⑴ 小学数学教学教案设计
“植树问题”教学设计及说课
教学内容:人教版义务教育课程标准实验教材四年级(下册)第117---118页例1、例2。
教学目标:
1. 通过探究发现一条线段上两端要种和两端不种两种不同情况植树问题 的规律。
2. 使学生经历和体验“复杂问题简单化”的解题策略和方法。
3. 让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。
一、 谈话引入,明确课题
母亲节刚过,我们马上又要迎来一个快乐的节日——“六·一儿童节 ”,这也是全世界少年儿童共同的节日。其实,一年中有意义的日子还有很多,你还知道哪些?能说几个吗?(生说)
大家知道3月12日是什么日子吗?(植树节)你参加过植树活动吗?植树不仅能美化环境,净化空气,而且植树中还有很多数学问题。今天这节课,我们就一起来研究“植树问题”。(板书课题:植树问题)
二、 引导探究,发现“两端要种”的规律
1. 创设情境,提出问题。
①课件出示图片。
介绍:这是我县新修的一条公路。公路中间有一条绿化带,现在要在绿化带中种一行树,怎么种呢?
出示题目:这条公路全长1000米,每隔5米种一棵树(两端要种)。一共需要多少棵树苗?
②理解题意。
a. 指名读题,从题中你了解到了哪些信息?
b. 理解“两端”是什么意思?
指名说一说,然后师实物演示:指一指哪里是这根小棒的两端?
说明:如果把这根小棒看作是这条绿化带,在绿化带的两端要种就是在绿化带的两头要种。
③算一算,一共需要多少棵树苗?
④反馈答案。
方法一:1000÷5=200(棵)
方法二:1000÷5=200(棵) 200 +2=202(棵)
方法三:1000÷5=200(棵) 200 +1=201(棵)
师:现在出现了三种答案,而且每种答案都有不少的支持者,到底哪种答案是正确的呢?咱们可不可以画图模拟实际种一种?如果从图上一棵一棵种到1000米,数一数,是不是就能知道到底谁的答案是正确的了呢?
2. 简单验证,发现规律。
①画图实际种一种。
课件演示:我们用这条线段表示这条绿化带。“两端要种”,我们从绿化带的这头开始,先在头儿上种上一棵,然后隔5米再种一棵,再隔5米再种一棵,再隔5米再种一棵,照这样一棵一棵的种下去……
师:大家看,已经种了多少米?(45米)这么长时间才种了45米,一共要种多少米?(1000米)要一棵一棵一棵一直种到1000米呀?!同学们,你有什么想法?(太累了,太麻烦了,太浪费时间了)
师:老师也有同感,一棵一棵种到1000米确实太麻烦了。其实,像这种比较复杂的问题,在数学上还有一种更好的研究方法,大家想知道吗?这种方法可不是一般的方法。大家听好喽,这种方法就是:遇到比较复杂的问题先想简单的,从简单的问题入手来研究。比如:1000米的路太长了,我们可以先在短距离的路上种一种,看一看4蠹蚁氩幌胗谜庵址椒ㄊ砸皇裕?
②画一画,简单验证,发现规律。
a. 先种15米,还是每隔5米种一棵,画图种一种,看种了多少棵?比一比,看谁画得快种的好。(板书:3段 4棵)
b. 跟上面一样,再种25米看一看,这次你又分了几段,种了几棵?(板书:5段 6棵)
c. 任意选择一段距离再种一种,看这次你又分了几段,种了几棵?从中你发现了什么?
(板书: 2段 3棵;7段 8棵;10段 11棵。)
d. 你发现了什么?
小结:你们真了不起,发现了植树问题中非常重要的一个规律,那就是:
(板书:两端要种:棵树=段数+1)
③应用规律,解决问题。
a. 课件出示:前面例题
问:应用这个规律,前面这个问题,能不能解决了?那个答案是正确的?
1000÷5=200 这里的200指什么?
200 +1=201 为什么还要+1?
师:这个“秘方”好不好?
通过简单的例子,发现了规律,应用这个规律解决了这个复杂的问题。以后,再遇到“两端要种”求棵树,知道该怎么做了吗?
b. 解决实际问题
运动会上,在笔直的跑道的一侧插彩旗,每隔10米插一面(两端要插)。这条跑道长100米,一共要插多少面彩旗?(学生独立完成。)
问:这道题是不是应用植树问题的规律解决的?
