⑴ 小學六年級的科學(基因遺傳與變異)手抄報
生物的親代能產生與自己相似的後代的現象叫做遺傳。遺傳物質的基礎是脫氧核糖核酸(DNA),親代將自己的遺傳物質DNA傳遞給子代,而且遺傳的性狀和物種保持相對的穩定性。生命之所以能夠一代一代地延續的原因,主要是由於遺傳物質在生物進程之中得以代代相承,從而使後代具有與前代相近的性狀。
只是,親代與子代之間、子代的個體之間,是絕對不會完全相同的,也就是說,總是或多或少地存在著差異,這樣現象叫變異。
遺傳是指親子間的相似性,變異是指親子間和子代個體間的差異。生物的遺傳和變異是通過生殖和發育而實現的。
變異主要分為兩類:可遺傳的變異和不可遺傳的變異。可遺傳的變異是由遺傳物質的變化引起的變異;不可遺傳的變異是由環境引起的,遺傳物質沒有發生變化。可遺傳的變異的來源主要有3個:基因重組、基因突變和染色體變異。
基因重組是指非等位基因間的重新組合。能產生大量的變異類型,但只產生新的基因型,不產生新的基因。基因重組的細胞學基礎是性原細胞的減數分裂第一次分裂,同源染色體彼此分裂的時候,非同源染色體之間的自由組合和同源染色體的染色單體之間的交叉互換。基因重組是雜交育種的理論基礎。
基因突變是指基因的分子結構的改變,即基因中的脫氧核苷酸的排列順序發生了改變,從而導致遺傳信息的改變。基因突變的頻率很低,但能產生新的基因,對生物的進化有重要意義。發生基因突變的原因是DNA在復制時因受內部因素和外界因素的干擾而發生差錯。典型實例是鐮刀形細胞貧血症。基因突變是誘變育種的理論基礎。
染色體變異是指染色體的數目或結構發生改變。重點是數目的變化。染色體組的概念重在理解。一個染色體組中沒有同源染色體,沒有等位基因,但一個染色體組中所包含的遺傳信息是一套個體發育所需要的完整的遺傳信息,即常說的一個基因組。對二倍體生物來說,配子中的所有染色體就是一個染色體組。染色體組數是偶數的個體一般都具有生育能力,但染色體組數是奇數的個體是高度不孕的,如一倍體和三倍體等。
遺傳與變異,是生物界不斷地普遍發生的現象,也是物種形成和生物進化的基礎。
微生物遺傳學作為一門獨立的學科誕生於40年代,病毒遺傳學作為微生物遺傳學的重
要組成部分,對於生物遺傳和變異的研究起到了重要的促進作用,也為分子遺傳學的
發展奠定了基礎。病毒的許多生物學特性,包括結構簡單、無性增殖方式、可經細胞
培養、增殖迅速、便於純化等,使其具有作為遺傳學研究材料的獨特優勢。
眾所周知,包括病毒在內的各種生物遺傳的物質基礎是核酸。事實上,這一結論
最初的直接證據正是來自於對病毒的研究。為了說明這一點,首先讓我們回顧兩個經
典的實驗:①噬菌體感染試驗:T2是感染大腸桿菌的一種噬菌體,它由蛋白質外殼(
約60%)和DNA核芯(約40%)構成,蛋白質中含有硫,DNA中含有磷。把32P和35S
標記T2,並用標記的噬菌體進行感染試驗,就可以分別測定DNA和蛋白質的功用。Hershey和
Chase(1952)在含有32P或35S的培養液中將T2感染大腸桿菌,得到標記的噬菌體,
然後用標記的噬菌體感染常規培養的大腸桿菌,再測定宿主細胞的同位素標記,結果用
35S標記的噬菌體感染時,宿主細胞中很少有同位素標記,大多數的35S標記噬菌
體蛋白附著在宿主細胞的外面,用32P標記的噬菌體感染時,大多數的放射性標記在宿主細
胞內。顯然感染過程中進入細胞的主要是DNA。②病毒重建實驗:煙草花葉病病毒
(tobacco mosaic virus,TMV)由蛋白質外殼和RNA核芯組成。可以從TMV分別抽提得
到它的蛋白質部分和RNA部分。FraenkelCourat(1956)實驗證明,用這兩種成分分
