『壹』 如何将转化思想渗透到小学"图形"教学中的研究开题报告
在教育事业来快速发展的今天自,小学数学教学方法丰富,思想多元化.将转化思想渗透到小学数学教学中,简化学生的空间与图形学习,有利于小学生数学学习效果的优化.传统教学模式中,小学生只能死板地学习空间与图形知识,忽视了数学思想的应用.加强教学创新,积极渗透转化思想,有益于小学数学教学质量的提高.
『贰』 化归与转化思想在教学中如何渗透
一、 引新中渗透
例如:老师在教学分数的基本性质时,有分数的基本性质的学习迁移到比的基本性质的学习。
教学中教师应抓住新旧知识之间的联结点,创设情境,让学生初步感悟数学的思想方法,为学生搭建有意建构的桥梁,让学生运用转化类比的数学思想方法进行合理的正迁移。如教学京版数学教材第十二册圆柱的认识一课时,我是这样进行导入环节的:
如在教学“圆柱的认识”时,教师提出如下问题:“同学们,你们知道孙悟空之所以神通广大不仅仅是他有七十二般变化,更是因为他有一件降妖除魔的法宝,同学们知道它是什么吗?”学生异口同声的回答:“如意金箍棒。”“同学们知道它是什么形状的吗?”“是圆柱形的”“同学们你们知道它和我们平常见到的如粉笔、电线杆等柱体有什么不同吗?”这时学生的学习兴趣就浓了,踊跃发言。老师这时可以趁势打铁:“我们这一节课要学习的圆柱和粉笔、电线杆不一样。哪我们所学习的圆柱又是什么形状的呢?圆柱圆柱,两头是圆,中间是柱。两头是什么样的两个圆?中间是柱,中间又是什么样的柱子?”这时老师可以要求学生分组讨论交流,课堂气氛一下子就活跃了。有同学们熟悉而又感兴趣的话题迁移到教学中来,教学效果可想而知。
二、过程中渗透
1、渗透对应的思想方法。对应是人的思维对两个集合间问题联系的把握,是现代数学的一个最基本的概念。小学数学教学中主要利用虚线、实线、箭头、计数器等图形将元素与元素、实物与实物、数与算式、量与量联系起来,渗透对应思想。
在小学数学中,有很多方面运用了对应的数学思想方法,如教材六年级教材中的数对,和根据方向和距离来确定物体的位置,无不融进了一一对应的数学思想。
2、渗透分类的思想方法。“分类”就是把具有相同属性的事物归纳在一起,它的本质是把一个复杂的问题分解成若干个较为简单的问题。如老师在教学统计与初步这一小节内容时,要学生统计出一小时内经过该路口的各种车辆各有多少时,通过学生们的分类整理,能有效纠正学生的无序性甚至盲目拼凑的毛病,有利于培养学生的逻辑思维能力。
3、渗透集合的思想方法。集合的数学思想方法是从某一角度看所研究的对象,使之成为合乎一定抽象要求的元素。在小学数学教学中,通常采用直观手段,利用画集合图的办法来渗透集合思想。
例如教学长方体、正方体之后,使学生明确正方体是长、宽、高分别相等的长方体,即正方体是一种特殊的长方体,用圆圈图表示更形象。让他们感知大圈内的物体具有某种共同的属性,可以看作一个整体,这个整体就是一个集合——长方体集合,小圈内的物体也具有某种共同的属性,可以看作一个小整体,这个小整体就是一个小集合——正方体集合,如长方体集合包含正方体集合。集合的数学思想方法在小学各年级段都有所渗透,如数的整除中就渗透了子集和交集等数学思想。
4、渗透符号化思想。渗透符号化思想主要是指人们有意识地、普遍地运用符号去表达研究的对象,恰当的符号可以清晰、准确、简洁地数学思想、概念、方法和逻辑关系。
符号化思想在小学数学内容中随处可见,教师要有意识地进行渗透。
例如:在教学加法结合律时,我首先让学生通过试题计算明确:三个数相加,可以先把前面两个数相加,再和第三个数相加;也可以先把后两个数相加,再和第一个数相加,结果不变。把它变成符号化的语言就是:a+b+c=a+(b+c)在这里,一定要让学生明确每个符号的意义,知道这样表示更一般化、抽象化,也更简洁,更能表示一般规律,进而再引导学生用符号化语言表达两个数的差与一个数相乘的规律,加深理解符号的含义,建立符号化思想。当然像我们所学过的一些计算公式等,无不渗透了数学思想在里面。
