① 我需要做小學六年級下冊的數學統計與概率的思維導圖,請各位朋友幫我搜集一些相關資料和知識點。
一、統計表:包括單式統計表和復式統計表
二
、
統計圖:條形統計圖,直線統計圖和扇形統計圖。他們的區別與聯系
條形統計圖
折線統計圖
扇形統計圖
特點
用一個單位長度表示一定的數量
用整個圓面積表示總數,
用圓內
各個扇形的大小表示各部分數
量占總數的百分數
用直條的長短表示數量的多少
用折線的起伏表示數量的增減變化
作用
從圖中能清楚地看出各數量的
多少,便於相互比較
從圖中能清楚地看出數量增減變化
的情況,也能看出數量的多少
從圖中能清楚地看出各部分與
總數的百分比,
以及部分與部分
之間的大小關系
種類
單式條形統計圖和復試條形統
計圖
單式折線統計圖和復試折線統計圖
三、平均數、中位數、眾數
平均數:總數量÷總個數
=
平均數
一般用移多補少的方法求一組數據的平均數。
中位數:
將一組數據按照大小順序依次排列,
奇數的數據時候把處在最中間位置的一個數據
(或偶數個數據時候
最中間兩個數據的平均數)叫作這組數據的中位數。
眾數:一組數據中出現次數最多的數據,叫作這組數據的眾數。一組數據的眾數可能有
1
個,也可能有
2
個,也
可能沒有。
課堂練習題:
一、填空題:
1
、在一組數據
3
,
6,0,4,9
中插入一個數據
a
,使得該組數的中位數是
4.5
,則
a
應該是(
)
2
、一組數據
16
,
b
,
12,14
的平均數是
14
,這組數據的中位數是(
)
3
、已知
7
個數據的總和是
56
,這
7
個數據的平均數是(
)
二、選擇
1
、要表示同學們最喜歡的動畫片情況,應該選取(
)作為依據
A
平均數
B
中位數
C
眾數
2
、六(
1
)班有學生
40
人,六
2
班有學生
42
人。要比較期末考試哪個班的成績高一些,應該選取(
)
A
平均數
B
中位數
C
眾數
3
、要統計
2008
年北京奧運會各國獲獎牌情況,可以選用(
)統計圖
A
條形
B
折線
C
扇形
四、可能性
(
1
)不確定現象和確定現象
(
2
)可能性大小:一定能的事情發生的可能性用「
1
」表示;不可能的現象用「
0
」表示。
(
3
)游戲的公平性:判斷游戲是否公平,要看游戲雙方獲勝的可能性是否相等,相等則公平,不相等則不公平
翰苑教育集團深圳分校中小學生學員輔導資料
2
課堂練習題:
1.
有四個盒子,第一個盒子裡面有
8
個白球,
2
個紅球,第二個盒子里有
10
個紅球,第三個盒子里有
2
個白
球,
8
個紅球,第四個盒子里有
10
個白球。請問,摸到白球的概率是
0
的是哪個盒子,是
1
的又是哪個盒子?
第一個盒子里摸到紅球的可能性有多大?
2.
口袋裡有標著
1,2,3,4,5,6,7,8,9
的
9
張數字卡片,每次摸出一張
(
1
)摸出
3
的可能性有多大?
(
2
)摸出偶數的可能性有多大?
(
3
)摸出合數的可能性有多大?
(
4
)摸出的數小於
6
的可能性有多大?
3
、同時擲兩枚骰子,點數和超過
12
的可能性是(
)
4
、鞋櫃里放著
20
雙鞋子,隨手摸一隻,摸到左腳的可能性是(
)
5
、如圖所示,有一個轉盤,轉盤分成如圖的扇形,顏色分為紅、白、黑三種顏色,指針的位置固定,轉動轉盤
後任其自由停止.其中的某個扇形會恰好停在指針所指的位置,求下列事件的可能性大小:
(1
)指針指向白色的可能性大小;
(2
)指針指不指向白色可能性大小;
(3)
指針不指向紅色的可能性大小.