师:看来,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。
小结:刚才,我们应用发现的规律,解决了一个实际问题。我们已经知道,“两端要种”求棵树用段数+1;如果“两端不种”棵树和段数又会有怎样的关系呢?
三、 合作探究,“两端不种”的规律
1. 猜测“两端不种”的规律。
猜测结果是:两端不种:棵树=段数-1
师:到底同学们的猜测是不是正确呢?我们还是用前面学习的方法,举简单的例子画一画,种一种。
要求:每人先独立画一段路种种看;然后4人一组进行交流。你们组发现了什么规律?
2. 独立探究,合作交流。
3. 展示小组研究成果,发现规律,验证前面的猜测。
小结:同学们太了不起了,通过举简单的例子,自己又发现了“两端不种”的规律:棵树=段数-1。如果“两端不种”求棵树,你会做了吗?
4. 做一做。
①在一条长2000米的路的一侧种树,每隔10米种一棵(两端不种)。一共需要多少棵树苗?(学生独立完成)
②师:同学们注意看,这道题发生了什么变化?
课件闪烁:将“一侧”改为“两侧”
问:“两侧种树 ”是什么意思?实际要种几行树 ?会做吗?赶紧做一做。
小结:今天我们研究了植树问题的两种情况。发现了两端要种:棵树=段数+1;两端不种:棵树=段数—1。以后同学们在做题的时候,一定要注意分清是“两端要种”还是“两端不种”。
四、 回归生活,实际应用
1. 一根木头长8米,每2米锯一段。一共要锯几次?(学生独立完成。)
8÷2=4(段)
4—1=3(次)
问:为什么要—1?这相当于今天学习的植树问题中的那种情况?
2. 我们身边类似的数学问题。
①看,这一列共有几个同学?(4个)如果每相邻两个同学的距离是1米,从第1个同学到最后一个同学的距离是多少米?如果这一列共有10个同学呢?100个同学呢?
②这一列还是4个同学,如果每相邻两个同学之间的距离是2米,从第一个同学到最后一个同学的距离是多少米呢?
3.在一条路的一侧种树,每隔6米种一棵,一共种了41棵树。从第1棵树到最后一棵树的距离是多少米?
五、 全课总结
通过今天的学习,你有哪些收获?
师:通过今天的学习,我们不仅发现了植树问题中两端要种和两端不种的规律,而且还学习了一种研究问题的方法,那就是遇到复杂问题先想简单的。植树中的学问还有很多,有兴趣的同学,课下可以查阅有关的资料继续研究。
“植树问题”说课
“植树问题”是人教版新课程标准实验教材四年级下册“数学广角”的内容。大家都知道,数学的思想方法是数学的灵魂。本册安排“植树问题”的目的就是向学生渗透复杂问题从简单入手的思想。为此,本课制定了三个教学目标:
1. 通过探究发现一条线段上两端要种和两端不种两种不同情况植树问题的规律。
2. 学生经历和体验“复杂问题简单化”的解题策略和方法。
3. 让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。
本课教学分四大环节:
一、谈话导入,明确课题
二、引导探究,发现“两端要种”的规律
1. 创设情境,提出问题。
通过创设在公路中间绿化带中植树的现实问题情境,提出“共需多少棵树苗的问题”。学生在解答的过程中出现了三种不同的答案,到底哪种答案对呢?引导学生通过画图实际种一种去检验。通过模拟种学生体验到一棵一棵种到1000米太麻烦了,于是老师介绍研究复杂问题的方法:遇到复杂问题想简单的,从简单问题入手去研究。(说明:为了使学生对复杂问题简单化的思想体验得更深刻,教材原题是在100米的小路的一侧植树我们将100米改为了1000米。)
2.简单验证,发现规律。
在举简单例子画一画这个环节,安排了两个小层次:
① 按老师要求画。
② 学生任意画。
通过按老师要求画,学生对棵树和段数的关系已有了一定的感性认识。然后让学生再任意画一画,种一种,更丰富了学生的感性材料,为学生顺利发现并总结规律打下了基础。
3.应用规律,解决问题。
①应用规律,验证前面例题哪个答案是正确的。