5、渗透数形结合的思想。数形结合思想方法是指将数与式的代数信息和点与形的几何信息互相转换,把数量关系的精确深刻与几何图形的形象直观有机地结合起来,用代数方法去解决几何问题或用几何方法去解决代数问题,从而易于将已知条件和解题目标联系起来,使问题得到解决。
例如:老师在教学应用题时,常常要借助于线段图来帮助学生理解,使教学起到事半功倍的效果。如“修路队前三天修了全长的30%,照这样计算,修完全程一共需要多少天?”通过画图来进行教学,学生易于理解,老师讲课也轻松。这样做,帮助学生借助数形结合理解了退位减法笔算算理,利于学生掌握笔算方法。
三、练习中渗透
练习是数学教学的重要环节,习题的设计和选择不仅要体现基础性、层次性和可选择性,而且要具有实践性、应用性、探索性和开放性,做到基础性练习与发展性练习协调互补,使数学练习适应不同学生发展的需要。教师应精心设计练习,在巩固练习中运用数学思想方法。
例如:在学习了分数、百分数应用题之后,我为学生出示了这样一道练习题:一条路全长1200米,修路队前三天就修了它的30%,照这样计算,修完这
『叁』 如何在小学数学教学中渗透转化思想
如何在小学数学教学中渗透转化思想
日本著名教育家米山国藏指出:“学生所学的数学知识,在进入社会后几乎没有什么机会应用,因而这种作为知识的数学,通常在走出校门后不到一两年就忘掉了。然而不管他们从事什么工作,唯有深深铭刻于头脑中的数学思想和方法等随时地发生作用,使他们受益终身。”小学是学生学习数学知识的启蒙时期,这一阶段注意给学生渗透基本的数学思想便显得尤为重要。
转化思想是解决数学问题的一个重要思想。任何一个新知识,总是原有知识发展和转化的结果。它可以将某些数学问题化难为易,另辟蹊径,通过转化途径探索出解决问题的新思路。在教学中我们教师应结合恰当的教学内容逐步渗透给学生转化的思想,使他们能用转化的思想去学习新知识、分析并解决问题。那么在小学数学教学中如何去挖掘并适时地加以渗透呢?以下根据自身的数学教学实践谈谈自己的粗浅见解。
一、 在教学新知识时渗透转化思想
例:在教学“异分母分数加减法”一课时,我是这样设计的。
1、在情境中产生关于异分母分数加减法的问题,引入异分母分数加减法的学习。
2、让学生独立思考,尝试计算异分母分数加法。
3、小组交流异分母分数加法的方法。整理并汇报。
方法1:将两个异分母分数都变成小数,再相加。
方法2:将两个异分母分数都通分变成同分母分数后,再相加。
4、归纳整理,渗透转化思想
思考以上两种方法,你有什么发现?(两种方法均是将异分母分数转化成已学过的知识,即将异分母分数转化成与其相等的小数或同分母分数之后,再相加。)……
5、回顾反思,强化思想
回顾本节课的学习,谈谈你的收获和体会。(在转化完成之后及时的反思,是对转化思想的进一步巩固与提升——进入思想的内核,再次深刻理解。)
在我们小学数学教材中,像这样,需教师巧妙地创设问题情境,让学生自主产生转化的需要来学习新知识的例子很多,需要我们教师深入分析教材,理解教材,进而挖掘出其蕴含的转化思想。
二、在数学公式推导过程中渗透转化思想
如平行四边形、三角形、梯形等图形的面积公式推导,它们均是在学生认识了这些图形,掌握了长方形面积的计算方法之后安排的,是整个小学阶段平面图形面积计算的一个重点,也是整个小学阶段中能较明显体现转化思想的内容之一。教学这些内容,一般是将要学习的图形转化成已经学会的图形,在引导学生比较之后得出将要学习图形的面积计算方法。随着教学的步步深入,转化思想也渐渐浸入学生们的头脑中。
如平行四边形面积推导,当教师通过创设情境使学生产生迫切要求出平行四边形面积的需要时,可以将“怎样计算平行四边形的面积”直接抛向学生,让学生独立自由地思考。这个完全陌生的问题,需学生调动所有的相关知识及经验储备,寻找可能的方法,解决问题。当学生将没有学过的平行四边形的面积计算转化成已经学过的长方形的面积的时候,要让学生明确两个方面:
一是在转化的过程,把平行四边形剪一剪、拼一拼,最后得到的长方形和原来的平行四边形的面积是相等的(等积转化)。在这个前提之下,长方形的长就是平行四边形的底,宽就是高,所以平行四边形的面积就等于底乘高。
