『壹』 人的心臟和循環系統 快啊~~~~!!!
循環系統是生物體的體液(包括血液、淋巴和組織液)及其藉以循環流動的管道組成的系統。從動物形成心臟以後循環系統分為心臟和血管兩大部分,叫做心血管系統。循環系統是生物體內的運輸系統,它將消化道吸收的營養物質和由鰓或肺吸進的氧輸送到各組織器官並將各組織器官的代謝產物通過同樣的途徑輸入血液,經肺、腎排出。它還輸送熱量到身體各部以保持體溫,輸送激素到靶器官以調節其功能。
高等動物的循環系統還有附加的功能:如機體的保護作用;將血液運送到受傷或感染部位,包括白細胞和免疫蛋白(抗體)、凝血物質(在受傷部位形成纖維蛋白網);將身體儲存的脂肪和糖運到用場等。無脊椎動物的循環系統多為開放型循環;血液由「心」經血管流入組織間隙形成的血竇直接或經靜脈回心。血竇中血液與組織液、淋巴液相混,無管道將它們隔離,因此開放型循環不存在由微動脈、毛細血管、微靜脈形成的微循環,有些連靜脈也沒有,血液由血竇經心門直接入心。這是低級形式的循環系統。其特點是血管壁彈性小,不能支持較高的血壓,因此它們的血壓很低,血液重新分配的調節和血流速度很慢。
少數無脊椎動物如環節動物的蚯蚓等和部分軟體動物如章魚等開始有封閉型循環。血管系統開始形成了微循環,血流經微循環、靜脈回心,由於心血管系統形成了完整的管道,而且血管壁彈性大,能支持較高的血壓,因此血壓較高,血液重新分配的調節和血流速度也較快,是高級形式的循環系統。
除及少數例外(如盲鰻等),脊椎動物絕大多數都有封閉式循環。脊椎動物從爬行動物、鳥類到哺乳動物的心臟都有兩心房和兩心室。這種心臟實際上形成兩個泵。左心室泵血到動脈,再到毛細血管與組織細胞進行物質交換,送去養分帶走代謝廢物經靜脈回右心房,叫做體循環,因為線路較長,也叫大循環。血液經右心房、右心室,肺動脈到肺進行氣體交換,放出二氧化碳,帶走氧,然後經肺靜脈將含氧豐富的新鮮血液運回左心房,叫做肺循環,因路線較短,也叫小循環。
部分組織液進入另一套封閉的管道系統,形成淋巴液,經小淋巴管逐步匯成大淋巴管,經左側的胸導管和右側的大淋巴管分別進入左、右鎖骨下靜脈,形成淋巴循環。
血液循環受神經體液因素的調節,這些因素在中樞神經高級部位的整合下能使心血管系統保持適當的血壓和血流,這是確保各組織器官正常物質交換,維持正常功能活動的先決條件。血液只有在全身不停地循環流動才能完成其多種功能,血液循環的停止是死亡的前兆,具有最重要的生理意義。到達各器宮的各有其特點的血液循環叫做特殊區域循環或器官循環。這種循環在高等動物中以腦循環和冠狀循環最為重要,因為二者的短時阻斷都將導致嚴重的後果乃至死亡。冠脈阻斷後幾乎立即使心搏停止,腦循環阻斷後腦細胞4~6分鍾後死亡。
血液循環類型的進化
單細胞生物和多細胞生物包括植物細胞都可以看到最簡單形式的循環——細胞質流動,即原生質流動。
鳥和哺乳動物心臟的分隔和肺循環與體循環的分離是完全的。這樣會產生一個重要結果:肺循環的血壓大大低於體循環的血壓。在人肺動脈壓不過20~30毫米汞柱,約為體動脈壓的1/5。這樣大的差別如果二者的分離不完全是不可能的。完全分離以後,動靜脈血不再相混,大動脈中全是含氧多的鮮血,結果各種組織可得更多的氧,使代謝水平提高,適應環境的能力大為增強。鳥和哺乳動物大多為恆溫動物,這與循環系統的完善有關。
