導航:首頁 > 教師教學 > 小學奧數中國剩餘定理教案

小學奧數中國剩餘定理教案

發布時間:2021-02-24 13:33:12

⑴ 五年級簡單奧數

1、大小兩桶油,重量比是7:3,如果從大桶取出12千克倒入小桶,則兩桶油中的油正好相等。兩桶油原來各有多少油?
12/2*10=60(千克)
7+3=10
60/10*7=42(千克)
60/10*3=18(千克)
答:大桶里有42千克油,
小桶里有18千克油。
2、一桶汽油,桶的重量是油的8%,倒出48千克後,油的重量相當於同的二分之一,原有油多少千克?
48/(1-8%*0.5)
=48/96%
=50(千克)
答:原有油50千克。
*=乘號
/=除號
回答者: 叛逆精靈屋 - 魔法學徒 一級 2-4 17:50
查看用戶評論(3)>>
評價已經被關閉 目前有 2 個人評價

50% (1) 不好
50% (1)
相關內容
• 六年級 奧數題
• 五年級奧數題目哦
• 幫我算一下這道六年級奧數題。
• 六年級奧數題
• 誰有三年級奧數題目
更多相關問題>>
查看同主題問題:六年級 奧數題
其他回答 共 1 條
中國剩餘定理」算理及其應用:(可以讓你學會並考別人)

為什麼這樣解呢?因為70是5和7的公倍數,且除以3餘1。21是3和7的公倍數,且除以5餘1。15是3和5的公倍數,且除以7餘1。(任何一個一次同餘式組,只要根據這個規律求出那幾個關鍵數字,那麼這個一次同餘式組就不難解出了。)把70、21、15這三個數分別乘以它們的余數,再把三個積加起來是233,符合題意,但不是最小,而105又是3、5、7的最小公倍數,去掉105的倍數,剩下的差就是最小的一個答案。

用歌訣解題容易記憶,但有它的局限性,只能限於用3、5、7三個數去除,用其它的數去除就不行了。後來我國數學家又研究了這個問題,運用了像上面分析的方法那樣進行解答。

例1:一個數被3除餘1,被4除餘2,被5除餘4,這個數最小是幾?

題中3、4、5三個數兩兩互質。

則〔4,5〕=20;〔3,5〕=15;〔3,4〕=12;〔3,4,5〕=60。

為了使20被3除餘1,用20×2=40;

使15被4除餘1,用15×3=45;

使12被5除餘1,用12×3=36。

然後,40×1+45×2+36×4=274,

因為,274>60,所以,274-60×4=34,就是所求的數。

例2:一個數被3除餘2,被7除餘4,被8除餘5,這個數最小是幾?

題中3、7、8三個數兩兩互質。

則〔7,8〕=56;〔3,8〕=24;〔3,7〕=21;〔3,7,8〕=168。

為了使56被3除餘1,用56×2=112;

使24被7除餘1,用24×5=120。

使21被8除餘1,用21×5=105;

然後,112×2+120×4+105×5=1229,

因為,1229>168,所以,1229-168×7=53,就是所求的數。

例3:一個數除以5餘4,除以8餘3,除以11餘2,求滿足條件的最小的自然數。

題中5、8、11三個數兩兩互質。

則〔8,11〕=88;〔5,11〕=55;〔5,8〕=40;〔5,8,11〕=440。

為了使88被5除餘1,用88×2=176;

使55被8除餘1,用55×7=385;

使40被11除餘1,用40×8=320。

然後,176×4+385×3+320×2=2499,

因為,2499>440,所以,2499-440×5=299,就是所求的數。

例4:有一個年級的同學,每9人一排多5人,每7人一排多1人,每5人一排多2人,問這個年級至少有多少人?(幸福123老師問的題目)

題中9、7、5三個數兩兩互質。

則〔7,5〕=35;〔9,5〕=45;〔9,7〕=63;〔9,7,5〕=315。

為了使35被9除餘1,用35×8=280;

使45被7除餘1,用45×5=225;

使63被5除餘1,用63×2=126。

然後,280×5+225×1+126×2=1877,

因為,1877>315,所以,1877-315×5=302,就是所求的數。

例5:有一個年級的同學,每9人一排多6人,每7人一排多2人,每5人一排多3人,問這個年級至少有多少人?(澤林老師的題目)

題中9、7、5三個數兩兩互質。

則〔7,5〕=35;〔9,5〕=45;〔9,7〕=63;〔9,7,5〕=315。

為了使35被9除餘1,用35×8=280;

使45被7除餘1,用45×5=225;

使63被5除餘1,用63×2=126。

然後,280×6+225×2+126×3=2508,

因為,2508>315,所以,2508-315×7=303,就是所求的數。

(例5與例4的除數相同,那麼各個余數要乘的「數」也分別相同,所不同的就是最後兩步。)