② 如何做好西師版小學六年級統計與概率總復習
首先我們用一半的時間指導學生復習課本的內容,重在復習教材中的重點、難點、考點和疑點。方法是教師指導與學生自主復習相結合。學生在復習中注重查漏補缺,教師注重解疑和檢查。在復習中注重發現學生在綜合練習中出現的問題、及時檢查學生知識掌握情況及對知識的運用的能力。並要做到及時反饋、及時補缺補差,把遺漏點降到最低。然後用四分之一的時間進行階段復習,把內容相關的單元內容分項復習。比如:數的復習,幾何知識的復習等等。結合不同的復習內容。確定不同的復習重點難點分類整理、梳理,強化復習的系統性。這樣有利於知識的系統化和對其內在聯系的把握,便於融合貫通。做到梳理--訓練--拓展,有序發展,真正提高復習的效果。最後用四分之一的時間進行綜合復習,,各種題型,等等全面開展訓練.在每一次綜合復習中學生的能力呈現螺旋上升狀態.
2、指導學生巧復習
數學學習中概念,公式,計算等等是很枯燥的。俗話說:「熟能生巧。」良好的復習方法是提高復習效率的重要途徑。利用一切有效手段充分調動學生復習的主動性,創造性知識和技能。教師指導復習時要做到四點:第一是定調。給出復習「導引單」,學生依「綱」復習,掌握基本的知識和技能。第二是給法。對復習方法給予具體指導。善於抓住重點組織復習。第三是樹靶。對復習中的疑難問題展開辨論,審視真偽。第四是立樣。對辨論的結果給出是與否的肯定回答,澄清模糊認識,樹立正確觀點。
3.指導學生摸索技巧與規律,提高能力
能力測試是現代數學測試的主要方面,如實踐能力.創新能力.等。因此在復習過程中,要指導學生定期做一些計算練習及創新練習。知道學生抓住解題的關鍵條件及應用題中的數學關系,歸納出規律和方法;指導學生排除障礙;對一些看似復雜的難題,引導學生斬枝去葉,找出其核心部分,更快,更准地對題意進行理解,從而有效地完成規定的答題。在這一過程中,提醒學生切勿死記硬背,重在開闊視野,培養實踐能力,摸索技巧與規律。
③ 六年級數學下冊書的目錄是什麼啊!!!!!
一、 單元安排和主要內容
本冊教科書是小學階段的最後一冊,共安排六個單元,除「數與代數」、「空間與圖形」、「統計與概率」、「綜合應用」四個領域的內容外,還安排了「回顧與整理、綜合應用兩個單元。單元安排和主要內容如下。
●第一單元——方向與位置
根據方向和距離確定物體的位置,用數對表示位置,在方格紙上用數對確定位置。
●第二單元——正比例、反比例
認識成正比例、反比例的量,在方格紙上用圖表示正比例關系,並根據其中一個量的價估計另一個量的值。
●汽車耗油量問題——結合正比例、反比例單元設計
綜合應用正比例、計算等有關知識,解決汽車行程和耗油的問題。
●第三單元——圓柱和圓錐
認識圓柱和展開圖,探索圓柱表面積和體積公式,認識圓錐,探索圓錐體積公式,解決簡單實際問題。
●木材問題——結合圓柱和圓錐單元設計
綜合應用體積、面積計算以及百分數等知識,解決木材體積、容量、加工方木等問題。
●第四單元——統計
認識中位數,對數據和信息進行分析和判斷,簡單的概率。
●丟棄塑料袋調查——結合統計單元設計
通過調查實踐活動,經歷數據收集、整理、描述和分析的過程,理解不同的統計量的意義,增強環保意識。
●第五單元——回顧與整理
對數與代數、空間與圖形、統計與概率三個領域的知識與技能進行復習和整理。
(一)數與代數。
系統回顧和整理數的認識、數的運算、方程、正比例和反比例、探索規律等方面知識與技能,探索數學密碼的奧秘。
(二)空間與圖形
系統回顧整理圖形的認識、測量、圖形與變換、圖形與位置等方面的知識與技能,探索密鋪的規律。
(三)統計與概率
系統回顧和整理數據的簡單統計過程、可能性等知識與技能,根據可能性進行簡單推理。
●第六單元——綜合應用
共安排5個主題內容,綜合應用「數與代數」、「空間與圖形」、「統計與概率」三個方面的知識與技能,解決數學與生活、數學與社會、數學與自然等方面的現實問題,了解數學的價值,發展學生的數學思考,提高解決實際問題的能力,增強應用數學的意識。
④ 人教版小學|一6年級統計與概率領域包括哪幾個方面
人教版小學1到6年級,他統計概率領域的話,應該是比較簡單的一些方面都是很容易的。
⑤ 六年級下冊試用本數學概念 急!!!!!!!!!!!!
