在解题的时候会感觉题中的已知条件不充分而难以下手。此时,教师要善于引导学生进行思考:如果要求一种水果的单价,就要知道这种水果的总价和它的数量,你能依据两种水果的数量关系,将它们转化成一种水果吗?可不可以根据“每千克橙子的价格是每千克苹果价格的2倍”,将4千克的橙子的价格转化成8千克苹果的价格呢?这道题就转化成(8+5)即13千克的苹果共花52元,苹果的单价是多少?有了苹果的价格就可以求出橙子的价格。这样,通过等量转化,隐蔽的条件就自然而然的显现出来了。
三、强化转化思想在练习中的作用,培养学生的转化思维意识
对于中高年级的学生,习题的设计已经不再单纯地局限于例题式的练习介绍的范围内,高年级的习题更加灵活多变,对学生更具挑战性,很多学生遇到复杂多变的习题时往往丈二和尚摸不着头脑,这就需要教师在平时的教学中加强对转化式习题的练习,以不变应万变,让学生通过练习强化转化的思想在意识中的形成,并能在必要的时候指导行动。
例如,在教学最小公倍数的时候,经常会出现一些分配的问题,学生解决起来有一定的难度 。如有这样一道题:“有一批砖,每块砖长45厘米,宽30厘米,至少用多少这样的砖才能铺成一个正方形?”
要解决这个问题,学生先要理解铺成正方形的条件,也就是说必须要边长相等,然后,再考虑通过什么办法把长方形拼成正方形的问题,考虑几个长和几个宽是相等的,这就是要求45和30的公倍数,其中“至少几块”就是求他们的最小公倍数,这样一来就把一个看似几何图形的习题转化为代数知识进行解决,解决方法简单易懂,教师通过此类问题的练习,对学生进行转化思想的强化,使其形成利用转化的思想解决问题的思维意识。
转化的思想无处不在,它贯穿着整个数学教学和数学学习的始终,是数学的精髓内容。教师在具体的教学过程中,要善于指导学生形成转化的思想方法,更好的教学,更好的服务学生。
⑤ 小学数学的转化思想例子除了曹冲称象还有其他故事吗
阿普顿是普林斯顿大学的高材生,毕业后被安排在爱迪生身边工作。他对依靠自学而没有文凭的爱迪生很不以为然,常常露出一种讥讽的神态。可是,一件小事却使他对爱迪生的态度有了根本的改变。一次,爱迪生要阿普顿算出梨形玻璃泡的容积,阿普顿点点头,想这么简单的事一会儿就行了。只见他拿来梨形玻璃泡。用尺上下量了几遍,再按照式样在纸上画好草图,列出了一道算式,算来算去,算得满头大汗仍没算出来。一连换了几十个公式,还是没结果,阿普顿急得满脸通红,狼狈不堪。爱迪生在实验室等了很久,不见结果,觉得奇怪,便走到阿普顿的工作间,看到几张白纸上密密麻麻的算式,便笑笑说:“您这样计算太浪费时间了”。只见爱迪生拿来一些水,将水倒进玻璃泡内,交给阿普顿说:“再找个量筒来就知道答案了。”阿普顿茅塞顿开,终于对爱迪生敬服,最后成为爱迪生事业上的好助手。
⑥ 如何在小学数学教学中培养化归思想方法
化归方法的含义:把待解决和未解决的问题,通过转化,或再转化,将原问题归回结为一个已经能解决的问答题,或者归结为一个比较容易解决的问题甚至为人们所熟知的具有既定解决方法和程序的问题,最终求得原问题的解决. 数学中的化归有其特定的方向,一般为:化复杂为简单,化抽象为具体;化生疏为熟悉;化难为易;化一般为特殊;化特殊为一般;化“综合”为“单—”;化“高维”为“低维”等
⑦ 小学数学练习中如何培养学生运用转化思想的能力
在教学中,培养学生运用转化思想来解题,不仅能起到巩固旧知识,促进理解掌握内新知识的作用,容而且对提高学生解决问题的策略水平有着深远的影响。对转化思想的训练和培养,不能想蜻蜓点水,点到为止,而应把转化思想贯穿于教学的始终,多次渗透,不断强化,才能被学生所掌握。 一、明确转化的过程 转化时,需要引导学生明确“已经能解决什么问题”、“现在需要解决什么问题”、“怎样将要解决的问题转化成已经解决的问题”等。运用知识解决问题的练习过程,可以看成是数学思想方法反复运用的过程,在这样的反复运用过程中,学生的数学思想方法才有可能得到巩固与深化。
⑧ 转化思想在小学数学教学中的应用普遍吗
普遍
数学知识中概念、法则、公式、性质等都是明显地写在教材中,是有“形”的,而数学思想方法却隐含在数学知识体系里,是无“形”的,并且不成体系地散见于教材各章节中,关键是教师如何去发现、发掘教材中蕴含的转化思想。为此,我们有必要对此进行系统的梳理,在理清知识网络的同时系统了解数学思想方法在小学各阶段、各章节中的分布,例如小学数学的教学内容中,加法与减法的转化、乘法与除法的转化,分数与小数的转化,除法、分数与比的转化,二维空间(平面图形)之间的转化、三维空间(立体图形)之间的转化、二维与三维空间之间的转化,数与形的转化等等。这样才能结合双基的教学,有意识地向学生渗透,逐步培养他们初步地掌握相关的转化的思想和方法。
数学教学论告诉我们,数学知识是数学思想的载体,进行数学思想方法教学时要注意以数学知识为载体,把隐藏于知识背后的思想方法揭示出来,使之明朗化,这样才能通过知识传授过程达到思想方法教学之目的。因此一节课结合具体教学内容考虑渗透哪些数学思想方法、怎么渗透、渗透到什么程度,老师都应有一个精心的设计和具体的要求。如《平行四边形的面积》的教学可以设计如下相关的教学目标:引导学生经历平行四边形面积计算的探究过程,初步理解化归思想,掌握方法,渗透“变与不变”的函数思想;培养学生分析、综合、抽象、概括和解决实际问题的能力,发展学生的空间观念。