二是在转化完成之后应提醒学生反思“为什么要转化成长方形的”。因为长方形的面积我们先前已经会计算了,所以,将不会的生疏的知识转化成了已经会了的、可以解决的知识,从而解决了新问题。在此过程中转化的思想也就随之潜入学生的心中。其他图形的教学亦是如此。需要注意的是转化应该成为学生在解决问题过程中的内在的迫切需要,而不应该是教师提出的要求,因为这样,学生的操作、思考都将处于被动的状态,对转化的理解则可能浮于表面。
三、在数学练习题中挖掘转化思想
在三角形内角和教学后,书中有一练习题,“求出四边形和正六边形的内角和是多少?”这一问题的解决完全依赖于转化思想,即:把四边形和正六边形都转化成若干个三角形的和。即连接对角线把四边形转化成两个三角形,那么四边形内角和就等于两个180度,即360度。而正六边形通过连接对角线转化成了四个三角形,则内角和是四个180度,即720度。教师在处理习题时,不能仅仅教给学生解题术,更重要的是要让学生收获其数学思想,用知识里蕴含的“魂”去塑造学生的灵魂。这是让学生受益终生的。
总之,转化的思想应用于数学学习的各个领域,但不管在哪方面,它都是以已知的、简单的、具体的、基本的知识为基础,将未知的化为已知的,复杂的化为简单的,抽象的化为具体的,一般的化为特殊的,非基本的化为基本的,从而得出正确的解答。其实,转化本是化归数学思想方法的一种体现(把所要解决的问题,经过某种变化,使之归结为另一个问题,再通过另一个问题的求解,把解得结果作用于原有问题,从而使原有问题得解)。因此在转化的过程中,教师自身应该有一个宽阔的转化意识,夯实转化过程中的每一个细节,在单元结束后的“整理与练习”中,再次提升转化思想,并在后续的学习中有意识地关注转化思想,进行必要的沟通与整合。
『肆』 浅谈小学数学如何渗透数学思想
一、“符号思想”的渗透。
“符号思想”是数学的基本思想。数学作为一种学科语言,是描述世界的工具,而符号能使数学研究对象更加具体、形象,能够简明地表示出事物的本质特征与规律。符号的使用在很大程度上决定着数学的进展情况,同时它具有培养人们高度抽象思维的能力。比如:小学数学书中的“简易方程”这一部分内容向学生提出用字母表示数,它的实质是一种抽象化。其目的是为了更深刻地探索、揭示数学规律,达到更准确、更简洁地表达数学规律,在较大范围内肯定数学规律的正确性。加法的交换律用a+b=b+a,圆面积用S=πr2表示等等。此外,用方程解法来解答应用题,解法的本身也蕴含着符号思想,它主要体现在如下几个方面:(1)代数假设,用字母代替未知数,与已知数平等地参与运算;(2)代数翻译,把题中自然语言表述的已知条件,译成用符号化语言表述的方程。(3)解代数方程。把字母看成已知数,并进行四则运算,进而达到求解的目的。
可见,数学符号是贯穿于数学全部的支柱,数学符号凝结了特有的简洁性、抽象性和概括性,所以相对来说难以掌握和使用。作为数学教师,深入了解数学符号的思想,研究数学符号的教学,对促进数学教学、提高其教学质量具有重要意义。
二、“化归思想”的渗透。
“化归思想”,也称“转化思想”,它是小学数学中最关键的数学思想之一,它往往根据学生已有的经验,通过观察、推想、类比等手段,把一个实际问题通过某种转化,归结为一个数学问题,把一个较复杂的问题转化、归结为一个较简单的问题,直至转化为已经解决或容易解决的问题。其基本形式有化生为熟、化难为易、化繁为简、化整为零、化未知为已知、化一般为特殊、化抽象为具体等。给学生渗透这种思想,有利于提高学生的逻辑思维能力。
比如:在教学平面图形的面积计算中,就以化归思想、转化思想等为理论依据,实现长方形、正方形、平行四边形、三角形、梯形和圆形的面积计算公式间的同化和顺应,从而构建和完善了学生对面积计算的认知结构。小数除法通过“商不变性质”化归为除数是整数的除法;异分母分数加减法化归为同分母分数加减法;异分母分数比较大小通过“通分”化归为同分母分数比较大小等等。这些知识的学习都渗透着化归思想。
三、“数形结合”思想的渗透。
