導航:首頁 > 教師教學 > 小學數學低年級概念課教學

小學數學低年級概念課教學

發布時間:2021-01-31 23:09:06

『壹』 如何進行小學數學概念教學

————論如何在小學數學教學中用好概念數學
現在很多小學生對學習數學的積極性不高,缺乏學習興趣,認為數學特別難學。我們只要認真分析,就不難發現,主要是學生對一些數學概念沒有搞清楚。如:12的最大約數與最小倍數是相等的。學生卻判斷是錯誤的,本題涉及 「因數」、一個「自然數」的因數是「有限的」,最小的是1,最大的是它本身。「倍數」、一個自然數的倍數是「無限的」,最小的是它本身,最大的沒有。還有「相等」。學生出現錯誤,說明學生對數學概念沒有理解掌握好。數學概念是「雙基」(即基礎知識和基本技能)教學的核心內容;是基礎知識的起點;是邏輯推理的依據;是正確、合理、迅速運算的保證。學生正確、清晰、完整地掌握數學概念,是掌握數學知識的基礎。如果學生對概念不明確,也會影響學生的學習興趣和學習效果。如果不懂什麼是「分數」和「分數單位」,就很難理解分數四則運演算法則的算理,就會直接影響分數四則計算能力的提高。正確、迅速、合理、靈活的計算能力只有在概念清楚的基礎上,掌握計演算法則,經過適當練習才能形成。學生概念清楚了,才能進行分析推理;邏輯思維能力和解決問題的能力才能不斷提高。因此,在教學中如何使學生形成概念,正確地掌握和運用概念是極為重要的。數學教學過程,就是「概念的教學」。一個數學教師,要把概念教學放到突出地位。小學數學中的一些概念,對小學生來說,由於年齡小,知識不多,生活經驗不足,抽象思維能力差,理解起來有一定的困難。因此教師在有關概念的教學過程中,一定要從小學生年齡實際出發,這樣才會收到好的教學效果。
一、教學中讓學生理解數學概念
1.直觀形象地引入概念
數學概念比較抽象,而小學生,特別是低年級小學生,由於年齡、知識和生活的局限,其思維處在具體形象思維為主的階段。認識一個事物、理解一個數學道理,主要是憑借事物的具體形象。因此,教師在數學概念教學的過程中,一定要做到細心、耐心,盡量從學生日常生活中所熟悉的事物開始引入。這樣,學生學起來就有興趣,思考的積極性就會高。如在教平均數應用題時,我利用鉛筆做教具,重溫「平均分」的概念。我用9個同樣大的小木塊擺出三堆,第一堆1塊,第二堆2塊,第三堆6塊,問:「每堆一樣多嗎?哪堆多?哪堆少?」學生都能正確回答。這時,我又把這三堆木塊混到一起,重新平均分三份,每份都是3塊,告訴學生「3」這個新得到的數,是這三堆木塊的「平均數」。我再演示一遍,要求學生仔細看,用心想:「平均數」是怎樣得到的。學生看我把原來的三堆合並起來,變成一堆,再把這堆木塊分做3份,每堆正好3塊。這個演示過程,既揭示了「平均數」的概念,又有意識地滲透「總數量÷總份數=平均數」的計算方法。然後,又把木塊按原來的樣子1塊,2塊、6塊地擺好,讓學生觀察,平均數「3」與原來的數比較大小。學生說,平均數3比原來大的數小,比原來小的數大,這樣,學生就形象地理解了「求平均數」這一概念的本質特徵。
2.運用舊知識引出新概念
數學中的有些概念,往往難以直觀表述。如比例尺、循環小數等,但它們與舊知識都有內在聯系。我就充分運用舊知識來引出新概念。在備課時要分析這個新概念有哪些舊知識與它有內在的聯系。利用學生已掌握的舊知識講授新概念,學生是容易接受的。蘇霍姆林斯基說:「教給學生能藉助已有的知識去獲取知識,這是最高的教學技巧之所在。」從心理學來分析,無恐懼心理,學生容易活躍;無畏難情緒,易於啟發思維;舊知識記憶好,容易受鼓舞;所以運用舊知識引出新概念教學效果好。例如從求出幾個數各自的「倍數」從而引出「公倍數」、「最小公倍數」等概念。總之,把已有的知識作為學習新知識的基礎,以舊帶新,再化新為舊,如此循環往復,既促使學生明確了概念,又掌握了新舊概念間的聯系。