心臟的結構和功能
血管系統的結構和功能
血管壁具有豐富的彈性纖維和平滑肌,這使血管能被動的擴展和主動的收縮。動脈、靜脈和毛細血管各有其結構特徵。動脈與相應的靜脈比有較厚的壁,大動脈的彈性纖維和平滑肌成分較多,隨著動脈分枝逐漸變細,壁中平滑肌所佔的比例越來越大。毛細血管是血管系統中最小的血管,由一層細胞構成。血液與組織間的物質交換都經過毛細血管進行。狗的腸系膜毛細血管的總橫斷面積約為主動脈的800倍。從小靜脈開始,靜脈管逐步匯合成較粗而數目減少,總橫斷面積也相應減小,直到腔靜脈,它的橫斷面積最小,但稍大於主動脈。靜脈系統的血量(680毫升)比動脈系統的血量(190毫升)約大3.6倍。由於靜脈血系統容量最大,所以也叫容量血管。由於小動脈、微動脈的緊張性變化在外周阻力變化中作用最大,所以也稱它們為阻力血管。
循環血與存儲血人的全身血量約占體重的6~8%。全身血液並非都在心血管系統中流動而有一部分流動極慢甚至停滯不動的血存儲在脾、肝、皮膚、肺等部。流動的血叫循環血,不流動或流動極慢的血叫存儲血。那些存儲血液的器官叫做儲血庫或簡稱血庫。儲血庫可以調節循環血量,其中以脾的作用最大。靜息時脾臟鬆弛,與循環血液完全隔離,可以儲存全身總血量的1/6左右。其中血細胞比容較大,血細胞數約可達全身紅細胞總數的1/3。當劇烈運動、大出血、窒息或血中缺氧時,在神經體液因素調節下,脾臟收縮,放出大量含血細胞很多的血液(比循環血多40%)到心血管中增加循環血量以應急需。但是,無論是循環血,還是存儲血都受到血量變動的影響,血量和血細胞的過多都可引起人體的不良反應,甚至病變。
在脾臟非條件反射基礎之上可以建立脾臟收縮的條件反射,從而闡明了大腦皮層對脾臟活動的調節作用。肝和肺也有儲血庫功能,雖然它們與循環血流並未完全隔離,但因流動很慢可以把它們看作儲血庫。肝靜脈收縮在一定時間內使流入血量大於流出血量,所存的血液分布在肝內舒張的血管之中,根據肺血管舒張的程度象肝一樣,肺也可以存儲或多或少的血液。
皮膚乳頭下血管叢舒張時能存儲大量血液(可達1升)。此處血流很慢甚至停滯不動。皮膚很多部位的動靜脈吻合舒張時使大量存血暫時與循環血流隔離。站立時循環血量減少,可能是因為有相當多的血流入下肢皮膚血管叢所致。
血管運動的神經調節
血管的收縮和舒張叫做血管運動,支配血管舒縮的神經叫血管運動神經。使血管收縮的神經叫血管收縮神經,簡稱縮血管神經,使血管舒張的神經叫血管舒張神經,簡稱舒血管神經。動靜脈血管都有神經分布,其中以小動脈、微動脈和動靜脈吻合支的神經分布最密,全部血管都有縮血管神經纖維,部分血管兼有收縮和舒張兩種神經纖維。
縮血管神經 內臟器官和皮膚血管的縮血管神經作用最大,當刺激腹腔內臟主要縮血管神經——大內臟神經時,引起內臟血管床的廣泛收縮導致體循環血壓顯著升高。縮血管神經屬交感神經系統,由腎上腺素能纖維(末梢釋放去甲腎上腺素的纖維)組成。縮血管神經對小動脈的調節有重要意義,因為它能保持動脈血壓的恆定從而保證各器官組織充足的血液供應。縮血管神經能使血管平滑肌經常保持一定緊張狀態。這是因為它有不斷的神經沖動發放。各器官血管都有縮血管纖維,但其緊張性沖動的發放頻率各有不同。內臟血管的交感纖維的緊張性發放最高;皮膚、骨骼肌血管的有中等度的緊張性發放,腦部縮血管纖維的緊張性發放最低,所以腦血管較少受到縮血管神經的影響而經常處於舒張狀態。
