A. 小学数学行程应用题及答案和解析ab两地
第一次相遇,甲乙二人共行了1个全程,甲行了38米
第二次相遇,甲乙二人共行了3个全程,甲行了38×3=114米
同时,甲行的还是1个全程多24米
A、B两地相距
38×3-24=90米
B. 小学数学行程应用题及答案和解析
总的来说,是可以分为两大类的,一为相向而行,一为同向而行,
要找里面的等量关系式,一般都是利用时间相等,路程一样,列等式的
C. 小学路程的应用题及答案
从甲地到乙地240公里,小明爸爸以每小时80公里的速度从甲地到乙地去,几小时可以到达?
240÷80=3(小时)
答:3小时可以到达。
D. 小学行程问题应用题20道
1.狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。问:狗再跑多远,马可以追上它?
解:
根据“马跑4步的距离狗跑7步”,可以设马每步长为7x米,则狗每步长为4x米。
根据“狗跑5步的时间马跑3步”,可知同一时间马跑3*7x米=21x米,则狗跑5*4x=20米。
可以得出马与狗的速度比是21x:20x=21:20
根据“现在狗已跑出30米”,可以知道狗与马相差的路程是30米,他们相差的份数是21-20=1,现在求马的21份是多少路程,就是 30÷(21-20)×21=630米
2.甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米?
答案720千米。
由“甲车行完全程要8小时,乙车行完全程要10小时”可知,相遇时甲行了10份,乙行了8份(总路程为18份),两车相差2份。又因为两车在中点40千米处相遇,说明两车的路程差是(40+40)千米。所以算式是(40+40)÷(10-8)×(10+8)=720千米。
3.在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?
答案为两人跑一圈各要6分钟和12分钟。
解:
600÷12=50,表示哥哥、弟弟的速度差
600÷4=150,表示哥哥、弟弟的速度和
(50+150)÷2=100,表示较快的速度,方法是求和差问题中的较大数
(150-50)/2=50,表示较慢的速度,方法是求和差问题中的较小数
600÷100=6分钟,表示跑的快者用的时间
600/50=12分钟,表示跑得慢者用的时间
4.慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?
答案为53秒
算式是(140+125)÷(22-17)=53秒
可以这样理解:“快车从追上慢车的车尾到完全超过慢车”就是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的和。
5.在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?
答案为100米
300÷(5-4.4)=500秒,表示追及时间
5×500=2500米,表示甲追到乙时所行的路程
2500÷300=8圈……100米,表示甲追及总路程为8圈还多100米,就是在原来起跑线的前方100米处相遇。
6.一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,(轨道是直的),声音每秒传340米,求火车的速度(得出保留整数)
答案为22米/秒
算式:1360÷(1360÷340+57)≈22米/秒
关键理解:人在听到声音后57秒才车到,说明人听到声音时车已经从发声音的地方行出1360÷340=4秒的路程。也就是1360米一共用了4+57=61秒。
7.猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子。
正确的答案是猎犬至少跑60米才能追上。
解:
由“猎犬跑5步的路程,兔子要跑9步”可知当猎犬每步a米,则兔子每步5/9米。由“猎犬跑2步的时间,兔子却能跑3步”可知同一时间,猎犬跑2a米,兔子可跑5/9a*3=5/3a米。从而可知猎犬与兔子的速度比是2a:5/3a=6:5,也就是说当猎犬跑60米时候,兔子跑50米,本来相差的10米刚好追完
8. AB两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A地比甲到达B地要晚多少分钟?
答案:18分钟
解:设全程为1,甲的速度为x乙的速度为y
列式40x+40y=1
x:y=5:4
得x=1/72 y=1/90
走完全程甲需72分钟,乙需90分钟
故得解
9.甲乙两车同时从AB两地相对开出。第一次相遇后两车继续行驶,各自到达对方出发点后立即返回。第二次相遇时离B地的距离是AB全程的1/5。已知甲车在第一次相遇时行了120千米。AB两地相距多少千米?
答案是300千米。
解:通过画线段图可知,两个人第一次相遇时一共行了1个AB的路程,从开始到第二次相遇,一共又行了3个AB的路程,可以推算出甲、乙各自共所行的路程分别是第一次相遇前各自所走的路程的3倍。即甲共走的路程是120*3=360千米,从线段图可以看出,甲一共走了全程的(1+1/5)。
因此360÷(1+1/5)=300千米
从A地到B地,甲、乙两人骑自行车分别需要4小时、6小时,现在甲乙分别AB两地同时出发相向而行,相遇时距AB两地中点2千米。如果二人分别至B地,A地后都立即折回。第二次相遇点第一次相遇点之间有()千米
10.一船以同样速度往返于两地之间,它顺流需要6小时;逆流8小时。如果水流速度是每小时2千米,求两地间的距离?
解:(1/6-1/8)÷2=1/48表示水速的分率
2÷1/48=96千米表示总路程
11.快车和慢车同时从甲乙两地相对开出,快车每小时行33千米,相遇是已行了全程的七分之四,已知慢车行完全程需要8小时,求甲乙两地的路程。
解:
相遇是已行了全程的七分之四表示甲乙的速度比是4:3
时间比为3:4
所以快车行全程的时间为8/4*3=6小时
6*33=198千米
12.小华从甲地到乙地,3分之1骑车,3分之2乘车;从乙地返回甲地,5分之3骑车,5分之2乘车,结果慢了半小时.已知,骑车每小时12千米,乘车每小时30千米,问:甲乙两地相距多少千米?