3.通過實踐認識事物本質、形成概念
常言說,實踐出真知,手是腦的老師。學生通過演示學具,可以理解一些難以講解的概念。如一年級小學生初學數的大小比較。是用小雞小鴨學具,一一對比。如一隻小雞對一隻小鴨,第二隻小雞對第二隻小鴨,……直到第六隻小雞沒有小鴨對比了,就叫小雞比小鴨多1隻。又如二年級小學生學習「同樣多」這個概念也是用學具紅花和黃花,學生先擺5朵紅花、再擺和紅花一樣多的5朵黃花,這樣就把「同樣多」這個數學概念,通過演示(手),思維(腦),形成概念,符合實踐、認識,再實踐、再認識的規律。這比老師演示、學生看,老師講解、學生聽效果好,印象深、記憶牢。
4、從具體到抽象,揭示概念的本質
在教學中既要注意適應學生以形象思維為主的特點,也要注意培養他們的抽象思維能力。在概念教學中,要善於為學生創造條件,引導他們通過觀察、思考、探求概念的含義,沿著由感性認識到理性認識的認知過程去掌握概念。這樣,可以培養學生的邏輯思維能力。如圓周率這個概念比較抽象。一般教師都是讓學生通過動手操作認識圓的周長與直徑的關系,學生通過觀察、思考,分析,很快就發現不管圓的大小如何,每個圓的周長都是直徑的3倍多一點。教師指出:「這個倍數是個固定的數,數學上叫做「圓周率」。這樣,引導學生把大量感性材料,加以分析綜合,抽象概括拋棄事物非本質東西(如圓的大小,紙板的顏色,測量用的單位等)抓住事物的本質特徵(不論圓的大小,周長總是直徑的3倍多一點)。形成了概念。
5、用「變式」引導學生理解概念的本質
在學生初步掌握了概念之後,我經常變換概念的敘述方法,讓學生從各個側面來理解概念。概念的表述方式可以是多種多樣的。如質數,可以說是「一個自然數除了1和它本身,不再有別的因數,這個數叫做質數。」有時也說成「僅僅是1和它本身兩個因數的倍數的數」。學生對各種不同的敘述都能理解,就說明他們對概念的理解是透徹的,是靈活的,不是死背硬記的。有時可以變概念的非本質特徵,讓學生來辨析,加深他們對本質特徵的理解。
6、對近似的概念加以對比
在小學數學中,有些概念的含義接近,但本質屬性有區別。例如:數位與位數、體積與容積,減少與減少到等等相對應概念,存在許多共同點與內在聯系。對這類概念,學生常常容易混淆,必須把它們加以比較,避免互相干擾。比較,主要是找出它們的相同點和不同點,這就要對進行比較的兩個概念加以分析,看各有哪些本質特點。然後把它們的共同點和不同點分別找出來,使學生既看到進行比較對象的內在聯系,又看到它們的區別。這樣,學的概念就會更加明確。對近似的概念經常引導學生進行比較和區分,既能培養學生對易混概念自覺地進行比較的習慣,也能提高學生理解概念的能力。多年來教學實踐的體會:重視培養學生的比較思想有幾點好處:(1)有利於培養學生思維的邏輯性。(2)有利於提高學生的分析問題的能力。(3)有利於培養學生系統化的思維方式。
5、教師要幫助學生總結歸納出概念的含義
教學中學生的主體地位是必要的,但教師在教學的全過程中的主導地位也不能忽視。教師應發揮好主導作用。教師與學生的主、客體地位是相互依存,在一定條件下又相互轉化。在概念教學中,教師要善於為學生創造條件,讓學生沿著觀察、思維、理解、表達的過程,由感性到理性的過程,由具體到抽象的過程去掌握概念。這樣極易調動學生的積極性、主動性,也可以教會學生去發現真理。比如我教質數,合數兩個概念。我先板書幾個數:1、2、3、4、5、6、8、9、11、12,讓同學分別寫出每個數的因數來。為了便於學生觀察,有意識地做如下的排列,學生寫出下列答案:
1——1 2——1、2 6——1、2、3、6
3——1、3 4——1、2、4
5——1、5 8——1、2、4、8
11——1、11 9——1、3、9
12——1、2、3、4、6、12