②应用规律,解决插多少面小旗的问题。
这样一方面巩固刚发现的规律,另一方面使学生认识到植树问题的规律不仅仅能解决植树的问题,还能解决生活中很多类似的问题。
三、合作探究“两端不种”的规律
1. 猜测“两端不种”的规律。
猜测是一种培养学生推理能力的好方法。学生已经发现了“两端要种”的规律,这时候老师提出如果两端不种,棵数和段数又会有怎样的规律呢?有了前面的学习基础,学生的思维非常活跃,想表达的欲望也很强烈。所以这时候让学生进行猜测是很有必要的,通过验证证明绝大多数同学的猜测是正确的,这样学生的研究成果被认可使学生会有一种成就感,从而也更增强了学生学习数学的信心。
2. 独立操作,探究规律。
有了前面的学习基础,放手让学生先独立探究再合作交流,通过简单的例子验证前面的猜测,发现两端不种的规律。在这个过程中,学生对复杂问题从简单入手的数学思想又有了更深刻的体验。
四、回归生活,实际应用
设计了三道题:锯木头、算第一个同学和最后一个同学的距离以及对算距离问题的进一步巩固。通过解决生活中的问题,使学生感受到数学知识源于生活,用于生活,数学就在我们身边。从而使学生深刻感受到数学的应用价值,激发了学生学习数学的兴趣。
不错吧
⑵ 作为科代表,被任课老师讨厌是种怎样的体验
不爽又不能说啥的感觉,看他就是那种,看不惯他又干不掉他的感觉,重点是还得每天面对他,给他干活。
记得我上初中那会,我们选历史课代表,因为第一次考试我的历史成绩是我们班第一,所以老师就义无反顾的选择了我当课代表,当时还是挺开心的,因为挺喜欢这个老师的,后来由于学校教师紧张,我们历史老师被选去教初三了,给我们新调了一个老师,于是就开始了我俩的漫长生活,这是一个女历史老师,教的课特别差劲,当然我不是因为讨厌他才那么说的,也不是因为她讨厌我,是发自肺腑的客观评价他教的课真的挺烂的,所以我们班的历史成绩就特别差,大家也不写历史作业,每次我给她抱作业区,她都一副苦大仇深的样子看着我,那种感觉就是我故意让大家不交作业,害的大家成绩不好,显得她的课教的不好的感觉,当时的我真的表示很无奈,当然当时我的历史成绩也不好,他就更不喜欢我了,他就觉得身为一个历史课代表连自己的历史成绩都没那么差劲,每天一副瞧不起我的样子,当时的我真的是有苦说不出啊。不过也没办法,谁让人家是老师,你是学生呢。
最后,我想说如果你的任课老师真的很讨厌你,那种感觉真的很难受,如果你实在无法忍受,那么就和你的任课老师说清楚,如果你是在不想闹得双方都尴尬,你也可以和老师说你不想再当他的课代表了,说白了,毕竟眼不见心不烦嘛。
⑶ 小学数学教学方面的论文,求一篇3000字左右的小学数学论文
解题策略
——探索→猜测→检验→探索→猜测→检验→……
2002年推出的小学数学新课程标准与原大纲相比,有很多新的内容,其中“培养创新意识和实践能力”、鼓励“猜测”和“探索”,可以说是“新课标”中的灵魂”。“新课标” 虽然仅在“培养学生的计算能力”中提到“重视学生检验的习惯”,但我认为,作为数学检验习惯和数学检验能力的培养,理应贯穿数学教学内容的全部,理应贯穿数学教学的始终。而且如果把探索、猜测和检验有机结合起来,将构成一种非常重要的数学解题策略。这种解题策略可公式化为:探索→猜测→检验→探索→猜测→检验→……,这种解题策略是“培养创新意识和实践能力”的重要途径。
解题策略中的“猜测”当然不是毫无依据的瞎猜,而是在探索(至少是初步探索)基础上有一定根据的猜测。既然是猜测,就不一定正确,就有必要进行检验。通过检验,又必然出现两种可能:猜测正确和猜测有误。如果猜测正确(经得起检验),则问题获得解决;倘若猜测有误,就应分析探索猜错的原因,探索改善的途径,并进一步作出新的较为合理的猜测。对新的猜测当然又必须进行新的检验,如此循环往复,直至求出问题的正确答案。这就是“探索→猜测→检验→探索→猜测→检验→……”的解题策略。
试看下面的例子:
一个笼子里有鸡兔两物,数一数有28个头,有100个足,问鸡兔各几只?