舒血管神經 德國生理學家高茲發現在慢性實驗中切斷坐骨神經數日後刺激其末梢可以看到後肢血管的明顯舒張反應。塔爾哈諾夫切斷坐骨神經後立即刺激其末梢端得到的卻是縮血管反應。所以出現不同反應是因為坐骨神經中兼有收縮和舒張纖維,受刺激後,一般舒張纖維的作用被壓抑而只表現收縮反應。但縮血管纖維變性較快,切斷後3~4天就失去興奮的能力,而舒血管纖維切斷6~10天仍能興奮,所以在慢性實驗中3~4天後刺激這種混合神經會出現舒張反應。一般傳出神經都含有血管舒張和收縮兩種纖維。舒血管神經的來源性質復雜,共有以下3種:
副交感舒血管神經 是主要的舒血管神經。其中面神經(Ⅶ)和吞咽神經(Ⅸ)的舒張纖維支配唾液腺、淚腺、舌及口腔和咽部粘膜等區域的血管;盆神經的副交感舒血管支配直腸、膀胱和外生殖器等部的血管,使之能使血管舒張。舒血管纖維末梢釋放的遞質是乙醯膽鹼,叫做膽鹼能纖維。C.貝爾納1854年認為鼓索神經是舒血管神經曾被肯定了近100年。以後德國生理學家R.P.H.海登海因1872年最先對此提出質疑,根據鼓索神經引起下頜下腺血管舒張反應不能用阿托品阻斷。1941年英國生理學家J.巴克羅夫特提出下頜下腺血管的這種舒張反應可能由腺細胞代謝產物所引起。這種看法由S.M.希爾頓和G.P.劉易斯在1955年所證實;他們發現刺激鼓索神經能使頜下腺細胞分泌賴氨醯緩激肽,這種多肽能迅速變成舒緩激肽,二者都是強血管舒張劑。從而否定了鼓索神經是舒血管神經的論斷。
交感舒血管神經 支配骨骼肌血管的交感神經干中除縮血管纖維外,還有舒血管纖維。這種纖維的來源雖是交感神經,但卻能使血管舒張,其遞質也是乙醯膽鹼,所以叫做膽鹼能交感舒血管纖維。
背根逆向傳導的舒血管作用 切斷脊神經背根,刺激其外周端,沖動可以逆向傳導到外周引起所支配皮膚血管的舒張反應。這種現象可能是反常的,但1901年英國生理學家貝利斯根據大量材料認為背根中傳入神經元的軸突可分兩支,一支到感受器,另一支到血管壁,受刺激後使血管舒張。這種分支還可以到小動脈及前毛細血管壁,引起它們的舒張反應,這種逆向傳導引起效應器的反應叫做軸突反射,刺激小塊皮膚可引起遠離刺激部位的皮膚血管舒張,此反應在切斷一切到該區的神經仍可發生。這是軸突反射存在的重要證據。但在神經切斷數日後,反應消失,因神經纖維已經變性。
血管運動中樞
中樞神經系統中調節血管運動的神經細胞群叫做血管運動中樞。它的高級中樞在大腦皮層,低級中樞在皮層下從下丘腦直到脊髓。血管運動中樞與心搏調節中樞的活動關系非常密切,在心血管系統反射中兩者常同時出現。心搏加速反射常伴有血管收縮反射;心搏減慢的反射多伴有血管舒張反射。這是因為這些中樞在腦和脊髓中相距很近。