訂正後,讓學生仔細觀察,找自然數的因數規律。學生觀察後發現了規律。有的說有三種規律,有的則認為四種情況。我表揚同學觀察分析得好。是三種規律。於是又啟發他們看是哪三種?①一個自然數只有一個因數;②一個自然數有兩個因數;③一個自然數有三個以上因數。在這個情況下,我再次啟發:一個因數的是什麼樣的數?兩個的是什麼樣的?三個以上又是什麼樣的因數?學生則發現一個的只有1;兩個的則有1還有本身;三個以上的則有1、自己本身、還有其它的因數。最後老師一一肯定,並由學生看書後總結出質數、合數概念,這時學生很受鼓舞,認為自己發現了真理。對質數、合數的概念印象極為深刻永不忘記。我又有意識地讓學生研究「1」到底算哪類?學生沉默了,我說:「從書上找找是怎麼說的?知道的就發言」。通過學生的口,說出「1」既不是質數,也不是合數。我問:「為什麼」?學生答:因為「1」的因數只佔一條,算1就沒有本身,算本身又沒有「1」,這樣可比老師直接告訴、或叮嚀他們注意主動。讓學生在教師的幫助下,把大量感性材料經過分析綜合,抽象概括。拋棄事物和現象的非本質的東西,抓住事物和現象的本質特徵形成概念。因為是學生付出了腦力勞動而獲取得到的,所以容易理解,記憶也牢固。
二有效鞏固概念
教學中不僅要求學生理解概念,而且還要使學生熟記並靈活地運用概念。我認為概念的記憶與應用是相輔相成的。因此在教學中,加強練習,及時復習並做歸納整理,對鞏固概念具有特殊意義。
1、學過的概念要歸納整理才能系統鞏固
學習一個階段以後,引導學生把學過的概念進行歸類整理,明確概念間的聯系與區別,從而使學生掌握完整的概念體系。如學生學了「比」的全部知識後,我幫助他們歸納整理了什麼叫比;比和除法、分數的關系;比的基本性質,利用比的基本性質,可以化簡比;這一系列知識復習清楚之後,才能很好地解決求比例尺三種類型題和比例分配的實際問題。只有把比的意義理解得一清二楚,才能繼續學習比例。表示兩個比相等的式子叫做比例。這樣做,就構成了一個概念體系,既便於理解,又便於記憶。概念學得扎扎實實,應用概念才會順利解決實際問題。
2、通過實際應用,鞏固概念
學習的目的是為了解決實際問題。而通過解決實際問題,勢必加深對基本概念的理解。如學生學了小數的意義之後,我就讓學生利用課外時間,到商店了解幾種商品的價錢,寫在作業本上,第二天讓他們在課上向大家匯報。通過了解的過程,非常自然地對小數的意義,讀、寫法得以運用與理解。又如學了各種平面圖形後,我讓學生回家後,觀察家裡那些地方有這些平面圖形。通過這種形式的作業,學生感到新鮮,有趣。這不僅鞏固了所學概念,還提高了學生運用數學概念解決實際問題的能力。
3、綜合運用概念,不僅鞏固概念,而且檢驗概念的理解情況。
在學生形成正確的數學概念之後,進一步設計各種不同形式的概念練習題,讓學生綜合運用、靈活思考、達到鞏固概念的目的,這也是培養檢查學生判斷能力的一種良好的練習形式。這種題目靈活,靈巧,能考察多方面的數學知識,是近些年來鞏固數學概念一種很好的練習內容。
練習概念性的習題,目的在於讓學生綜合運用,區分比較,深化理解概念。所安排的練習題,應有一定梯度和層次,按照概念的序,學生認識的序去考慮習題的序。要根據學生實際和教學的需要,採用多種形式和方法設計,藉以激發學生鑽研的興趣,達到鞏固概念的目的。尤其應組織好概念性習題的教學,引導學生共同分析判斷。
多年來的教學實踐,使我深刻地體會到:要想提高教學質量,教師用心講好概念是非常重要的,既是落實雙基的前提,又是使學生發展智力,培養能力的關鍵。但這也僅僅是學習數學的一個起步,更重要的是在學生形成概念之後,要善於為學生創造條件,使學生經常地運用概念,才能有更大的飛躍。只有學生會運用所掌握的概念,才能更深刻地理解概念,從而更好地掌握新的數學知識。只有這樣,培養能力,發展智力才會有堅實的基礎