这种“鸡兔同笼”的问题,一般都是用“假设法”求解的,但“假设法”的思路(逻辑思维)难以被一般的小学生理解,如果我们运用“探索→猜测→检验→探索→猜测→检验→……”这一解题策略。那么我们可以得到小学低年级学生也能理解和掌握的下列解答。
探索:因为100÷4=25,所以0<兔的只数<25。
猜测:取0~25的中间数13作为兔的只数,则鸡的只数为28-13=15(只)
检验1:总足数=4×13+2×15=82
探索:因为82<100,所以13<兔只数<25。
猜测2:取13~25的中间数19作为兔只数,则鸡的只数为28-19=9(只)
检验2:总足数=4×19+2×9=94。
探索:因为94<100,所以19<兔只数<25。
猜测3:取19~25的中间数22作为兔的只数,则鸡的只数为28-22=6(只)
检验3:总足数=4×22+2×6=100,正好符合题意。
所以笼中有兔22只,有鸡6只。
上述解答虽然看似麻烦费时,但富含探索意识。其中的不断合理猜测与检验,并对检验结果进行校正,从而逐步逼近,直至找到正确答案的过程,符合人类探索、发现、发明、创造的认识过程,体现了“失败乃成功之母”的认识特点,对学生具有极高的教育价值,真正能使学生的创新意识和探索能力得到有效培养。选取中间数的方法,蕴涵了“中值”、“优选”等重要的数学思想方法,这对学生进一步学习数学是大有裨益的。通过这种解题锻炼,直接使学生掌握了探索→猜测→检验→探索→猜测→检验→……这一在实践中(在数学中当然也不例外)解决问题的重要策略,这将有效地培养学生运用数学从事实践工作的能力。
如果对第一次猜测导致的误差执果溯因,进行分析并稍作逻辑推理,则可快捷获得正确答案。
事实上通过探索和第一次猜测(13只兔、15只鸡)并检验,得知足数82比实际少了100-82=18。导致这一误差的原因虽然是猜测的兔子只数少于实际兔子只数。在总头数28不变的情况下,每增加1只兔,这时相应地减少1只鸡(或者理解为把1只鸡换成1只兔),总足数便增加2,要增加18只足,就需要增加18÷2=9(只)兔,因此,兔的只数应为13+9=22(只),从而鸡的只数为28-22=6(只),经检验,结论正确。
后一解法较前一解法多一点逻辑思维的含量,显然也是一种优秀的解题方法(策略),如果说前一种解法适合小学低年级的学生,那么后一种解法完全适合小学高年级学生的认知特点和水平。
在小学数学教学中,根据学生的认知特点和知识水平并结合学生生活实际,精心设计一些探索性和开放性的问题,引导学生运用“探索→猜测→检验→探索→猜测→检验→……”这一解题策略求解,将有利于对学生创新意识,探索意识和实践能力的培养。
⑷ 跪求小学数学教学设计
教学内容:人教版义务教育课程标准实验教材四年级(下册)第117---118页例1、例2。
教学目标:
1. 通过探究发现一条线段上两端要种和两端不种两种不同情况植树问题 的规律。
2. 使学生经历和体验“复杂问题简单化”的解题策略和方法。
3. 让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。
一、 谈话引入,明确课题
母亲节刚过,我们马上又要迎来一个快乐的节日——“六·一儿童节 ”,这也是全世界少年儿童共同的节日。其实,一年中有意义的日子还有很多,你还知道哪些?能说几个吗?(生说)
大家知道3月12日是什么日子吗?(植树节)你参加过植树活动吗?植树不仅能美化环境,净化空气,而且植树中还有很多数学问题。今天这节课,我们就一起来研究“植树问题”。(板书课题:植树问题)
二、 引导探究,发现“两端要种”的规律
1. 创设情境,提出问题。
①课件出示图片。
介绍:这是我县新修的一条公路。公路中间有一条绿化带,现在要在绿化带中种一行树,怎么种呢?
出示题目:这条公路全长1000米,每隔5米种一棵树(两端要种)。一共需要多少棵树苗?
②理解题意。
a. 指名读题,从题中你了解到了哪些信息?
b. 理解“两端”是什么意思?
指名说一说,然后师实物演示:指一指哪里是这根小棒的两端?
说明:如果把这根小棒看作是这条绿化带,在绿化带的两端要种就是在绿化带的两头要种。
③算一算,一共需要多少棵树苗?
④反馈答案。
方法一:1000÷5=200(棵)
方法二:1000÷5=200(棵) 200 +2=202(棵)
方法三:1000÷5=200(棵) 200 +1=201(棵)
师:现在出现了三种答案,而且每种答案都有不少的支持者,到底哪种答案是正确的呢?咱们可不可以画图模拟实际种一种?如果从图上一棵一棵种到1000米,数一数,是不是就能知道到底谁的答案是正确的了呢?