統計概率與小學數學教學
北京師范大學教育學院 劉京莉
《全日制義務教育數學課程標准》(實驗稿)中較大幅度地增加了「統計與概率」的內容。因為在信息社會,收集、整理、描述、展示和解釋數據,根據情報作出決定和預測,已成為公民日益重要的技能。因此小學數學加入這部分內容是完全必要的,本文將探討的問題是小學教師應明確哪些基本概念,使教學既具有科學性同時又符合學生的認知特點;如何使學生在形成和解決現實世界問題的過程中,發展統計意識、發展用統計的方法解釋數據、表達及交流信息的能力,以及用多種方式來收集、整理和展示他們的思考的能力;統計與概率與小學其它部分的內容是如何聯系的。
一、基本概念
1.描述統計。
通過調查、試驗獲得大量數據,用歸組、製表、繪圖等統計方法對其進行歸納、整理,以直觀形象的形式反映其分布特徵的方法,如:小學數學中的製表、條形統計圖、折線統計圖、扇形統計圖等都是描述統計。另外計算集中量所反映的一組數據的集中趨勢,如算術平均數、中位數、總數、加權算術平均數等,也屬於描述統計的范圍。其目的是將大量零散的、雜亂無序的數字資料進行整理、歸納、簡縮、概括,使事物的全貌及其分布特徵清晰、明確地顯現出來。
2.概率的統計定義。
人們在拋擲一枚硬幣時,究竟會出現什麼樣的結果事先是不能確定的,但是當我們在相同的條件下,大量重復地拋擲同一枚均勻硬幣時,就會發現「出現正面」或「出現反面」的次數大約各占總拋擲次數的: 左右。這里的「大量重復」是指多少次呢?歷史上不少統計學家,例如皮爾遜等人作過成千上萬次拋擲硬幣的試驗,其試驗記錄如下:
可以看出,隨著試驗次數的增加,出現正面的頻率波動越來越小,頻率在0.5這個定值附近擺動的性質是出現正面這一現象的內在必然性規律的表現,0.5恰恰就是刻畫出現正面可能性大小的數值,0.5就是拋擲硬幣時出現正面的概率。這就是概率統計定義的思想,這一思想也給出了在實際問題中估算概率的近似值的方法,當試驗次數足夠大時,可將頻率作為概率的近似值。
例如100粒種子平均來說大約有90粒種子發芽,則我們說種子的發芽率為90%;
某類產品平均每1000件產品中大約有10件廢品,則我們說該產品的廢品率為1%。在小學數學中用概率的統計定義,一般求得的是概率的近似值,特別是次數不夠大時,這個概率的近似值存在著一定的誤差。例如:某地區30年來的10月6日的天氣記錄里有25次是秋高氣爽、晴空萬里,問下一年的10月6日是晴天的概率是多少?