『貳』 淺談在小學數學中如何有效進行概念教學

數學概念不僅是小學數學知識的基本要素,也是培養和發展學生數學能力的重要內容。對它的理解和掌握,關繫到學生學習數學的興趣,關繫到學生計算能力和邏輯思維能力的培養,關繫到學生解決實際問題的能力。由於小學生的年齡特點,直觀形象思維制約了對數學中抽象概念的掌握,導致孩子們在學習和運用概念的過程中,經常出現這樣或那樣的錯誤。那麼,怎樣才能使數學概念教學更有效呢?
一、數學和生活實際聯系,引入概念
數學知識來源於生活,又應用於生活。把點滴生活經驗變成系統數學知識目的在於使其更好地運用到生活中去,除了在課堂上一些與生活相連的習題更好體會知識的還是生活本生。
例如,在教學《認識鍾表》時,認識整時和大約幾時這兩個數學概念本身就比較抽象,你若直接告訴孩子看鍾點的方法:分針對著12,時針對著幾就是幾時,1時=60分,1分=60秒,孩子未必真正理解,而且長期地這樣教學學生就不會去思考,產生一種依賴的心理。因此我們在課起始時便以猜謎揭示課題,而後分認識鍾面,認識整時和大約幾時三步走。認識鍾面環節讓學生根據已有經驗說說鍾面的認識,為了讓學生的介紹更為有針對性把提問變成「你知道鍾面上有什麼?」這樣學生根據手中的鬧鍾很容易回答。在學生撥鍾也讓學生自由的撥出一些整時並說說在這一時刻在干什麼,這樣學生對各個時段的認識就能聯系生活而不僅僅停留在1~12各個數上。在「兩個8時」這一環節,讓學生根據生活經驗充分的討論兩個8時的存在和不同,再指導學生會照樣子用一句話說一說,同時從數學角度提醒學生在平時說話時要注意用上「早晨、上午、下午、晚上」 等詞語,這樣說起來就更清楚明白。鍾面、整時和大約幾時三個環節層層遞進,每一個環節與學生經驗緊密聯系。
低年級小學生,由於年齡、知識和生活的局限,理解一個概念主要是憑借事物的具體形象。因此,在低年級數學概念教學的過程中,要做到細心、耐心,盡量從學生日常生活中所熟悉的事物開始引入。這樣,學生學起來就有興趣,思考的積極性就會高。
二、迎合學生學習興趣,引入概念
托爾斯泰說過:「成功的教育所需要的不是強制,而是激發學生的興趣。」興趣是成功的秘訣,是獲取知識的開端,是求知慾的基礎。學生對學習數學的興趣,直接影響到課堂教學效率的高低。抽象的理論如果再加上乾巴巴的講解,必然不會引起學生的學習興趣。
例如,在教學《認識角》時, 既要讓學生感知直角、銳角、鈍角等不同種類的角,又要注意變化角的大小和角的開口方向,這樣才能獲得對角的清晰認識。教師可以事先做好一個只露出三角形一個角的教具,讓學生觀察露出的一個角,判斷整個三角形是什麼三角形。當露出一個直角時,學生馬上回答這是個直角三角形;當露出一個鈍角時,學生馬上回答這是個鈍角三角形;當露出一個銳角時,學生就自然而然地回答這是個銳角三角形。這時教師拿出的卻不是銳角三角形,這樣,學生就有了懸念:為什麼有一個直角的是直角三角形,有一個鈍角的是鈍角三角形?而一個角是銳角的三角形就不一定是銳角三角形了呢?這時學生強烈的求知慾已經成為一種求知的「自我需要」,學生的學習興趣得到了激發,使興趣成為學生學習的動力,為教學新概念創造良好的學習氣氛,使學生在獲得概念的整個過程中感到學習的快樂。
三、動手操作,引入概念
低段小學生他們愛擺弄東西,什麼都想嘗試。但若遇到困難而無法解決時,操作的積極性就會下降。所以利用學生這種心理適當安排動手嘗試的學習內容可以激發起學生的學習興趣,更好得形成概念。
例如,在教學《米和厘米》時,在認識了「厘米」以後我安排學生通過測量,看看你身體上哪個部位的長度最接近一厘米。學生的積極性很高,先是拿出尺子不停的比劃,然後三五成群的議論開了,積極主動地去尋求答案。在交流想法時,小朋友不僅給出了我想要的答案,更讓我收獲了不少的驚喜。
學生在操作、實踐中獲得感性認識,經歷「充分感知-豐富表象-領悟內涵」的過程,在頭腦中切實、清楚地建立了1厘米的實際長度和空間觀念,突出了本節課的教學重點。
四、巧用多媒體,引入概念
應用多媒體輔助教學,充分激活課堂教學中的各個要素,全方位地調動和發揮教師在課堂教學中的主導作用和學生學習的主體作用,建立合理的教與學的關系,
例如,在教學《認識分數》時,我設計了這樣一個動畫:周末,同學們去野餐,在優美的音樂的聲中,一群活潑可愛的小朋友來到了郊外,貼近生活化的情境一下子就吸引了學生的注意力。跟著提出問題:「把8個蘋果和4瓶果汁平均分給2人,每人分得多少」?學生回答後動畫演示分得的結果,非常直觀地顯示出「平均分」,加強了學生對「平均分」這個概念的理解。接著提出:「把一個生日蛋糕平均分成2份,每人分得多少」?演示「一半」,提出「一半」用什麼數來表示?自然地引出本節課要研究的認識分數。
我們在教學中,要結合概念的特點和學生的實際,靈活掌握使用,優化數學概念教學,提高概念教學的有效性,更好地進行概念教學。