脊髓血管運動中樞 血管運動的低級中樞,位於脊髓的胸1至腰2節段之間。橫斷脊髓的實驗發現橫斷部位越高,血壓下降越多。胸部脊髓橫斷處的刺激引起血壓上升,頸部脊髓切斷後,最初血壓下降,不久又可上升,全毀脊髓則血壓下降,不能恢復。脊髓縮血管中樞由胸腰部心交感和縮血管神經元組成,能整合各路神經沖動,具有緊張性活動可使脊髓動物(只保留脊髓的動物)保持較高的血壓。縮血管纖維起源於脊髓胸腰各段。在完整機體中脊髓縮血管中樞的活動受延髓等高級中樞的控制。
延髓血管運動中樞 用細小的針形電極刺激狗貓等動物延髓第四腦室底部左右下凹區,可使動脈血壓升高,叫延髓加壓區,即縮血管中樞。此區還能引起心搏加速加強和其他交感性反應,是延髓水平的交感中樞。延髓加壓區包括延髓前2/3的網狀結構背部外側的大部。其下行纖維到達脊髓縮血管神經元,破壞延髓神經元或切斷其下行纖維則血壓下降。脊髓縮血管神經元的緊張性活動由延髓網狀結構中神經元群的緊張性活動引起。一些主要血管運動反射也多通過這些神經元群來實現。從1936年起到1938年止以林可勝為首的中國生理學家陳梅伯、王世溶、易見龍等對延髓血管運動中樞進行了系統的研究,並連續在中國生理學雜志發表了一系列有關加壓中樞(交感神經中樞)和減壓中樞(交感抑制中樞)的高質量論文。證明延髓第四腦室側在聲紋和下凹之間前庭核附近有交感神經中樞,全面研究了加壓區對內臟功能的影響,發現刺激加壓區可使心、腸、腎、子宮和腿部的血管收縮,並能引起許多器官的交感性反應。此外還對交感神經中樞的上、下行束道做了定位研究。論證了延髓交感神經抑制中樞(減壓區)的存在。林可勝和呂運明對各綱脊椎動物包括:魚、蟾蜍、龜、雞、山羊、豚鼠、豬、家兔、貓、狗、刺蝟、猴的延髓交感中樞定位進行了研究。發現這些動物的加壓中樞都與前庭區有密切關系,低等脊髓動物的加壓區在前庭區的頭側,哺乳動物的加壓區在前庭區的尾側。動物越低等加壓區對刺激的反應的靈敏度越低,加壓作用越不明顯,作者認為這是因為它們的交感神經不夠發達所致。電刺激延髓第四腦室閂部附近引起降壓反應,因此叫做減壓區。包括延髓後1/3網狀結構腹側的廣大區域。此區的減壓作用,不是舒血管神經的興奮的結果,而由縮血管中樞活動的抑制所引起。血中二氧化碳過多,加強血管收縮中樞興奮,使血管收縮,血壓升高;二氧化碳過少,降低收縮中樞的興奮,血管舒張,血壓下降。延髓與脊髓血管運動中樞都能對血中二氧化碳過多產生加壓反射,但延髓中樞比脊髓中樞更為敏感。各種傳入沖動都能影響延髓縮血管中樞的活動,特別是頸動脈竇主動脈弓減壓反射影響最大,因而在血壓調節機制中最為重要。
延髓以上的血管運動中樞 中腦和前腦都有血管運動中樞。狗腦的S狀回受刺激時也能引起減壓反應。刺激中腦腹部可以引起典型的垂體加壓反應。在紅核水平切斷腦干使血壓發生顯著變化(常與呼吸變化有關)。刺激小腦也能引起血壓變化,這與小腦對交感神經的影響有關。間腦的下丘腦是整個植物性神經系統的高級中樞,能引起血壓的顯著變化。去大腦皮層而保留間腦的狗出現非常復雜的心血管反射,常使血壓升高和心搏加速。大腦皮層發育不全的新生兒,間腦在循環調節中起主導作用。發育完善的大腦皮層對血液循環具有最強的調節整合作用,大腦皮層通過條件反射的建立控制著心血管系統的活動,使血液循環能迅速適應各種復雜的生存條件。
血管運動反射