因為前30年出現晴天的頻率為0.83,所以概率大約是0.83。
3.概率的古典定義。
對某一類特殊的試驗,還可以從另一個角度求它的概率。拋擲一枚硬幣時,試驗的結果有2種:出現正面、出現反面;由於硬幣是均勻的,通過直觀分析可以看出出現正面和反面的可能性相同,都是。進一步研究:
某試驗具有以下性質
(1)試驗的結果是有限個(n個)
(2)每個結果出現的可能性是相同的 (硬幣、骰子是均勻的,拋擲時出現每一面的可能性都相同)
如果事件A是由上述n個結果中的m個組成,則稱事件A發生的概率為m/n。
例:擲一顆均勻的骰子,求出現2點的概率。
由於這個試驗滿足概率的古典定義的兩個條件,且n=6,m=1,∴出現2點的概率是。
又:求出現偶數點的概率?出現偶數點這一事件包含3個結果,2點、 4點、6點。m=3
出現偶數點的概率是,即。
概率的古典定義不用大量地去試驗,只要試驗的結果為等可能的有限個的情況,通過分析找出m、n,其概率就可以求出了,其優點是便於計算,但概率的古典定義不如概率的統計定義適用面廣,如拋擲一個酒瓶蓋子時,就不滿足出現每一面的可能性都相同的條件,因此出現正面的概率就不能用概率的古典定義去求,而要用統計定義去近似地求它的概率。
在小學數學的教學中,根據小學生的認知水平,應避免學習過多或艱深的術語,從小學低年級開始應該非形式地介紹概率思想,而非嚴格的定義、單純的計算,因此,在小學經常用「可能性」來代替「概率」這個概念。但作為教師應該懂得它的意義,否則就會出笑話。有的教師讓學生在課上做 20次拋擲硬幣的試驗,希望學生能得到出現正面的可能性是,因為拋擲的次數少,所以要得出10次正面,是很難做到的,概率的統計定義一般得出的是概率的近似值。
二、在學習統計與概率的過程中發展學生的能力
統計的內容是用數字描述和解釋我們周圍的世界,應結合學生生活的實際,如:可以設計成一個活動,使學生主動地投入其中;提出關鍵的問題;搜集和整理數據;應用圖表來表示數據;分析數據;作出推測,並用一種別人信服的方式交流信息。同時體會對數據的收集、處理會獲得某些新的信息。
例如:組織一次班會活動,目的是增進同學之間的互相了解和交流。首先讓學生們自己選題,希望了解哪些信息:「同學們每天怎麼來上學?」;「每個月都有多少同學過生日?」;「同學們喜歡讀哪類圖書?」;「同學們的愛好是什麼?」;「我們最喜愛的運動」;「我們最喜愛的動物」…然後學生們分組去調查收集數據,用表格歸納整理,並且製成各種統計圖:如:
從統計圖可以知道,喜歡動物故事的同學最多,根據這個統計結果,班裡可以組織一個動物研究會,辦一個動物圖片展覽,到野生動物園去參觀等。全班同學還可以把各種圖表製成牆報、手抄報把自己的班級介紹給全校其他同學等。
三、統計、概率與小學其它內容的聯系
例1
上面各圖中表示黑色區域的分數分別為;;;,小學生即使沒有學習幾何圖形的概念也可以通過分數的意義知道2號黑色區域最容易投中,因為根據分數的意義它占總面積的比最大,為。
例2
從紅球所佔的比例來看,1號袋為; 2號袋為;3號袋為擊,因此相比之下,1號袋最容易抽出紅球。
例3下面是用扇形統計圖統計的資料
對小學生來講,扇形統計圖的難點在於不同的圓心角所代表的部分的百分數表示及百分數表示的圓心角的度數,而對於—上面圖中有特殊圓心角時,可避開圓心角,用分數、百分數的意義得出喜歡英語課的,科學課的,數學課的;參加球類興趣小組的有50%;參加樂隊的18%。
從上面的例子可以看出,統計與概率可以為發展和運用比、分數、百分數和小數這些概念提供背景。因此我們可以用建構的方式,建立這部分內容與小學其它知識的聯系和建構有意義的認知結構,從而更深入、更靈活地學習。
總之,在小學,統計與概率的教學既要具有科學性又要符合小學生的認知特點,同時,它還是解決問題的有力工具,它也是架起與其它內容之間的橋梁。
和差問題
已知兩個數的和與差,求這兩個數的應用題,叫做和差問題。一般關系式有:
(和-差)÷2=較小數
(和+差)÷2=較大數
例:甲乙兩數的和是24,甲數比乙數少4,求甲乙兩數各是多少?