『叄』 如何在小學數學教學中有效開展概念教學

數學概念不僅是小學數學知識的基本要素,也是培養和發展學生數學能力的重要內容。對它的理解和掌握,關繫到學生學習數學的興趣,關繫到學生計算能力和邏輯思維能力的培養,關繫到學生解決實際問題的能力。由於小學生的年齡特點,直觀形象思維制約了對數學中抽象概念的掌握,導致孩子們在學習和運用概念的過程中,經常出現這樣或那樣的錯誤。那麼,怎樣才能使數學概念教學更有效呢?
一、數學和生活實際聯系,引入概念
數學知識來源於生活,又應用於生活。把點滴生活經驗變成系統數學知識目的在於使其更好地運用到生活中去,除了在課堂上一些與生活相連的習題更好體會知識的還是生活本生。
例如,在教學《認識鍾表》時,認識整時和大約幾時這兩個數學概念本身就比較抽象,你若直接告訴孩子看鍾點的方法:分針對著12,時針對著幾就是幾時,1時=60分,1分=60秒,孩子未必真正理解,而且長期地這樣教學學生就不會去思考,產生一種依賴的心理。因此我們在課起始時便以猜謎揭示課題,而後分認識鍾面,認識整時和大約幾時三步走。認識鍾面環節讓學生根據已有經驗說說鍾面的認識,為了讓學生的介紹更為有針對性把提問變成「你知道鍾面上有什麼?」這樣學生根據手中的鬧鍾很容易回答。在學生撥鍾也讓學生自由的撥出一些整時並說說在這一時刻在干什麼,這樣學生對各個時段的認識就能聯系生活而不僅僅停留在1~12各個數上。在「兩個8時」這一環節,讓學生根據生活經驗充分的討論兩個8時的存在和不同,再指導學生會照樣子用一句話說一說,同時從數學角度提醒學生在平時說話時要注意用上「早晨、上午、下午、晚上」 等詞語,這樣說起來就更清楚明白。鍾面、整時和大約幾時三個環節層層遞進,每一個環節與學生經驗緊密聯系。
低年級小學生,由於年齡、知識和生活的局限,理解一個概念主要是憑借事物的具體形象。因此,在低年級數學概念教學的過程中,要做到細心、耐心,盡量從學生日常生活中所熟悉的事物開始引入。這樣,學生學起來就有興趣,思考的積極性就會高。