2. 简单验证,发现规律。
①画图实际种一种。
课件演示:我们用这条线段表示这条绿化带。“两端要种”,我们从绿化带的这头开始,先在头儿上种上一棵,然后隔5米再种一棵,再隔5米再种一棵,再隔5米再种一棵,照这样一棵一棵的种下去……
师:大家看,已经种了多少米?(45米)这么长时间才种了45米,一共要种多少米?(1000米)要一棵一棵一棵一直种到1000米呀?!同学们,你有什么想法?(太累了,太麻烦了,太浪费时间了)
师:老师也有同感,一棵一棵种到1000米确实太麻烦了。其实,像这种比较复杂的问题,在数学上还有一种更好的研究方法,大家想知道吗?这种方法可不是一般的方法。大家听好喽,这种方法就是:遇到比较复杂的问题先想简单的,从简单的问题入手来研究。比如:1000米的路太长了,我们可以先在短距离的路上种一种,看一看4蠹蚁氩幌胗谜庵址椒ㄊ砸皇裕?
②画一画,简单验证,发现规律。
a. 先种15米,还是每隔5米种一棵,画图种一种,看种了多少棵?比一比,看谁画得快种的好。(板书:3段 4棵)
b. 跟上面一样,再种25米看一看,这次你又分了几段,种了几棵?(板书:5段 6棵)
c. 任意选择一段距离再种一种,看这次你又分了几段,种了几棵?从中你发现了什么?
(板书: 2段 3棵;7段 8棵;10段 11棵。)
d. 你发现了什么?
小结:你们真了不起,发现了植树问题中非常重要的一个规律,那就是:
(板书:两端要种:棵树=段数+1)
③应用规律,解决问题。
a. 课件出示:前面例题
问:应用这个规律,前面这个问题,能不能解决了?那个答案是正确的?
1000÷5=200 这里的200指什么?
200 +1=201 为什么还要+1?
师:这个“秘方”好不好?
通过简单的例子,发现了规律,应用这个规律解决了这个复杂的问题。以后,再遇到“两端要种”求棵树,知道该怎么做了吗?
b. 解决实际问题
运动会上,在笔直的跑道的一侧插彩旗,每隔10米插一面(两端要插)。这条跑道长100米,一共要插多少面彩旗?(学生独立完成。)
问:这道题是不是应用植树问题的规律解决的?
师:看来,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。
小结:刚才,我们应用发现的规律,解决了一个实际问题。我们已经知道,“两端要种”求棵树用段数+1;如果“两端不种”棵树和段数又会有怎样的关系呢?
三、 合作探究,“两端不种”的规律
1. 猜测“两端不种”的规律。
猜测结果是:两端不种:棵树=段数-1
师:到底同学们的猜测是不是正确呢?我们还是用前面学习的方法,举简单的例子画一画,种一种。
要求:每人先独立画一段路种种看;然后4人一组进行交流。你们组发现了什么规律?
2. 独立探究,合作交流。
3. 展示小组研究成果,发现规律,验证前面的猜测。
小结:同学们太了不起了,通过举简单的例子,自己又发现了“两端不种”的规律:棵树=段数-1。如果“两端不种”求棵树,你会做了吗?
4. 做一做。
①在一条长2000米的路的一侧种树,每隔10米种一棵(两端不种)。一共需要多少棵树苗?(学生独立完成)
②师:同学们注意看,这道题发生了什么变化?
课件闪烁:将“一侧”改为“两侧”
问:“两侧种树 ”是什么意思?实际要种几行树 ?会做吗?赶紧做一做。
小结:今天我们研究了植树问题的两种情况。发现了两端要种:棵树=段数+1;两端不种:棵树=段数—1。以后同学们在做题的时候,一定要注意分清是“两端要种”还是“两端不种”。
四、 回归生活,实际应用
1. 一根木头长8米,每2米锯一段。一共要锯几次?(学生独立完成。)
8÷2=4(段)
4—1=3(次)
问:为什么要—1?这相当于今天学习的植树问题中的那种情况?
2. 我们身边类似的数学问题。
①看,这一列共有几个同学?(4个)如果每相邻两个同学的距离是1米,从第1个同学到最后一个同学的距离是多少米?如果这一列共有10个同学呢?100个同学呢?
②这一列还是4个同学,如果每相邻两个同学之间的距离是2米,从第一个同学到最后一个同学的距离是多少米呢?