(24+4)÷2
=28÷2
=14 →乙數
(24-4)÷2
=20÷2
=10 →甲數
答:甲數是10,乙數是14。
差倍問題
已知兩個數的差及兩個數的倍數關系,求這兩個數的應用題,叫做差倍問題。基本關系式是:
兩數差÷倍數差=較小數
例:有兩堆煤,第二堆比第一堆多40噸,如果從第二堆中拿出5噸煤給第一堆,這時第二堆煤的重量正好是第一堆的3倍。原來兩堆煤各有多少噸?
分析:原來第二堆煤比第一堆多40噸,給了第一堆5噸後,第二堆煤比第一堆就只多40-5×2噸,由基本關系式列式是:
(40-5×2)÷(3-1)-5
=(40-10)÷2-5
=30÷2-5
=15-5
=10(噸) →第一堆煤的重量
10+40=50(噸) →第二堆煤的重量
答:第一堆煤有10噸,第二堆煤有50噸。
還原問題
已知一個數經過某些變化後的結果,要求原來的未知數的問題,一般叫做還原問題。
還原問題是逆解應用題。一般根據加、減法,乘、除法的互逆運算的關系。由題目所敘述的的順序,倒過來逆順序的思考,從最後一個已知條件出發,逆推而上,求得結果。
例:倉庫里有一些大米,第一天售出的重量比總數的一半少12噸。第二天售出的重量,比剩下的一半少12噸,結果還剩下19噸,這個倉庫原來有大米多少噸?
分析:如果第二天剛好售出剩下的一半,就應是19+12噸。第一天售出以後,剩下的噸數是(19+12)×2噸。以下類推。
列式:[(19+12)×2-12]×2
=[31×2-12]×2
=[62-12]×2
=50×2
=100(噸)
答:這個倉庫原來有大米100噸。
置換問題
題中有二個未知數,常常把其中一個未知數暫時當作另一個未知數,然後根據已知條件進行假設性的運算。其結果往往與條件不符合,再加以適當的調整,從而求出結果。
例:一個集郵愛好者買了10分和20分的郵票共100張,總值18元8角。這個集郵愛好者買這兩種郵票各多少張?
分析:先假定買來的100張郵票全部是20分一張的,那麼總值應是20×100=2000(分),比原來的總值多2000-1880=120(分)。而這個多的120分,是把10分一張的看作是20分一張的,每張多算20-10=10(分),如此可以求出10分一張的有多少張。
列式:(2000-1880)÷(20-10)
=120÷10
=12(張)→10分一張的張數
100-12=88(張)→20分一張的張數
或是先求出20分一張的張數,再求出10分一張的張數,方法同上,注意總值比原來的總值少。
盈虧問題(盈不足問題)
題目中往往有兩種分配方案,每種分配方案的結果會出現多(盈)或少(虧)的情況,通常把這類問題,叫做盈虧問題(也叫做盈不足問題)。
解答這類問題時,應該先將兩種分配方案進行比較,求出由於每份數的變化所引起的余數的變化,從中求出參加分配的總份數,然後根據題意,求出被分配物品的數量。其計算方法是:
當一次有餘數,另一次不足時:
每份數=(余數+不足數)÷兩次每份數的差
當兩次都有餘數時:
總份數=(較大余數-較小數)÷兩次每份數的差
當兩次都不足時:
總份數=(較大不足數-較小不足數)÷兩次每份數的差
例1、解放軍某部的一個班,參加植樹造林活動。如果每人栽5棵樹苗,還剩下14棵樹苗;如果每人栽7棵,就差4棵樹苗。求這個班有多少人?一共有多少棵樹苗?