「中國剩餘定理」簡介:

我國古代數學名著《孫子算經》中,記載這樣一個問題:「今有物不知其數,三三數之剩二,五五數之剩三,七七數之剩二,問物幾何。」用現在的話來說就是:「有一批物品,三個三個地數餘二個,五個五個地數餘三個,七個七個地數餘二個,問這批物品最少有多少個。」這個問題的解題思路,被稱為「孫子問題」、「鬼谷算」、「隔牆算」、「韓信點兵」等等。

那麼,這個問題怎麼解呢?明朝數學家程大位把這一解法編成四句歌訣:

三人同行七十(70)稀,

五樹梅花廿一(21)枝,

七子團圓正月半(15),

除百零五(105)便得知。

歌訣中每一句話都是一步解法:第一句指除以3的余數用70去乘;第二句指除以5的余數用21去乘;第三句指除以7的余數用15去乘;第四句指上面乘得的三個積相加的和如超過105,就減去105的倍數,就得到答案了。即:

70×2+21×3+15×2-105×2=23

《孫子算經》的「物不知數」題雖然開創了一次同餘式研究的先河,但由於題目比較簡單,甚至用試猜的方法也能求得,所以尚沒有上升到一套完整的計算程序和理論的高度。真正從完整的計算程序和理論上解決這個問題的,是南宋時期的數學家秦九韶。秦九韶於公元1247年寫成的《數書九章》一書中提出了一個數學方法「大衍求一術」,系統地論述了一次同餘式組解法的基本原理和一般程序。

從《孫子算經》到秦九韶《數書九章》對一次同餘式問題的研究成果,在19世紀中期開始受到西方數學界的重視。1852年,英國傳教士偉烈亞力向歐洲介紹了《孫子算經》的「物不知數」題和秦九韶的「大衍求一術」;1876年,德國人馬蒂生指出,中國的這一解法與西方19世紀高斯《算術探究》中關於一次同餘式組的解法完全一致。從此,中國古代數學的這一創造逐漸受到世界學者的矚目,並在西方數學史著作中正式被稱為「中國剩餘定理」。

還有一些測試題

六年級奧數測試題

(每道題都要寫出詳細解答過程)

1. 三個數的和是555,這三個數分別能被3,5,7整除,而且商都相同,求這三個數。

2. 已知A是一個自然數,它是15的倍數,並且它的各個數位上的數字只有0和8兩種,問A最小是幾?

3. 把自然數依次排成以下數陣:

1,2,4,7,…

3,5,8,…

6,9,…

10,…



現規定橫為行,縱為列。求

(1) 第10行第5列排的是哪一個數?

(2) 第5行第10列排的是哪一個數?

(3) 2004排在第幾行第幾列?

4. 三個質數的乘積恰好等於它們的和的11倍,求這三個質數。

5. 有兩個整數,它們的和恰好是兩個數字相同的兩位數,它們的乘積恰好是三個數字相同的三位數。求這兩個整數。

6. 在800米的環島上,每隔50米插一面彩旗,後來又增加了一些彩旗,就把彩旗的間隔縮短了,起點的彩旗不動,重新插完後發現,一共有4根彩旗沒動,問現在的彩旗間隔多少米?

7. 13511,13903,14589被自然數m除所得余數相同,問m最大值是多少?

8. 求1到200的自然數中不能被2、3、5中任何一個數整除的數有多少個?

9. 有一列數:1,999,998,1,997,996,1,…從第3個數起,每一個數都是它前面2個數中大數減小數的差。求從第1個數起到999個數這999個數之和。

10. 從200到1800的自然數中有奇數個約數的數有多少個?

11. 在下圖中,有左右兩個一樣的等腰直角三角形,其面積都是100,分別沿著圖中的虛線剪下兩個小正方形,請你求一下兩個正方形的面積各是多少,並比較大小。

12. 甲說:「我和乙、丙共有100元。」乙說:「如果甲的錢是現有的6倍,我的錢是現有的1/3,丙的錢不變,我們三人仍有錢100元。」丙說:「我的錢連30元都不到。」問三人原來各有多少錢?

13. B兩人要到沙漠中探險,他們每天向沙漠深處走20千米,已知每人最多可攜帶一個人24天的食物和水,如果不準將部分食物存放於途中,問其中一個人最遠可以深入沙漠多少千米(要求最後兩人返回出發點)?如果可以將部分食物存放於途中以備返回時取用呢?

14. 一筆獎金分一等獎、二等獎和三等獎。每個一等獎的獎金是每個二等獎金的2倍,每個二等獎的獎金是每個三等獎獎金的2倍。如果評一、二、三等獎各兩人,那麼每個一等獎的獎金是308元;如果評一個一等獎,兩個二等獎,三個三等獎,那麼一等獎的獎金是多少元?