3.在一条路的一侧种树,每隔6米种一棵,一共种了41棵树。从第1棵树到最后一棵树的距离是多少米?
五、 全课总结
通过今天的学习,你有哪些收获?
师:通过今天的学习,我们不仅发现了植树问题中两端要种和两端不种的规律,而且还学习了一种研究问题的方法,那就是遇到复杂问题先想简单的。植树中的学问还有很多,有兴趣的同学,课下可以查阅有关的资料继续研究。
“植树问题”说课
“植树问题”是人教版新课程标准实验教材四年级下册“数学广角”的内容。大家都知道,数学的思想方法是数学的灵魂。本册安排“植树问题”的目的就是向学生渗透复杂问题从简单入手的思想。为此,本课制定了三个教学目标:
1. 通过探究发现一条线段上两端要种和两端不种两种不同情况植树问题的规律。
2. 学生经历和体验“复杂问题简单化”的解题策略和方法。
3. 让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。
本课教学分四大环节:
一、谈话导入,明确课题
二、引导探究,发现“两端要种”的规律
1. 创设情境,提出问题。
通过创设在公路中间绿化带中植树的现实问题情境,提出“共需多少棵树苗的问题”。学生在解答的过程中出现了三种不同的答案,到底哪种答案对呢?引导学生通过画图实际种一种去检验。通过模拟种学生体验到一棵一棵种到1000米太麻烦了,于是老师介绍研究复杂问题的方法:遇到复杂问题想简单的,从简单问题入手去研究。(说明:为了使学生对复杂问题简单化的思想体验得更深刻,教材原题是在100米的小路的一侧植树我们将100米改为了1000米。)
2.简单验证,发现规律。
在举简单例子画一画这个环节,安排了两个小层次:
① 按老师要求画。
② 学生任意画。
通过按老师要求画,学生对棵树和段数的关系已有了一定的感性认识。然后让学生再任意画一画,种一种,更丰富了学生的感性材料,为学生顺利发现并总结规律打下了基础。
3.应用规律,解决问题。
①应用规律,验证前面例题哪个答案是正确的。
②应用规律,解决插多少面小旗的问题。
这样一方面巩固刚发现的规律,另一方面使学生认识到植树问题的规律不仅仅能解决植树的问题,还能解决生活中很多类似的问题。
三、合作探究“两端不种”的规律
1. 猜测“两端不种”的规律。
猜测是一种培养学生推理能力的好方法。学生已经发现了“两端要种”的规律,这时候老师提出如果两端不种,棵数和段数又会有怎样的规律呢?有了前面的学习基础,学生的思维非常活跃,想表达的欲望也很强烈。所以这时候让学生进行猜测是很有必要的,通过验证证明绝大多数同学的猜测是正确的,这样学生的研究成果被认可使学生会有一种成就感,从而也更增强了学生学习数学的信心。
2. 独立操作,探究规律。
有了前面的学习基础,放手让学生先独立探究再合作交流,通过简单的例子验证前面的猜测,发现两端不种的规律。在这个过程中,学生对复杂问题从简单入手的数学思想又有了更深刻的体验。
四、回归生活,实际应用
设计了三道题:锯木头、算第一个同学和最后一个同学的距离以及对算距离问题的进一步巩固。通过解决生活中的问题,使学生感受到数学知识源于生活,用于生活,数学就在我们身边。从而使学生深刻感受到数学的应用价值,激发了学生学习数学的兴趣。
⑸ 如何设计小学数学教案
我只能提供一个给你看看!
教学内容:人教版义务教育课程标准实验教材四年级(下册)第117---118页例1、例2。
教学目标:
1. 通过探究发现一条线段上两端要种和两端不种两种不同情况植树问题 的规律。
2. 使学生经历和体验“复杂问题简单化”的解题策略和方法。
3. 让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。
一、 谈话引入,明确课题
母亲节刚过,我们马上又要迎来一个快乐的节日——“六·一儿童节 ”,这也是全世界少年儿童共同的节日。其实,一年中有意义的日子还有很多,你还知道哪些?能说几个吗?(生说)
大家知道3月12日是什么日子吗?(植树节)你参加过植树活动吗?植树不仅能美化环境,净化空气,而且植树中还有很多数学问题。今天这节课,我们就一起来研究“植树问题”。(板书课题:植树问题)
二、 引导探究,发现“两端要种”的规律
1. 创设情境,提出问题。
①课件出示图片。
介绍:这是我县新修的一条公路。公路中间有一条绿化带,现在要在绿化带中种一行树,怎么种呢?