分析:由條件可知,這道題屬第一種情況。
列式:(14+4)÷(7-5)
=18÷2
= 9(人)
5×9+14
=45+14
=59(棵)
或:7×9-4
=63-4
=59(棵)
答:這個班有9人,一共有樹苗59棵。
年齡問題
年齡問題的主要特點是兩人的年齡差不變,而倍數差卻發生變化。
常用的計算公式是:
成倍時小的年齡=大小年齡之差÷(倍數-1)
幾年前的年齡=小的現年-成倍數時小的年齡
幾年後的年齡=成倍時小的年齡-小的現在年齡
例1、父親今年54歲,兒子今年12歲。幾年後父親的年齡是兒子年齡的4倍?
(54-12)÷(4-1)
=42÷3
=14(歲)→兒子幾年後的年齡
14-12=2(年)→2年後
答:2年後父親的年齡是兒子的4倍。
例2、父親今年的年齡是54歲,兒子今年有12歲。幾年前父親的年齡是兒子年齡的7倍?
(54-12)÷(7-1)
=42÷6
=7(歲)→兒子幾年前的年齡
12-7=5(年)→5年前
答:5年前父親的年齡是兒子的7倍。
例3、王剛父母今年的年齡和是148歲,父親年齡的3倍與母親年齡的差比年齡和多4歲。王剛父母親今年的年齡各是多少歲?
(148×2+4)÷(3+1)
=300÷4
=75(歲)→父親的年齡
148-75=73(歲)→母親的年齡
答:王剛的父親今年75歲,母親今年73歲。
或:(148+2)÷2
=150÷2
=75(歲)
75-2=73(歲)
雞兔問題
已知雞兔的總只數和總足數,求雞兔各有多少只的一類應用題,叫做雞兔問題,也叫「龜鶴問題」、「置換問題」。
一般先假設都是雞(或兔),然後以兔(或雞)置換雞(或兔)。常用的基本公式有:
(總足數-雞足數×總只數)÷每隻雞兔足數的差=兔數
(兔足數×總只數-總足數)÷每隻雞兔足數的差=雞數
例:雞兔同籠共有24隻。有64條腿。求籠中的雞和兔各有多少只?
3k W UEw9I0
R,@ F/|1V7YWd-r0
Gb(e(o/X3QE&dL$Z0 鳳凰博客h7IM?pJ'u7NV
'IG\ rf Y E0
(64-2×24)÷(4-2)
=(64-48)÷(4-2)
=16 ÷2
=8(只)→兔的只數
24-8=16(只)→雞的只數
答:籠中的兔有8隻,雞有16隻
鳳凰博客3@8Zp|S5|+U
。
牛吃草問題(船漏水問題)
若干頭牛在一片有限范圍內的草地上吃草。牛一邊吃草,草地上一邊長草。當增加(或減少)牛的數量時,這片草地上的草經過多少時間就剛好吃完呢?
例1、一片草地,可供15頭牛吃10天,而供25頭牛吃,可吃5天。如果青草每天生長速度一樣,那麼這片草地若供10頭牛吃,可以吃幾天?
分析:一般把1頭牛每天的吃草量看作每份數,那麼15頭牛吃10天,其中就有草地上原有的草,加上這片草地10天長出草,以下類推……其中可以發現25頭牛5天的吃草量比15頭牛10天的吃草量要少。原因是因為其一,用的時間少;其二,對應的長出來的草也少。這個差就是這片草地5天長出來的草。每天長出來的草可供5頭牛吃一天。如此當供10牛吃時,拿出5頭牛專門吃每天長出來的草,餘下的牛吃草地上原有的草。
(15×10-25×5)÷(10-5)
=(150-125)÷(10-5)
=25÷5
=5(頭)→可供5頭牛吃一天。
150-10×5
=150-50
=100(頭)→草地上原有的草可供100頭牛吃一天
100÷(10-5)
=100÷5
=20(天)
答:若供10頭牛吃,可以吃20天。
例2、一口井勻速往上涌水,用4部抽水機100分鍾可以抽干;若用6部同樣的抽水機則50分鍾可以抽干。現在用7部同樣的抽水機,多少分鍾可以抽干這口井裡的水?