“数形结合”,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,“数形结合”的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质。在小学教学中,它主要表现在把抽象的数量关系,转化为适当的几何图形,从直观图形的特征到发现数量之间存在的联系,以达到化抽象为具体、化隐为显的目的,使问题简单、快捷地得以解决。
它可以借助简单的图形、符号和文字所作的示意图,促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。例如,我们常用画线段图的方法来解答应用题,这是用图形来代替数量关系的一种方法。我们又可以通过代数方法来研究几何图形的周长、面积、体积等,这些都体现了“数形结合”的思想。
四、“极限思想”的渗透
“极限思想”是一种重要的数学思想方法。灵活的借助极限思想,可以使某些数学问题化难为易,避免一些复杂运算,探究出解题方向或转化途径。在进行“圆的面积计算公式”和“圆柱的体积计算公式”的推导过程中,均采用“化圆为方”、“变曲为直”极限分割思路。在“观察有限分割”的基础上,“想象无限细分”,根据图形分割拼合的变化趋势,想象它们的终极状态。这样不仅使学生掌握了圆的面积和圆柱体的体积的计算公式,而且非常自然地在“曲”与“直”的矛盾转化中萌发了无限逼近的“极限思想”。
此外,现行小学教材中有许多处注意了极限思想的渗透。 在“自然数”、“奇数”、“偶数”这些概念教学时,教师可让学生体会自然数是数不完的,奇数、偶数的个数有无限多个,让学生初步体会“无限”思想;在循环小数这一部分内容中,1 ÷ 3 = 0.33…是一循环小数,它的小数点后面的数字是写不完的,是无限的,而0.99……的极限就等于1;在直线、射线、平行线的教学时,可让学生体会线的两端是可以无限延长的。
五、“集合思想”的渗透。
四边形
“集合思想” 是人类早期就有的思想方法,它将一组相关联的对象放在一起,作为讨论的范围,继而把一定程度上抽象的思维对象,有条理的列举出来,让人一目了然。例如:教学平行四边形、长方形、正方形之后,使学生明确长方形是一种特殊的平行四边形,正方形是一种特殊的长方形,用右图来表示更形象。为加深学生对这集合图的理解,再举例说明:我们全校同学好比这个最大的圈,我们年级同学是全校的一部分,我们班的同学又是全年级的一部分,第一小组的同学是全班的一小部分,也就是里面的最小一个小圈。要让学生真正理解集合图的含义,并学会应用。集合的数学思想方法在小学1~6年级各阶段都有渗透。如数的整除中就渗透了子集和交集等数学思想。集合思想可使数学与逻辑更趋于统一,从而有利于数学理论与应用的研究。利用集合思想解决问题,可以防止在分类过程中出现重复和遗漏,使抽象的数学问题具体化。
『伍』 如何在数学方法中渗透转化的教学
转化思想不仅是分析、处理数学问题中一种重要的思维方法,也是人们解决生活实际问题中常用的一种策略。正是在数学学习的过程中向学生渗透了转化思想,培养了运用转化方法来解决问题的能力,生活中学生才会将遇到的各类问题主动地进行转化,使不熟悉的问题变成比较熟悉的问题,不规范的问题变成规范的问题,无序的变成有序的,将较为烦琐、复杂的问题,变成比较简单的问题来解决。所以,在小学数学教学中渗透转化思想,是帮助学生形成解决问题的基本策略、体验解决问题的策略多样性的重要途径。
教师如何在数学教学中渗透转化思想,形成转化方法呢?首先,教师要深挖教材中蕴含转化思想的素材,合理组织;第二,渗透过程中,要点明转化方法的基本特征(尤其是高年级)及其作用;第三,渗透时要注意遵循渐进性、反复性、长期性和可行性的原则。渗透转化思想方法的策略有:
1.在知识发展中渗透
数学知识都有内在的逻辑结构,都按一定的规则、方式形成和发展,其间隐含着丰富的数学思想方法。教学中,应充分利用知识间的密切联系,在知识的相互转化、形成和发展的过程中凸显转化的思想方法。
例如,在教学“除数是小数的除法”时,教师可提出一组问题让学生思考:你会解答什么样的除法算式?我们能把小数除法转化成整数除法进行计算吗?做一做下面两组习题,看看对你有什么启示?