二、迎合學生學習興趣,引入概念
托爾斯泰說過:「成功的教育所需要的不是強制,而是激發學生的興趣。」興趣是成功的秘訣,是獲取知識的開端,是求知慾的基礎。學生對學習數學的興趣,直接影響到課堂教學效率的高低。抽象的理論如果再加上乾巴巴的講解,必然不會引起學生的學習興趣。
例如,在教學《認識角》時, 既要讓學生感知直角、銳角、鈍角等不同種類的角,又要注意變化角的大小和角的開口方向,這樣才能獲得對角的清晰認識。教師可以事先做好一個只露出三角形一個角的教具,讓學生觀察露出的一個角,判斷整個三角形是什麼三角形。當露出一個直角時,學生馬上回答這是個直角三角形;當露出一個鈍角時,學生馬上回答這是個鈍角三角形;當露出一個銳角時,學生就自然而然地回答這是個銳角三角形。這時教師拿出的卻不是銳角三角形,這樣,學生就有了懸念:為什麼有一個直角的是直角三角形,有一個鈍角的是鈍角三角形?而一個角是銳角的三角形就不一定是銳角三角形了呢?這時學生強烈的求知慾已經成為一種求知的「自我需要」,學生的學習興趣得到了激發,使興趣成為學生學習的動力,為教學新概念創造良好的學習氣氛,使學生在獲得概念的整個過程中感到學習的快樂。

三、動手操作,引入概念
低段小學生他們愛擺弄東西,什麼都想嘗試。但若遇到困難而無法解決時,操作的積極性就會下降。所以利用學生這種心理適當安排動手嘗試的學習內容可以激發起學生的學習興趣,更好得形成概念。
例如,在教學《米和厘米》時,在認識了「厘米」以後我安排學生通過測量,看看你身體上哪個部位的長度最接近一厘米。學生的積極性很高,先是拿出尺子不停的比劃,然後三五成群的議論開了,積極主動地去尋求答案。在交流想法時,小朋友不僅給出了我想要的答案,更讓我收獲了不少的驚喜。
學生在操作、實踐中獲得感性認識,經歷「充分感知-豐富表象-領悟內涵」的過程,在頭腦中切實、清楚地建立了1厘米的實際長度和空間觀念,突出了本節課的教學重點。

四、巧用多媒體,引入概念
應用多媒體輔助教學,充分激活課堂教學中的各個要素,全方位地調動和發揮教師在課堂教學中的主導作用和學生學習的主體作用,建立合理的教與學的關系,
例如,在教學《認識分數》時,我設計了這樣一個動畫:周末,同學們去野餐,在優美的音樂的聲中,一群活潑可愛的小朋友來到了郊外,貼近生活化的情境一下子就吸引了學生的注意力。跟著提出問題:「把8個蘋果和4瓶果汁平均分給2人,每人分得多少」?學生回答後動畫演示分得的結果,非常直觀地顯示出「平均分」,加強了學生對「平均分」這個概念的理解。接著提出:「把一個生日蛋糕平均分成2份,每人分得多少」?演示「一半」,提出「一半」用什麼數來表示?自然地引出本節課要研究的認識分數。
我們在教學中,要結合概念的特點和學生的實際,靈活掌握使用,優化數學概念教學,提高概念教學的有效性,更好地進行概念教學。