15. 把1296分為甲、乙、丙、丁四個數,如果甲數加上2,乙數減去2,丙數乘以2,丁數除以2,則四個數相等。求這四個數各是多少?

⑵ 奧數中國剩餘定理

數713 1103 830被一個整數除,所得余數相同,
說明這三個數兩兩之差可以整除這個整版數

1103-713=390
830-713=117

(117,390)=39
因此這個數一定權是39的約數。
這個數可能是39,13,3,1

這三個數兩兩之差可以整除他們的最大公約數
因此最大公約數也是39的約數
但713不能整除39,13,3
因此最大公約數是1
最小公倍數是713*1103*830=652744370

⑶ 小學奧數題:孫子定理問題

根據「5人一組正好分完」可知,這班學生人數是5的倍數,「4人一組多1人」,可能是:版5,權9,13,17,21,25,29,33,37,41,45,。。。「6人一組少3人」,可能是:3,9,15,21,27,33,39,45,。。。所以由上可知:這班學生最少45人

⑷ 小學奧數

題中7、8、9三個數兩兩互質。
則〔8,9〕=72;〔7,9〕=63;〔7,8〕=56;〔7,8,9〕=504。
為了使72被7除餘1,用72×4=288;
使63被8除餘1,用53×8=441;
使56被9除餘1,用56×5=280。
然後,288×1+441×4+280×2=2612,
因為,2612>504,所以,2612-504×5=92,就是所求的數。

中國剩餘定理」算理及其應用:
為什麼這樣解呢?因為70是5和7的公倍數,且除以3餘1。21是3和7的公倍數,且除以5餘1。15是3和5的公倍數,且除以7餘1。(任何一個一次同餘式組,只要根據這個規律求出那幾個關鍵數字,那麼這個一次同餘式組就不難解出了。)把70、21、15這三個數分別乘以它們的余數,再把三個積加起來是233,符合題意,但不是最小,而105又是3、5、7的最小公倍數,去掉105的倍數,剩下的差就是最小的一個答案。
用歌訣解題容易記憶,(三人同行七十稀,五樹梅花二一枝;七子團圓正半月,除百零五便得知。)但有它的局限性,只能限於用3、5、7三個數去除,用其它的數去除就不行了。後來我國數學家又研究了這個問題,運用了像上面分析的方法那樣進行解答。

例1:一個數被3除餘1,被4除餘2,被5除餘4,這個數最小是幾?
題中3、4、5三個數兩兩互質。
則〔4,5〕=20;〔3,5〕=15;〔3,4〕=12;〔3,4,5〕=60。
為了使20被3除餘1,用20×2=40;
使15被4除餘1,用15×3=45;
使12被5除餘1,用12×3=36。
然後,40×1+45×2+36×4=274,
因為,274>60,所以,274-60×4=34,就是所求的數。

例2:一個數被3除餘2,被7除餘4,被8除餘5,這個數最小是幾?
題中3、7、8三個數兩兩互質。
則〔7,8〕=56;〔3,8〕=24;〔3,7〕=21;〔3,7,8〕=168。
為了使56被3除餘1,用56×2=112;
使24被7除餘1,用24×5=120。
使21被8除餘1,用21×5=105;
然後,112×2+120×4+105×5=1229,
因為,1229>168,所以,1229-168×7=53,就是所求的數。

例3:一個數除以5餘4,除以8餘3,除以11餘2,求滿足條件的最小的自然數。
題中5、8、11三個數兩兩互質。
則〔8,11〕=88;〔5,11〕=55;〔5,8〕=40;〔5,8,11〕=440。
為了使88被5除餘1,用88×2=176;
使55被8除餘1,用55×7=385;
使40被11除餘1,用40×8=320。
然後,176×4+385×3+320×2=2499,
因為,2499>440,所以,2499-440×5=299,就是所求的數。

例4:有一個年級的同學,每9人一排多5人,每7人一排多1人,每5人一排多2人,問這個年級至少有多少人 ?(幸福123老師問的題目)
題中9、7、5三個數兩兩互質。
則〔7,5〕=35;〔9,5〕=45;〔9,7〕=63;〔9,7,5〕=315。
為了使35被9除餘1,用35×8=280;
使45被7除餘1,用45×5=225;
使63被5除餘1,用63×2=126。
然後,280×5+225×1+126×2=1877,
因為,1877>315,所以,1877-315×5=302,就是所求的數。

例5:有一個年級的同學,每9人一排多6人,每7人一排多2人,每5人一排多3人,問這個年級至少有多少人 ?(澤林老師的題目)
題中9、7、5三個數兩兩互質。
則〔7,5〕=35;〔9,5〕=45;〔9,7〕=63;〔9,7,5〕=315。
為了使35被9除餘1,用35×8=280;
使45被7除餘1,用45×5=225;
使63被5除餘1,用63×2=126。
然後,280×6+225×2+126×3=2508,
因為,2508>315,所以,2508-315×7=303,就是所求的數。
(例5與例4的除數相同,那麼各個余數要乘的「數」也分別相同,所不同的就是最後兩步。)