(100×4-50×6)÷(100-50)
=(400-300)÷(100-50)
=100÷50
=2
400-100×2
=400-200
=200
200÷(7-2)
=200÷5
=40(分)
答:用7部同樣的抽水機,40分鍾可以抽干這口井裡的水。
公約數、公倍數問題
運用最大公約數或最小公倍數解答應用題,叫做公約數、公倍數問題。
例1:一塊長方體木料,長2.5米,寬1.75米,厚0.75米。如果把這塊木料鋸成同樣大小的正方體木塊,不準有剩餘,而且每塊的體積盡可能的大,那麼,正方體木塊的棱長是多少?共鋸了多少塊?
分析:2.5=250厘米
1.75=175厘米
0.75=75厘米
其中250、175、75的最大公約數是25,所以正方體的棱長是25厘米。
(250÷25)×(175÷25)×(75÷25)
=10×7×3
=210(塊)
答:正方體的棱長是25厘米,共鋸了210塊。
例2、兩嚙合齒輪,一個有24個齒,另一個有40個齒,求某一對齒從第一次接觸到第二次接觸,每個齒輪至少要轉多少周?
分析:因為24和40的最小公倍數是120,也就是兩個齒輪都轉120個齒時,第一次接觸的一對齒,剛好第二次接觸。
120÷24=5(周)
120÷40=3(周)
答:每個齒輪分別要轉5周、3周。
分數應用題
指用分數計算來解答的應用題,叫做分數應用題,也叫分數問題。
分數應用題一般分為三類:
1.求一個數是另一個數的幾分之幾。
2.求一個數的幾分之幾是多少。
3.已知一個數的幾分之幾是多少,求這個數。
其中每一類別又分為二種,其一:一般分數應用題;其二:較復雜的分數應用題。
例1:育才小學有學生1000人,其中三好學生250人。三好學生佔全校學生的幾分之幾?
答:三好學生佔全校學生的。
例2:一堆煤有180噸,運走了。走了多少噸?
180×=80(噸)
答:運走了80噸。
例3:某農機廠去年生產農機1800台,今年計劃比去年增加。今年計劃生產多少台?
1800×(1+)
=1800×
=2400(台)
答:今年計劃生產2400台。
例4:修一條長2400米的公路,第一天修完全長的,第二天修完餘下的。還剩下多少米?
2400×(1-)×(1-)
=2400××
=1200(米)
答:還剩下1200米。
例5:一個學校有三好學生168人,佔全校學生人數的。全校有學生多少人?
168÷=840(人)
答:全校有學生840人。
例6:甲庫存糧120噸,比乙庫的存糧少。乙庫存糧多少噸?
120÷=120×=180(噸)
答:乙庫存糧180噸。
例7:一堆煤,第一次運走全部的,第二次運走全部的,第二次比第一次少運8噸。這堆煤原有多少噸?
8÷(-)
= 8÷
=48(噸)
答:這堆煤原有48噸。
工程問題
它是分數應用題的一個特例。是已知工作量、工作時間和工作效率,三個量中的兩個求第三個量的問題。
解答工程問題時,一般要把全部工程看作「1」,然後根據下面的數量關系進行解答:
6q1U]7in!S7x0
鳳凰博客tr IJ0OYWV
P tAd)J.IH0
&h|il)t&ZS6h&kC0
nVg2v IdgI0
工作效率×工作時間=工作量
'F5q/f,z5b@y0
工作量÷工作時間=工作效率
鳳凰博客q!q1Nc3E-n`a9[Q$M
工作量÷工作效率=工作時間
鳳凰博客9FA*o d#`7I!l
例1:一項工程,甲隊單獨做需要18天,乙隊單獨做需要24天。如果兩隊合作8天後,餘下的工程由甲隊單獨做,還要幾天完成?