解:
把路程看成1,得到时间系数
去时时间系数:1/3÷12+2/3÷30
返回时间系数:3/5÷12+2/5÷30
两者之差:(3/5÷12+2/5÷30)-(1/3÷12+2/3÷30)=1/75相当于1/2小时
去时时间:1/2×(1/3÷12)÷1/75和1/2×(2/3÷30)1/75
路程:12×〔1/2×(1/3÷12)÷1/75〕+30×〔1/2×(2/3÷30)1/75〕=37.5(千米)
E. 小学数学行程问题应用题
相遇时,客车走了全程的:4÷(4+5)=4/9
货车走了全程的:1-4/9=5/9
相遇后,货车与客车的内速度比变为[5×容(1+20%)]:4=3:2
当货车又走了全程的4/9到达A地时
货车走了全程的:(4/9)×(2/3)=8/27
此时客车距离B的距离占全程的:(5/9)-(8/27)=7/27
这段距离的长为112千米
所以AB两地的全程长为:112÷(7/27)=432(千米)
F. 小学行程问题应用题
1 相遇时间:
200/(60+40)=2 分钟
狗狗一直在跑,s=2*100=200米
2 在相距终点35米处相遇 终改为中。则:
设相距s 米
(s/2+35)/8=(s/2-35)/6
s=490米 0.49km
G. 有关行程问题的应用题和答案
简单行程问题
路程=速度×时间 速度=路程÷时间 时间=路程÷速度
1.小红从家里走到学校,平均每分钟走了80米,她共走了17分钟。她家距学校有多远?
2.一列火车每小时74千米的速度从甲站朝乙站开出,12小时后火车到达乙站。甲乙两地的距离是多少千米?
3.小明骑自行车从家里出发到公园去游玩,他平均每小时行驶15千米,他家到公园相距30千米,小明早上8:00从家出发,他最早几点才能到达公园?
4.王师傅有一批货要从相距440千米的甲地送往乙地,货车每小时行驶55千米,王师傅下午4:00之前要把货送到乙地,他最晚要在什么时间出发?
5.小红家距天虹商场1200米,她与妈妈每次从家步行去天虹商场要用20分钟,昨天她们走了5分钟后,发现妈妈忘拿手机了,她与妈妈按原来的速度返回家取手机,他们这次多走了多少米路程?
6.运动场的跑到长400米,小林跑了4圈共用了16分钟,小林平均每分钟跑了多少米
7.小明骑自行车每小时行驶16千米,叔叔骑摩托车每小时行驶55千米,他们同向出发,3小时后,小明落后叔叔多远?
8.红红骑自行车每小时行驶16千米,明明骑自行车每小时行驶18千米,红红骑了4小时,明明骑了3小时。 (1)他俩谁骑的路程长? (2)骑的路程长多少?
9. A、B两地相距1080千米,甲车每小时行驶54千米,乙车每小时比甲车少行驶4千米,甲乙两车同时从A地出发驶向B地,先到的车能早到多长时间?
10. 林红每分钟走76米,林西每分钟走75米,她两都走了21分钟,林西比林红夺走多少米?
11. 芳芳每分钟走73米,她家距电影院1450米,她走18分钟到电影院了吗?
12. 小凡3分钟走了213米,小刚5分钟走了365米。他俩谁走的快?
13.一列火车每小时行驶64千米,甲乙两站相距1920千米,火车4月1日凌晨5:00从甲站出发,何时到达乙站?
14.兄妹两人同时离家去上学。哥哥每分钟走90米,妹妹每分钟走60米,哥哥到校门时,发现忘带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。问他们家离学校多远?
15.甲乙两辆汽车同时从东站开往西站。甲车每小时比乙车多行12千米,甲车行驶四个半小时到达西站后,没有停留,立即从原路返回,在距离西站31.5千米的地方和乙车相遇,甲车每小时行多少千米?
16.两人骑自行车沿着900米长的环形跑道行驶,他们从同一地点反向而行,那么经过18分钟后就相遇一次,若他们同向而行,那经过180分钟后快车追上慢车一次,求两人骑自行车的速度?
17.甲、乙两地相距360千米,客车和货车同时从甲地出发驶向乙地。货车速度每小时60千米,客车每小时40千米,货车到达乙地后停留0.5小时,又以原速返回甲地,问从甲地出发后几小时两车相遇?
18.车与慢车同时从甲、乙两地相对开出,经过12小时相遇。相遇后快车又行了8小时到达乙地。慢车还要行多少小时到达甲地?
19.两地相距380千米。有两辆汽车从两地同时相向开出。原计划甲汽车每小时行36千米,乙汽车每小时行40千米,但开车时甲汽车改变了速度,以每小时40千米的速度开出,问在相遇时,乙汽车比原计划少行了多少千米?
20.“八一”节那天,某少先队以每小时4千米的速度从学校往相距17千米的解放军营房去慰问,出发0.5小时后,解放军闻讯前往迎接,每小时比少先队员快2千米,再过几小时,他们在途中相遇?
(7)小学关于行程的应用题及答案扩展阅读:
行程问题是反映物体匀速运动的应用题。行程问题涉及的变化较多,有的涉及一个物体的运动,有的涉及两个物体的运动,有的涉及三个物体的运动。
涉及两个物体运动的,又有“相向运动”(相遇问题)、“同向运动”(追及问题)和“相背运动”(相离问题)三种情况。