出示题目:这条公路全长1000米,每隔5米种一棵树(两端要种)。一共需要多少棵树苗?
②理解题意。
a. 指名读题,从题中你了解到了哪些信息?
b. 理解“两端”是什么意思?
指名说一说,然后师实物演示:指一指哪里是这根小棒的两端?
说明:如果把这根小棒看作是这条绿化带,在绿化带的两端要种就是在绿化带的两头要种。
③算一算,一共需要多少棵树苗?
④反馈答案。
方法一:1000÷5=200(棵)
方法二:1000÷5=200(棵) 200 +2=202(棵)
方法三:1000÷5=200(棵) 200 +1=201(棵)
师:现在出现了三种答案,而且每种答案都有不少的支持者,到底哪种答案是正确的呢?咱们可不可以画图模拟实际种一种?如果从图上一棵一棵种到1000米,数一数,是不是就能知道到底谁的答案是正确的了呢?
2. 简单验证,发现规律。
①画图实际种一种。
课件演示:我们用这条线段表示这条绿化带。“两端要种”,我们从绿化带的这头开始,先在头儿上种上一棵,然后隔5米再种一棵,再隔5米再种一棵,再隔5米再种一棵,照这样一棵一棵的种下去……
师:大家看,已经种了多少米?(45米)这么长时间才种了45米,一共要种多少米?(1000米)要一棵一棵一棵一直种到1000米呀?!同学们,你有什么想法?(太累了,太麻烦了,太浪费时间了)
师:老师也有同感,一棵一棵种到1000米确实太麻烦了。其实,像这种比较复杂的问题,在数学上还有一种更好的研究方法,大家想知道吗?这种方法可不是一般的方法。大家听好喽,这种方法就是:遇到比较复杂的问题先想简单的,从简单的问题入手来研究。比如:1000米的路太长了,我们可以先在短距离的路上种一种,看一看4蠹蚁氩幌胗谜庵址椒ㄊ砸皇裕?
②画一画,简单验证,发现规律。
a. 先种15米,还是每隔5米种一棵,画图种一种,看种了多少棵?比一比,看谁画得快种的好。(板书:3段 4棵)
b. 跟上面一样,再种25米看一看,这次你又分了几段,种了几棵?(板书:5段 6棵)
c. 任意选择一段距离再种一种,看这次你又分了几段,种了几棵?从中你发现了什么?
(板书: 2段 3棵;7段 8棵;10段 11棵。)
d. 你发现了什么?
小结:你们真了不起,发现了植树问题中非常重要的一个规律,那就是:
(板书:两端要种:棵树=段数+1)
③应用规律,解决问题。
a. 课件出示:前面例题
问:应用这个规律,前面这个问题,能不能解决了?那个答案是正确的?
1000÷5=200 这里的200指什么?
200 +1=201 为什么还要+1?
师:这个“秘方”好不好?
通过简单的例子,发现了规律,应用这个规律解决了这个复杂的问题。以后,再遇到“两端要种”求棵树,知道该怎么做了吗?
b. 解决实际问题
运动会上,在笔直的跑道的一侧插彩旗,每隔10米插一面(两端要插)。这条跑道长100米,一共要插多少面彩旗?(学生独立完成。)
问:这道题是不是应用植树问题的规律解决的?
师:看来,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。
小结:刚才,我们应用发现的规律,解决了一个实际问题。我们已经知道,“两端要种”求棵树用段数+1;如果“两端不种”棵树和段数又会有怎样的关系呢?
三、 合作探究,“两端不种”的规律
1. 猜测“两端不种”的规律。
猜测结果是:两端不种:棵树=段数-1
师:到底同学们的猜测是不是正确呢?我们还是用前面学习的方法,举简单的例子画一画,种一种。
要求:每人先独立画一段路种种看;然后4人一组进行交流。你们组发现了什么规律?
2. 独立探究,合作交流。
3. 展示小组研究成果,发现规律,验证前面的猜测。
小结:同学们太了不起了,通过举简单的例子,自己又发现了“两端不种”的规律:棵树=段数-1。如果“两端不种”求棵树,你会做了吗?
4. 做一做。
①在一条长2000米的路的一侧种树,每隔10米种一棵(两端不种)。一共需要多少棵树苗?(学生独立完成)
②师:同学们注意看,这道题发生了什么变化?