(1)填空并思考各式之间有什么规律,运用了什么运算性质。
93÷3=( );930÷30=( );9300÷300=( )。
(2)在括号里填上合适的数,除数必须是整数,商不变。
3.2÷0.4=( )÷( );3.6÷0.006=( )÷( );
42÷0.105=( )÷( );1.125÷0.45=( )÷( )。
通过这组习题,重温了“商不变的性质”,鼓励、点拨了学生实现除数由小数到整数的转化,学生在充分感知中明确了算理,在探索中逐步掌握了算法,同时加深了对转化方法的认识。
其实,在数的运算中,都是把小数乘法、除法转化成整数乘法去运算的,分数除法转化成分数乘法等;在几何知识中,都是把平面图形的面积公式与立体图形的体积公式等的推导转化成已学过的图形进行……在教学这些内容的过程中,教师一定要让学生感受转化思想是构建知识的“桥梁”,没有这座“桥梁”,新问题就无法解决。
教师要善于抓住新知识形成发展过程中能渗透转化思想的契机,引导学生思考方向,激发思维策略,让学生在学习新知识的同时领悟隐含于其中的数学思想方法。
2.在实验操作中渗透
实验操作是学生参与数学实践活动的重要手段。通过实验操作获得的转化思想方法更形象、更深刻、更能实现迁移,有利于提高学习能力。因此,在引导实验操作时,不能仅仅停留在为理解知识而操作,更要让学生知道为什么这样操作,也就是要领悟其中的转化思想方法。
例如,教学“平行四边形的面积”时,学生发现用数方格的方法求平行四边形的面积有困难,思路受阻,教师及时点拨能否把平行四边形转化成以前学过的图形来求。经过一番探索,学生用剪拼的办法,将平行四边形转化成长方形,而后又将平行四边形的底、高转化成长方形的长、宽,从而找到求平行四边形面积的方法。
又如,在学生掌握长方体、正方体的体积计算公式后,教师可以出示一个不规则的铁块,让学生思考:要锻造这样一块铁块,需要多少材料?学生们会认为求出它的体积就可以了。但是怎样求出这个不规则铁块的体积呢?还能用长方体、正方体的体积计算公式计算吗?引导学生想到可以利用转化的思想方法来解决这个问题。接下来,老师一定要放手让学生交流讨论,怎样通过转化计算出铁块的体积?学生们可以通过动手实践,具体操作,找到许多解决这个问题的方案,最终求出铁块的体积。操作中不仅体会到了转化思想的运用,还深刻地感受到了转化方法的价值。
操作的本质是让学生获得转化的直观(直觉),在直接的、感性的经验基础上,经过观察、推理、反省(反思),从而形成对知识的抽象。这样的过程可以帮助学生形成理解性掌握,有助于积累基本的活动经验,有助于感悟学科思维方式。
『陆』 如何在"统计与概率"教学中渗透数学转化思想
质疑问难是学生自主学习的重要表现,优化课堂结构,激活学生的主体意识专,必须鼓励学生属质疑问难。教师要创造和谐融合的课堂气氛,允许学生随时“插嘴”、提问、争辩,甚至提出与教师不同的看法。学生有疑而问、质疑问难,是用心思考、自主学习、主动探究的可贵表现,理应得到老师的热情鼓励和赞扬。现在对学生的随时“插嘴”,提出的各种疑难问题,应抱欢迎、鼓励的态度给与肯定,并做出正确的解释。
『柒』 如何在数学教学中渗透转化思想
代数,先厘清三种变型——代数式变型,关系式变型,等量代换变型;然后内要理解算术(综合算式,容运算)-代数(代数式,代数方程,运算对象一般化)-函数(运算关系也一般化)这条主线;在基本运算和变型巩固的同时,构建消元,降次等提纲挈领的大思路。
几何,上述大体仍适用,另外还要——重视画图,重视逻辑性表达,重视言简意赅。
激发兴趣,形成刻苦努力的良性循环;最不济,尽力提高学生的逻辑能力。
『捌』 在小学数学教学中怎样渗透转化思想 南京廖华