『肆』 如何有效開展小學數學高年級概念課教學

教師數學概念教學的質量,直接影響著學生學習數學的質量。學生的邏輯思維能力、空間想像能力、運算作圖能力、靈活解答問題能力以及探索求異能力等等無一不是以清晰、確定的概念為基礎的。這些能力的高低與相應概念明確、理解的深度、廣度有著密切的聯系。實踐證明,加強概念教學是切實提高小學數學教學質量的有效策略。那麼在當前積極開展課堂教學有效性研究的背景下,應該如何有效開展小學數學高年級概念課的教學呢?
一、 創設有效生活情境,引入概念。
情境創設是一節課的眼睛,是可以顧盼生輝的。而數學概念是抽象枯燥的,因此教學中一定要把概念放在一個豐富的,典型的,自然的現實生活情境中引入,這樣才能站在學生的心理需求上。在每節數學課中,都應極力捕捉生活中的數學問題,從學生的生活實際引入概念。
例如: 【用字母表示數】
師:「同學們,你們喜歡玩撲克牌嗎?」
教師出示四張撲克牌,10、J、Q、K,問:「這四張牌中誰最大呢?為什麼?」生:「K最大,因為K表示13。」
師:「那Q表示多少?J呢?」
在學生回答後,教師總結:「也就是說這幾個字母都表示一個數。今天我們就學慣用字母表示數。」
在這個環節中把學生喜歡並熟知的撲克牌與數學聯系了起來,既結合了學生的生活實際從鮮活的生活情境引入新課,又激發學生的學習興趣,讓學生全心投入課堂,激發了學習熱情,學生興趣十分濃厚。
二、 大量感知,深入理解概念。
概念的形成是一個積累漸進的過程,因此在概念的教學中要遵循從具體到抽象,從感性認識到理性認識的原則。小學生的思維特點是從具體形象思維逐步向抽象思維過渡的。這種過渡在很大程度上還是依靠豐富的感性材料,從各種類型的感知材料中概括抽象出數學概念。數學概念不是靠老師講出來的,而是靠學生自己去體驗、感悟的。
如:【百分數的認識】
在學生認識了百分數以後,初步感知百分數的意義和作用。然後通過大量的資料,如「姚明加盟NBA聯賽的第一年,投籃命中率為49.8%;日本的森林覆蓋率高達65%,我國的森林覆蓋率僅14%;期中考試六一班合格率99.6%,優秀率72.2%;洋快餐的營業額是中式快餐營業額的220%」等,通過這些讓學生在現實情境中深入理解百分數的現實意義。在學生已經積累了大量的感性材料後,讓學生用自己的話概括百分數的意義,水到渠成。
三、 通過對比、練習引導學生理解概念。
著名教育家烏申斯基說過:「比較是一切理解和思維的基礎,我們正是通過比較才了解世界上的一切的。」在概念教學中,會有很多相似或相近的概念非常容易混淆。在這種情況下,通過比較找出概念間的相同點與不同點,弄清其區別與聯系。這樣不僅可以加深概念的理解,又可以強化新知。
如「數位」與「位數」, 「時間」與「時刻」,「化簡比」與「求比值」等等很多的易混概念都可以運用對比辨析的方法來加以區別。對比練習最能體現數學知識的聯系與區別,培養學生的知識遷移往往體現在對比練習中,比如,出示12:8,讓學生進行化簡比和求比值的計算,把化簡比和求比值放在一起讓學生解答,一般不會出現錯誤,學生很容易知道3:2和2/3的區別,假如單單地把12:8化簡比或求值,學生或多或少地出現錯誤,把化簡比也當作求比值來做。再比如,比是分數比或小數比,錯誤率則更高。通過較多的對比練習,學生自然地發現其中還有很多規律可尋,(化簡過的比寫成分數形式則就是我們要求的比值)等。
四、 在質疑問難中深化概念理解
概念的有些重要特徵,如果僅靠教師的強調或表面的揭示,不一定能收到好的教學效果,而如果留有一定的空間讓學生質疑,在解決問題中深化理解反而會使概念更加完善。「思緣於疑」,人的思維活動都是從疑問開始的,沒有疑問就沒有思考。因此,在概念的形成中教師有意識地讓學生質疑,可促進學生對概念的理解。
如:【商不變的規律】教學片斷
1、觀察發現:學生在通過對一組算式的觀察對比後發現被除數與除數同時乘相同的數,結果不變。
2、引導學生歸納:誰能用一句完整的話概括一下我們剛才發現的規律,匯報小結後出示:被除數和除數同時乘相同的數,商不變。
3、質疑:被除數和除數同時乘0,商還不變嗎?
4、引導學生再次歸納:被除數和除數同時除以相同的數(零除外),商不變。
5、試一試,驗證規律。
現實生活中這樣的例子有嗎?生舉例驗證商不變規律。
五、 將概念逐步構建成網路,使其系統化
學生總是從具體的孤立的概念開始學起,即使在教學時注意了概念之間的某些聯系,也往往是為了學習的新概念的需要。因此,在小學生的頭腦中,概念常常是孤立的、互不聯系的。我們在教學時就一定要引導學生把學過的概念放在一起,尋找概念之間縱向或橫向的聯系,組成概念系統,使教材中的數學知識轉化成為學生頭腦中的認知結構,這種系統化了的認知結構,不僅有利於鞏固對概念的理解,也促進了知識的遷移,發展了學生的數學能力。
如: 【比的認識】
在教學比的認識之後,讓學生通過比、分數、與除法之間的聯系與區別進行梳理,溝通了三者之間的內在聯系。為今後教學分數應用題時演算法的多樣化奠定了基礎。將比、分數、除法進行對比,遵循知識的內在聯系,幫助引導學生建立良好的認知結構。不僅使學生體會到了概念之間的相互聯系,更是一個把知識網路構建完整的過程。在學習具體的孤立的概念時,不會很深刻地認識到這些概念的本質,只有從整個知識體系中才有可能更深刻地理解它們,知道它們在整個體系中的地位和作用。
六、 概念教學中要重視情感體驗
新課標中明確指出:「要讓學生參與特定的數學活動,在親身體驗中學習數學」。在概念課的教學中我們也要重視學生的情感體驗。從生活實際中引入概念時,可以使學生體驗數學知識的生活化;在大量的操作活動中探究知識時,可以使學生體驗到概念的形成過程;在師生互動交流時,可以使學生體驗到成功的樂趣;在把概念應用到生活中時,可以使學生體驗到數學的應用價值。
數學概念是客觀世界中數量關系和空間形式的本質屬性在人腦中的反映。所有的數學知識無一不是建立在一系列數學概念的基礎上的。計算、幾何初步知識、代數初步知識、以及運用數學知識去解決簡單實際問題的能力,都是以數學概念的掌握為前提和保證的,只有有效開展概念教學,才能使學生在獲取數學知識的同時,進一步培養各種數學能力,發展學生的思維。