课件闪烁:将“一侧”改为“两侧”
问:“两侧种树 ”是什么意思?实际要种几行树 ?会做吗?赶紧做一做。
小结:今天我们研究了植树问题的两种情况。发现了两端要种:棵树=段数+1;两端不种:棵树=段数—1。以后同学们在做题的时候,一定要注意分清是“两端要种”还是“两端不种”。
四、 回归生活,实际应用
1. 一根木头长8米,每2米锯一段。一共要锯几次?(学生独立完成。)
8÷2=4(段)
4—1=3(次)
问:为什么要—1?这相当于今天学习的植树问题中的那种情况?
2. 我们身边类似的数学问题。
①看,这一列共有几个同学?(4个)如果每相邻两个同学的距离是1米,从第1个同学到最后一个同学的距离是多少米?如果这一列共有10个同学呢?100个同学呢?
②这一列还是4个同学,如果每相邻两个同学之间的距离是2米,从第一个同学到最后一个同学的距离是多少米呢?
3.在一条路的一侧种树,每隔6米种一棵,一共种了41棵树。从第1棵树到最后一棵树的距离是多少米?
五、 全课总结
通过今天的学习,你有哪些收获?
师:通过今天的学习,我们不仅发现了植树问题中两端要种和两端不种的规律,而且还学习了一种研究问题的方法,那就是遇到复杂问题先想简单的。植树中的学问还有很多,有兴趣的同学,课下可以查阅有关的资料继续研究。
“植树问题”说课
“植树问题”是人教版新课程标准实验教材四年级下册“数学广角”的内容。大家都知道,数学的思想方法是数学的灵魂。本册安排“植树问题”的目的就是向学生渗透复杂问题从简单入手的思想。为此,本课制定了三个教学目标:
1. 通过探究发现一条线段上两端要种和两端不种两种不同情况植树问题的规律。
2. 学生经历和体验“复杂问题简单化”的解题策略和方法。
3. 让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。
本课教学分四大环节:
一、谈话导入,明确课题
二、引导探究,发现“两端要种”的规律
1. 创设情境,提出问题。
通过创设在公路中间绿化带中植树的现实问题情境,提出“共需多少棵树苗的问题”。学生在解答的过程中出现了三种不同的答案,到底哪种答案对呢?引导学生通过画图实际种一种去检验。通过模拟种学生体验到一棵一棵种到1000米太麻烦了,于是老师介绍研究复杂问题的方法:遇到复杂问题想简单的,从简单问题入手去研究。(说明:为了使学生对复杂问题简单化的思想体验得更深刻,教材原题是在100米的小路的一侧植树我们将100米改为了1000米。)
2.简单验证,发现规律。
在举简单例子画一画这个环节,安排了两个小层次:
① 按老师要求画。
② 学生任意画。
通过按老师要求画,学生对棵树和段数的关系已有了一定的感性认识。然后让学生再任意画一画,种一种,更丰富了学生的感性材料,为学生顺利发现并总结规律打下了基础。
3.应用规律,解决问题。
①应用规律,验证前面例题哪个答案是正确的。
②应用规律,解决插多少面小旗的问题。
这样一方面巩固刚发现的规律,另一方面使学生认识到植树问题的规律不仅仅能解决植树的问题,还能解决生活中很多类似的问题。
三、合作探究“两端不种”的规律
1. 猜测“两端不种”的规律。
猜测是一种培养学生推理能力的好方法。学生已经发现了“两端要种”的规律,这时候老师提出如果两端不种,棵数和段数又会有怎样的规律呢?有了前面的学习基础,学生的思维非常活跃,想表达的欲望也很强烈。所以这时候让学生进行猜测是很有必要的,通过验证证明绝大多数同学的猜测是正确的,这样学生的研究成果被认可使学生会有一种成就感,从而也更增强了学生学习数学的信心。
2. 独立操作,探究规律。
有了前面的学习基础,放手让学生先独立探究再合作交流,通过简单的例子验证前面的猜测,发现两端不种的规律。在这个过程中,学生对复杂问题从简单入手的数学思想又有了更深刻的体验。
四、回归生活,实际应用
设计了三道题:锯木头、算第一个同学和最后一个同学的距离以及对算距离问题的进一步巩固。通过解决生活中的问题,使学生感受到数学知识源于生活,用于生活,数学就在我们身边。从而使学生深刻感受到数学的应用价值,激发了学生学习数学的兴趣。