心血管系統中很多部位分布著壓力感受器。當受到機械刺激時都能引起血管的反射性運動導致動脈血壓的改變,其中以頸動脈竇和主動脈弓區最為敏感,二區受刺激之後可以引起減壓反射。較小的血管乃至一般組織也有壓力感受器的分布,也能反射性地引起血壓下降(見血壓),但反應較弱。
羅文氏反射 1866年S.羅文發現刺激一個肢體或某一器官的傳入神經時,該肢體或器官的血管舒張而其他部位的血管收縮,同時動脈血壓上升,叫做羅文氏反射。例如刺激兔的足背神經引起該神經支配的下肢血管舒張,容積加大,身體其他部分的血管則起收縮反應,導致加壓反射,這對血液向活動較多的器官集中,對血液的重新分配有明顯作用。
迷走加壓反射 腔靜脈內血壓下降可以刺激迷走神經加壓纖維末梢,引起血管床的廣泛收縮導致的反射性血壓升高。這一反射多見於大失血,此時靜脈壓降低,如迷走神經完整無損,由此反射的作用動脈血壓可不下降或下降不多。切斷迷走神經後血壓下降較多。用可卡因塗在右心房上的效果與切斷迷走神經相同,都可抑制迷走加壓反射,導致失血時更大幅度的血壓下降。
高級中樞對血管運動的調節
小腦、中腦、下丘腦對血管運動的調節 小腦、中腦受刺激時都能引起血管運動反應,刺激小腦前葉皮層可抑制血管運動中樞,出現加壓或減壓反射。下丘腦是更重要的植物性神經中樞。電刺激動物下丘腦後側部引起肢體血管收縮;熱刺激下丘腦前部引起肢體皮膚血管的舒張。下丘腦是體溫調節中樞,它對血管緊張性收縮的影響是體溫調節機制中的一個重要部分。熱刺激下丘腦使皮膚血管舒張,有助於體溫過高時的散熱,在保持體溫恆定機制中有重要作用。大腦皮層是調節整合血管運動的最高級中樞,所謂整合是把不同生理反應綜合組成互相協調統一的有效生理過程。在皮層功能減弱乃至消失時,下丘腦是各種植物性功能的整合中樞,正常情況下它在大腦皮層的控制下起作用,只有大腦皮層才能使機體各種功能包括心血管運動與內外環境高度統一起來完成最復雜的調節整合。電刺激大腦皮層運動區和杏仁核的有些部位引起加壓反應,心搏加速;刺激皮層額葉眶部、顳葉前部、梨狀區和杏仁核的其他部位引起減反應;刺激扣帶回、眶回和腦島等區都能引起明顯的血管反應。
大腦皮層對血管運動的調節 在人和動物清醒狀態用容積描記法記錄肢體血管運動可以揭示大腦皮層的有力控製作用,齊托維奇於1918年最先用笛聲與皮膚冷刺激結合建成了血管收縮條件反射,單用笛聲引起了與冷刺激同樣的縮血管反應。以後A.A.羅戈夫在人,A.T.普紹尼克在狗身上分別建立了血管收縮和舒張的條件反射,發現鞏固的血管條件反射的反射量不但不小於有關的非條件反射量,反而常大於後者,甚至在人手臂容積描記實驗中,當血管條件反射與強刺激引起的非條件反射性質相反時可以壓倒非條件反射;如63℃的皮膚痛刺激引起明顯的縮血管反應,光與43℃的皮膚熱刺激結合形成鞏固的血管舒張條件反射後,條件刺激光與63℃皮膚痛刺激相遇時出現的反應是明顯的血管舒張, 63℃皮膚痛刺激的縮血管反應可以完全消失。
在非常鞏固的血管條件反射基礎上可以建立二級、三級乃至更高級的血管舒張條件反射。可以出現第一信號系統(現實的刺激)向第二信號系統(抽象的語詞)的選擇性泛化;如與現實的條件刺激有關的語詞可以引起相應的陽性血管條件反射和明顯的分化相,甚至還伴有相應的皮溫感覺。美國學者臘什麥耶等在清醒狗的平台踏車電刺激實驗中看到在接通電路前就出現了與刺激時引起狗運動的同樣的心血管反應,如心電圖的變化等,從電生理學角度證實狗同樣有條件反射性心血管反應。