N W5l,VjH`|0
鳳凰博客+ZO'R HhI
鳳凰博客hq$TU!bO$rEQ
鳳凰博客6O]p/ZV2wc
[1-()×8]÷
,l!l9zI"b&W0
=[1-]÷
=×18
=4(天)
答:(略)。
鳳凰博客1Q0RO&]%owG
例2:一個水池,裝有甲、乙兩個進水管,一個出水管。單開甲管2小時可以注滿;單開乙管3小時可以注滿;單開出水管6小時可以放完。現在三管在池空時齊開,多少小時可以把水池注滿?
|5W.WuC3p0
鳳凰博客 SX}9q7|f
鳳凰博客UO`8_%F(u8Br
"[6Xr3MHv)I0 1÷(+-) 鳳凰博客I@ ?b&W+CD
=1÷
=1(小時)
答:(略)
鳳凰博客o Sj4ON:}2\/a+N
百分數應用題
這類應用題與分數應用題的解答方式大致相同,僅求「率」時,表達方式不同,意義不同。
例1.某農科所進行發芽試驗,種下250粒種子。發芽的有230粒。求發芽率。
答:發芽率為92%。
1、長方形的周長=(長+寬)×2 C=(a+b)×2
2、正方形的周長=邊長×4 C=4a
3、長方形的面積=長×寬 S=ab
4、正方形的面積=邊長×邊長 S=a.a= a
5、三角形的面積=底×高÷2 S=ah÷2
6、平行四邊形的面積=底×高 S=ah
7、梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2
8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2
9、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr
10、圓的面積=圓周率×半徑×半徑 Ѕ=πr
11、長方體的表面積=(長×寬+長×高+寬×高)×2
12、長方體的體積 =長×寬×高 V =abh
13、正方體的表面積=棱長×棱長×6 S =6a
14、正方體的體積=棱長×棱長×棱長 V=a.a.a= a
15、圓柱的側面積=底面圓的周長×高 S=ch
16、圓柱的表面積=上下底面面積+側面積
S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch
17、圓柱的體積=底面積×高 V=Sh
V=πr h=π(d÷2) h=π(C÷2÷π) h
18、圓錐的體積=底面積×高÷3
V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3
19、長方體(正方體、圓柱體)的體
1、 每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數
2、 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數
3、 速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、 單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率
6、 加數+加數=和 和-一個加數=另一個加數
7、 被減數-減數=差 被減數-差=減數 差+減數=被減數
8、 因數×因數=積 積÷一個因數=另一個因數
9、 被除數÷除數=商 被除數÷商=除數 商×除數=被除數
小學數學圖形計算公式
1 、正方形 C周長 S面積 a邊長 周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a
2 、正方體 V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a
3 、長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 、長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
植樹問題
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
時間單位換算
1世紀=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 閏年2月29天
平年全年365天, 閏年全年366天
1日=24小時 1時=60分
1分=60秒 1時=3600秒積=底面積×高 V=Sh
參考資料:北京師范大學教育學院 劉京莉
⑥ 小學六年級 統計與概率
我想因該是(C)
因為氣溫變化可以用折線統計圖來表示的啦!
希望我被採納啊!
⑦ 小學數學六年級下冊課外作業的統計與概率 的答案,我不抄,因為後天教育局檢查。我有沒改完的,是對答案
也在增加 在10~12歲平均體重增加最快 不成正比例 10周歲以上,女生的平均體重比男生輕。 .城市污染指數是優的有幾個城市? 空氣質量良的比空氣質量優的城市多百分之幾? (3-2)/2=1/2=50%
(21.6x5)-(25+23+20+19)=21
(1)800/40%=200(元)
(2)從左到右,從上到下:400 300 400 100 20 20 5
5.(1)20 (2)5(3)75 (4)8.5 (5)10
6.平均數:(48+50x2+52x2+53x3)/8=51.375
中位數:52
眾數:53
⑧ 1-6年級數學統計與概率包含著哪些內容
很高興為你解答!
小學數學統計與概率的內容如下,請參考!