關於「中國剩餘定理」類型題目的另外解法

「中國剩餘定理」解的題目其實就是「余數問題」,這種題目,也可以用倍數和余數的方法解決。
例一,一個數被5除餘2,被6除少2,被7除少3,這個數最小是多少?
解法:題目可以看成,被5除餘2,被6除餘4,被7除餘4 。看到那個「被6除餘4,被7除餘4」了么,有同餘數的話,只要求出6和7的最小公倍數,再加上4,就是滿足後面條件的數了,6X7+4=46。下面一步試下46能不能滿足第一個條件「一個數被5除餘2」。不行的話,只要再46加上6和7的最小公倍數42,一直加到能滿足「一個數被5除餘2」。這步的原因是,42是6和7的最小公倍數,再怎麼加都會滿足
「被6除餘4,被7除餘4」的條件。
46+42=88
46+42+42=130
46+42+42+42=172
這是一種形式的,它的前提是條件中出現同餘數的情況,如果遇到沒有的,下面講
例二,一個班學生分組做游戲,如果每組三人就多兩人,每組五人就多三人,每組七人就多四人,問這個班有多少學生?
解法:題目可以看成,除3餘2,除5餘3,除7餘4。沒有同餘的情況,用的方法是「逐步約束法」,就是從「除7餘4的數」中找出符合「除5餘3的數」,就是再7上一直加4,直到所得的數除5餘3。得出數為18,下面只要在18上一直加7和5得最小公倍數35,直到滿足「除3餘2」
4+7=11
11+7=18
18+35=53
這種方法也可以解「中國剩餘定理」解的題目。比「中國剩餘定理」更好理解,我覺的速度上會比那個繁瑣的公式化的解題更快。
可以試下.

⑸ 中國剩餘定理證明||||||||拒絕復制粘貼

由題設得:Mi,mi互素,所以使用輾轉相除法可求出Mi',yi使得: MiMi'+yi*mi=1,即Mi'滿足題設版的所有條件,權並且由題設中x0的性質得:
x0,aiMiMi'與ai三者對模mi同餘
所以x0與a1M1M1'+a2M2M2'+...+akMkMk'對模m同餘是你的同餘方程組關於模m的解。
假設x與x1對模m同餘也是那個同餘方程組的解,則x1與x0對模mi同餘,由此,結合同餘的性質,得:x1與x0對模[m1,m2,m3,...,mk]同餘,但由題設得:[m1,m2,m3,...,mk]=m,矛盾!
dsghsd

小學六年級奧數等積變形

設:圓柱的底面積是S
則容器內水的體積為8S
圓錐的容積為:1/3×S×12=4S
圓錐里只能容納4S的水回,還有4S的水就答要裝在圓柱形的容器里,
4S÷S=4(厘米)
12+4=16(厘米)
答:從圓錐的頂點到水面的高是16厘米。

⑺ 中國剩餘定理公式是什麼

(中國剩餘定理CRT)設m1,m2,...,mk是兩兩互素的正整數,即gcd(mi,mj) =1,i≠j,i,j = 1,2,...,k
則同餘方程組:
x≡b1 (內mod m1)
x≡b2 (mod m2)
...
x≡bk (mod mk)
模[m1,m2,...,mk]有唯一容解,即在[m1,m2,...,mk]的意義下,存在唯一的x,滿足:
x≡bi mod [m1,m2,...,mk],i = 1,2,...,k

閱讀全文

與小學奧數中國剩餘定理教案相關的資料

熱點內容
小學讀書計劃表格模板 瀏覽:342
小學語文四年級感嘆句 瀏覽:243
天通苑中山實驗小學 瀏覽:596
小學三年級語文補習班內容 瀏覽:921
吉安師范附屬小學作文 瀏覽:396
小學教師備課網站 瀏覽:1
私立美男學院 瀏覽:383
小學六年級上冊語文第六單元試卷涼州島 瀏覽:915
小學1年級手gong大全 瀏覽:459
小學生手抄報的圖片大全圖片大全 瀏覽:68
小學健康知識講座 瀏覽:120
小學畢業季適合發老師的句子 瀏覽:451
汕尾鳳山中心小學校長 瀏覽:606
小學生畢業匯演舞蹈 瀏覽:702
小學生抗擊疫情的表演 瀏覽:107
私立華聯大學本科 瀏覽:61
小學三年級作文我想謝謝你400 瀏覽:855
中小學生睡眠問題 瀏覽:174
小學生公共生活守規則教案 瀏覽:313
淮河私立學校 瀏覽:99