转化思想是数学思想的重要组成部分。它是指对于直接求解比较困难的问题,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换,将其转化为一个新问题,通过新问题的求解,使原问题得以解决。它是从未知领域发展,通过数学元素之间的因果联系向已知领域转化,从中找出它们之间的本质联系,解决问题的一种思想方法。在解决数学问题时,除极简单的问题外,几乎每个数学问题的解决都是通过转化为已知的问题来实现的。数学学习的过程就是解决数学问题的过程,解决数学问题也就是一次次从未知转化成已知的过程。从这个意义上来讲,小学生学习数学离不开转化的思想方法。所以,教学中逐步渗透转化思想,使学生掌握转化的方法,是提高学生数学学习能力的重要策略。在小学的教学内容中,很多知识点的教学都可以渗透转化的思想。像在五年级上册的《小数乘整数》教学中,教学的基准点就可以定位让学生通过“把小数乘整数”转化为“整数乘整数”,利用知识的迁移作用帮助学生掌握“小数乘整数”的运算方法,;再有分数除法的教学,让学生知道分数除法应转化为分数乘法进行计算;按比例分配应用题转化为分数应用题解答;在三角形的面积计算公式推导时,转化为与它等底等高的平行四边形。
『玖』 如何在"图形与几何"的教学中有效渗透化归思想
一、 引新中渗透
例如:老师在教学分数的基本性质时,有分数的基本性质的学习迁移到比的基本性质的学习。
教学中教师应抓住新旧知识之间的联结点,创设情境,让学生初步感悟数学的思想方法,为学生搭建有意建构的桥梁,让学生运用转化类比的数学思想方法进行合理的正迁移。如教学京版数学教材第十二册圆柱的认识一课时,我是这样进行导入环节的:
如在教学“圆柱的认识”时,教师提出如下问题:“同学们,你们知道孙悟空之所以神通广大不仅仅是他有七十二般变化,更是因为他有一件降妖除魔的法宝,同学们知道它是什么吗?”学生异口同声的回答:“如意金箍棒。”“同学们知道它是什么形状的吗?”“是圆柱形的”“同学们你们知道它和我们平常见到的如粉笔、电线杆等柱体有什么不同吗?”这时学生的学习兴趣就浓了,踊跃发言。老师这时可以趁势打铁:“我们这一节课要学习的圆柱和粉笔、电线杆不一样。哪我们所学习的圆柱又是什么形状的呢?圆柱圆柱,两头是圆,中间是柱。两头是什么样的两个圆?中间是柱,中间又是什么样的柱子?”这时老师可以要求学生分组讨论交流,课堂气氛一下子就活跃了。有同学们熟悉而又感兴趣的话题迁移到教学中来,教学效果可想而知。
二、过程中渗透
1、渗透对应的思想方法。对应是人的思维对两个集合间问题联系的把握,是现代数学的一个最基本的概念。小学数学教学中主要利用虚线、实线、箭头、计数器等图形将元素与元素、实物与实物、数与算式、量与量联系起来,渗透对应思想。
在小学数学中,有很多方面运用了对应的数学思想方法,如教材六年级教材中的数对,和根据方向和距离来确定物体的位置,无不融进了一一对应的数学思想。
2、渗透分类的思想方法。“分类”就是把具有相同属性的事物归纳在一起,它的本质是把一个复杂的问题分解成若干个较为简单的问题。如老师在教学统计与初步这一小节内容时,要学生统计出一小时内经过该路口的各种车辆各有多少时,通过学生们的分类整理,能有效纠正学生的无序性甚至盲目拼凑的毛病,有利于培养学生的逻辑思维能力。
3、渗透集合的思想方法。集合的数学思想方法是从某一角度看所研究的对象,使之成为合乎一定抽象要求的元素。在小学数学教学中,通常采用直观手段,利用画集合图的办法来渗透集合思想。
例如教学长方体、正方体之后,使学生明确正方体是长、宽、高分别相等的长方体,即正方体是一种特殊的长方体,用圆圈图表示更形象。让他们感知大圈内的物体具有某种共同的属性,可以看作一个整体,这个整体就是一个集合——长方体集合,小圈内的物体也具有某种共同的属性,可以看作一个小整体,这个小整体就是一个小集合——正方体集合,如长方体集合包含正方体集合。集合的数学思想方法在小学各年级段都有所渗透,如数的整除中就渗透了子集和交集等数学思想。