血管運動的體液調節
動物體內有些組織器官釋放到血液中的化學物質對血管系統的功能狀態有調節作用。其中有些是在神經控制下與血管反射協同,成為整個循環系統調節的一個環節而起作用。另外有些體液因素不受神經的控制,是局部血流調節的重要因素。歸納起來可分為三類物質:①由內分泌腺分泌的激素,如腎上腺素和去甲腎上腺素;②組織在某些特殊活動時釋放的一些能影響血管運動的化學物質,如緩激肽、腎素、五羥色胺、組織胺等;③組織的一般代謝產物,如二氧化碳、乳酸、腺苷三磷酸的分解產物腺嘌呤酸等。第一類受神經控制。第二、三類與神經關系較少或沒有關系(表3)。
腎上腺素和去甲腎上腺素 二者都由腎上腺髓質分泌,作用與交感神經興奮時相似。兩種激素都能提高心臟的代謝率;使心搏加速,加強,心輸出量繼而增加。腎上腺素對心臟的作用較強。去甲腎上腺素對血管的作用較強。兩種激素對心臟和血管的綜合作用是使心搏率、心輸出量和體循環血壓都增加。
乙醯膽鹼 能使小血管舒張增加局部組織的血流量。由於容易被膽鹼酯酶破壞,所以在正常情況下,血中不可能有大量乙醯膽鹼出現。注射少量乙醯膽鹼有短暫的降壓作用。其生理意義在於它是膽鹼能舒血管纖維的遞質,迷走神經和其他膽鹼能舒血管纖維興奮時,釋放乙醯膽鹼引起局部血管的舒張和心搏抑制。
垂體加壓素 腦下垂體後葉分泌的加壓素引起小血管收縮,包括冠狀血管。作用時間較長,垂體後葉的內分泌功能受神經控制。刺激神經中樞端使分泌增多,痛刺激引起的加壓反射中垂體後葉加壓素的分泌也起—定作用。
腎素和血管緊張素 部分阻斷腎動脈使腎血供應不足,會使動物產生腎性高血壓,產生的原因是因腎供血不足時血鈉降低刺激腎小球旁細胞釋放一種叫做腎素的酶(血管緊張肽原酶),此酶入血後,能將血漿中血管緊張素原(在α2球蛋白中)水解為一種十肽,叫做血管緊張素Ⅰ。當它經過肺循環時,被其中的轉換酶脫去兩個氨基酸,成為血管緊張素Ⅱ。在氨基肽酶作用下血管緊張素Ⅱ水解成一種七肽——血管緊張素Ⅲ。血管緊張素Ⅱ、Ⅲ都有很高的生物活性,特別是血管緊張素Ⅱ是已發現的最強的縮血管物,血管緊張素Ⅲ主要是刺激腎上腺皮質分泌醛固酮,從而加強腎小管對於鈉及水的重吸收,Ⅱ和Ⅲ都有增加血壓的效應。
局部性體液調節因素 多是組織的代謝產物如二氧化碳、乳酸、氫離子、鉀離子和腺苷三磷酸的分解產物如腺嘌呤酸等,一般都有局部舒血管作用,有助於增加活動器官的血液供應。組織胺是組氨酸的脫羧產物,許多組織,特別是皮膚、肺和腸粘膜的肥大細胞含量較多,在組織發炎、受傷和過敏反應時放出,使平滑肌收縮,但使毛細血管強烈舒張以至造成損傷,導致小血管通透性增加,血漿大量滲出,從而減少循環血量,降低動脈血壓,這些反應都對循環有破壞作用。消化道、腦組織、血小板等有色氨酸的衍生物叫五羥色胺(5-HT),一般有縮血管作用,但小量則使肌肉血管舒張。前列腺素廣泛存在於各種組織中,在生理和病理情況下都能釋放,先到組織間液,後到循環血液,它的成分復雜,有些成分有局部縮血管的作用,但前列腺素主要成分引起血管舒張。
『貳』 體育鍛煉對人體的心臟和血液循環有什麼好處