別接種煙草,只有病毒RNA可引起感染。雖然感染效率較低,但足以說明遺傳物質為
RNA。FraenkelCourat利用分離後再聚合的方法,先取得TMV的蛋白質外殼和車前病
毒(Holmes Rib Grass Virus,HRV)的RNA,然後把它們結合起來形成雜合病毒,這種
雜合病毒有著普通TMV的外殼,可被抗TMV抗體所滅活,但不受抗HRV抗體的影響。當
用雜合病毒感染煙草時,卻產生HRV感染的特有病斑,從中分離的病毒可被抗HRV抗體
滅活。反過來將HRV的蛋白質和TMV的RNA結合起來也得到類似的結果。目前已經能夠由
許多小型RNA病毒和某些DNA病毒提取感染性核酸。如第四章所述,這些感染性核酸在
感染細胞以後,可以產生具有蛋白質衣殼和脂質囊膜的完整子代病毒。由脊髓灰質炎
病毒的RNA與柯薩奇病毒的衣殼構成的雜合病毒,在感染細胞後產生的子代病毒將是完
全的脊髓灰質炎病毒。以上事實說明,核酸是病毒遺傳的決定機構,而蛋白質衣殼和
脂質囊膜不過是在病毒核酸遺傳信息控制下合成或由細胞「搶來」的成分。這些成分
雖然決定著病毒的抗原特性,而且與病毒對細胞的吸附有關,在一定程度上影響著病
毒與宿主細胞或機體的相互關系,例如感染與免疫,但從病毒生物學的本質來看,它
們只是病毒粒子中附屬的或輔助的結構。核酸傳遞遺傳信息的基礎在於其鹼基的排列
順序,病毒核酸復制時能夠產生完全同於原核酸的新的核酸分子,從而保持遺傳的穩
定性。但是,病毒沒有細胞結構,缺乏獨立的酶系統,故其遺傳機構所受周圍環境的
影響,尤其是宿主細胞內環境的影響特別深刻;加之病毒增殖迅速,突變的機率相應
增高,這又決定了病毒遺傳的較大的動搖性——變異性。採用適當的選育手段,常可
較快獲得許多變異株。應用各種理化學和生物學因子進行誘變,也能較快看到結果。
而病毒粒子之間以及病毒核酸之間的雜交或重組,又為病毒遺傳變異的研究,開辟了廣闊前景。這些便利條件使病毒遺傳變異的研究遠遠超出了病毒學本身的范圍,成為人類認識生命本質和規律的一個重要的模型和側面。
遺傳和變異是對立的統一體,遺傳使物種得以延續,變異則使物種不斷進化。本章主要論述病毒的變異現象、變異機理以及研究變異的方法和誘變因素等,關於病毒的遺傳學理論請參閱有關的專業書籍。
病毒的遺傳變異常常是「群體」,也就是無數病毒粒子的共同表現。而病毒成分,特別是病毒編碼的酶和蛋白質,又常與細胞的正常酶類和蛋白質混雜在一起。這顯然 增加了病毒遺傳變異特性鑒定上的復雜性。
變異是生物的一般特性。甚至在人類尚未發現病毒以前,就已開始運用變異現象
製造疫苗。例如1884年,巴斯德利用兔腦內連續傳代的方法,將狂犬病的街毒(強毒) 轉變為固定毒。這種固定毒保留了原有的免疫原性,但毒力發生了變異——非腦內接 種時,對人和犬等的毒力明顯降低,因而成功地用作狂犬病的預防制劑。此後,在許 多動物病毒方面,應用相同或類似的方法獲得了弱毒株,創制了許多優質的疫苗。選 育自然弱毒變異株的工作,也取得了巨大成就。但是有關病毒遺傳變異機理的認識, 則只在最近幾十年來才有顯著的進展。這不僅是病毒學本身的躍進,也是其它學科, 特別是生物化學、分子生物學、免疫學以及電子顯微鏡、同位素標記等新技術飛速發 展的結果。
⑵ 生物的遺傳和變異復習教案
初中
http://wenku..com/view/8a992522bcd126fff7050b13.html
高中
http://wenku..com/view/8fa9bd3a87c24028915fc328.html
⑶ 我上六年級,最近科學課上老師讓做一個關於遺傳與變異的小報,圖畫好了,但不知道改寫什麼,上網查還查不
和生物與進化小報差不多,可以網路一下