4、渗透符号化思想。渗透符号化思想主要是指人们有意识地、普遍地运用符号去表达研究的对象,恰当的符号可以清晰、准确、简洁地数学思想、概念、方法和逻辑关系。
符号化思想在小学数学内容中随处可见,教师要有意识地进行渗透。
例如:在教学加法结合律时,我首先让学生通过试题计算明确:三个数相加,可以先把前面两个数相加,再和第三个数相加;也可以先把后两个数相加,再和第一个数相加,结果不变。把它变成符号化的语言就是:a+b+c=a+(b+c)在这里,一定要让学生明确每个符号的意义,知道这样表示更一般化、抽象化,也更简洁,更能表示一般规律,进而再引导学生用符号化语言表达两个数的差与一个数相乘的规律,加深理解符号的含义,建立符号化思想。当然像我们所学过的一些计算公式等,无不渗透了数学思想在里面。
5、渗透数形结合的思想。数形结合思想方法是指将数与式的代数信息和点与形的几何信息互相转换,把数量关系的精确深刻与几何图形的形象直观有机地结合起来,用代数方法去解决几何问题或用几何方法去解决代数问题,从而易于将已知条件和解题目标联系起来,使问题得到解决。
例如:老师在教学应用题时,常常要借助于线段图来帮助学生理解,使教学起到事半功倍的效果。如“修路队前三天修了全长的30%,照这样计算,修完全程一共需要多少天?”通过画图来进行教学,学生易于理解,老师讲课也轻松。这样做,帮助学生借助数形结合理解了退位减法笔算算理,利于学生掌握笔算方法。
三、练习中渗透
练习是数学教学的重要环节,习题的设计和选择不仅要体现基础性、层次性和可选择性,而且要具有实践性、应用性、探索性和开放性,做到基础性练习与发展性练习协调互补,使数学练习适应不同学生发展的需要。教师应精心设计练习,在巩固练习中运用数学思想方法。
例如:在学习了分数、百分数应用题之后,我为学生出示了这样一道练习题:一条路全长1200米,修路队前三天就修了它的30%,照这样计算,修完这条路一共需要多少天?
老师在教学中引导学生可以借助于单位“1”来进行计算。老师可以把“12——00米”这一条件盖起来,让同学们自由解答。
师:这样做,简化了解题思路,同学们想不想找规律?(想)刚才这道题我们运用了“转化”的思想方法:“把已知数量看作单位“1”,有“前三天就完成它的30%,不难算出这个修路队每天修全长的10%,那么修完这条路需要多少天就简单了。再者有”前三天修了它的30%,不难看出没有修的占70%,则还需要7天。师边说边显示这一简化思路的基本方法,并让学生再议一议上述运用“转化”思想方法的解题关键。
上述练习环节中,我在新旧方法的联结点上巧妙设问,激发了学生探索新方法的兴趣和情感,在探索新方法的过程中渗透了转化的思想方法,并在教师小结和学生议一议的过程中巩固了这种思想方法,
与此同时,发展了学生的思维能力。
四、复习中渗透
复习课应遵循数学新课程标准的要求,紧扣教材的知识结构,及时渗透相关的数学思想和方法。例如:渗透函数思想。函数概念以变化为前提,利用变化的过程,才能使学生感受到函数思想。于“变”中把握“不变”,是函数思想的集中体现。
例如:由商不变性质的复习,联系分数的基本性质,和比的基本性质,一方面强化了他们三者之间联系,另一方面让同学们不难看出这三个性质是相通的。在梳理、沟通商不变的性质与其它知识间的内在联系,使之形成知识网络的同时,既加深对商不变性质的理解,又感受到了“变”与“不变”的函数思想。
在实际教学中,我们要深入钻研教材,努力挖掘教材中可以进行数学思想方法渗透的各种因素,把握好课堂教学中进行数学思想方法渗透的契机,根据儿童的心理特征、接受能力,采用相应的教学手段,使学生逐步掌握现代数学思想方法,从而发展学生的思维能力和创新能力