加速血液循環,代謝快,有害物質排除就快,減少心臟負荷。
『叄』 比較魚類,兩棲,爬行動物心臟和循環系統的不同
魚類:心臟由一心房一心室構成,循環系統為單循環;
兩棲類:心臟由兩房一室構成,循環系統為不完全的雙循環;
爬行動物:心臟由兩房一室構成,心室出現不完全分隔,循環系統為不完全的雙循環。
『肆』 五年級科學第4單元第3課心臟和血液循環備課
血液循環分為體循環和肺循環
肺循環:右心室--肺動脈--肺中的毛細管網--肺靜脈--左心房
體循環:左心室--主動脈--身體各處的毛細管網---上下腔靜脈--右心房
血液循環路線:左心室→(此時為動脈血)→主動脈→各級動脈→毛細血管(物質交換)→(物質交換後變成靜脈血)→各級靜脈→上下腔靜脈→右心房→右心室→肺動脈→肺部毛細血管(物質交換)→(物質交換後變成動脈血)→肺靜脈→左心房→最後回到左心室,開始新一輪循環
其中,從左心室開始到右心房被稱為血液體循環,從右心室開始到左心房被稱為血液肺循環
『伍』 體育鍛煉對人體的心臟和血液循環有什麼好處
心肺是一個完美的組合,兩者互相促進發展。體育鍛煉中用到有氧呼吸,氧氣與血紅蛋白結合產生能量提供動力。強度的增加需要更多的血氧來供能,就要求呼吸加深,提高最大攝氧量,同時心臟泵血功率增大,功率增大意味著可以做更大的力量和耐久運動。時間長了泵血攜氧能力增強,心率降低,專業運動員心率低於40,每次心跳所提供的血氧供能足夠全身使用,一般長久鍛煉的人心率60以內。長久訓練的人肺活量增強,呼吸供能強大,比如專業游泳運動員肺活量可以達到6升以上,是一般人的3倍左右。
心臟和血液循環也是緊密相連,強度訓練中使心臟泵血供能增強,血管內血液流速增加,長時間鍛煉後,血管壁增厚,韌性增強,血液循環暢通無阻。許多體重偏重的人或者有「三高」的人通過長時間鍛煉,比如跑步等,可以降低體重,降低高血脂高血糖。
『陸』 昆蟲有心臟和血液循環系統嗎
有,昆蟲的心臟比較小,如果你仔細觀察一隻飛蛾、蚊子的幼蟲或毛蟲的話版,就能夠看到它們背部的權管狀心臟,由它跳動的情形會發現昆蟲體溫高時,心臟跳動得比較快。昆蟲的血不含氧,也不是紅色的,因為沒有使血液變紅的紅血球。昆蟲的心臟是皮膚底下通向身體項端的一條長管,在腦部下有一開口,這個心臟管有許多瓣膜似的小開口,血從這些小洞流入心臟,心臟收縮,使血液流向頭部,血液流過頭部後就經由身體流向心臟,血液迴流時,浸潤了身體各器官、肌肉和神經系統,並攜帶消化過的食物,運走廢物。昆蟲頭上的大神經中樞是腦部,腦接受信息發布的信號,命令肌肉工作,這些是直覺反應,昆蟲的動作屬於自動反射。
『柒』 急急急!苦求初中生物 心臟和血液循環」「人體的各種營養物質和吸收器官(就是消化系統)」的難題!!!
在這個網址上有一套題內:容http://res.tongyi.com/resources/article/student/junior/2010/0222/shenegwu/8/01.htm
『捌』 高中生物還學心臟和血液循環嗎,初中物理和高中物理聯系大嗎數學的聯系大嗎
生物不學心臟的 血液循環也涉及不到 基本不考。物理和數學 簡直就是上升到了另一個層次聯系吧 老是說 物理不大 數學也差不多