『伍』 如何提高小學數學低年級課堂教學的有效性

一、創設有效的生活化的情境
新的課程理念要求在低年級課堂教學中,教師要根據學生的年齡特點和生活經驗,設計生動有趣、直觀形象的數學教學活動,如運用講故事、做游戲、模擬表演等,激發學生的學習興趣,讓學生在生動具體的情境中理解和認識數學知識。
因為學習內容和學生熟悉的生活背景越貼近,學生自覺接納知識的程度越高。陶行知先生曾有過這樣的論述:「生活即教育」。因此,教學中教師要通過情境的創設,架設起數學與生活這座橋,讓學生往返於數學與生活之間,讓學生在「實際生活」或「模擬生活」中自然地學習「現實的數學」,體會數學源於生活、服務於生活,並讓學生在感受到所面臨的問題是熟悉的、常見的同時,又感到是新奇的、富有挑戰性的。這樣,一方面使學生有興趣地去進行思考和探索,另一方面又使學生感受到自身已有的局限性,從而處於一種想知而未知,欲罷而不能的心理狀態,引起強烈的探索欲。例如:教學《角的初步認識》一課時,我首先出示學生熟悉的五角星,讓學生找出它的角,初步感知角,接著提問:「生活中哪些地方有角?比一比,看誰找到的角最多」,以此激發他們的學習興趣,使他們充分認識到生活中處處有角,從而體會數學與日常生活的密切聯系。又如
在教學《連加》內容時,我首先開展了一個拍球的比賽,把班上的同學分成兩隊,每個隊派四個代表參賽,請一位記錄員把每隊每分鍾拍球的個數記在表格里,然後再請同學們算出每隊拍的總數,找出勝利的一隊,以此讓學生真切地感受到「生活中處處有數學」。
二、重視探究,引導學生求異創新
有效的課堂教學,不再是學生單純地依賴模仿與記憶,而應動手實踐、自主創新。要培養學生的創新意識,就要打破教學的老框框,鼓勵學生多發問,允許學生「插嘴」。愛因斯坦說過:「提出一個問題,往往比解決一個問題更重要」。因此,鼓勵學生多提問,發表獨特見解,是培養創新意識的重要途徑。一旦學生提問,起初無論質量如何,正確與否,哪怕某些發問是可笑的、甚至錯誤的,教師也要從積極方面加以引導、鼓勵,並幫助學生分析錯誤的原因。比如,在學習了「乘法的初步認識」後,我出示了下面一組練習,把下列加法算式改寫成乘法算式:(1)5+5+5+5 (2)3+3+3+2 (3)2+2+2 (4)6+6+6+9。(1)、(3)題學生很順利地改寫了,而對(2)、(4)題則表示否定。但通過仔細觀察,有學生說:(2)還可以改寫成3×3+2、3×4-1,(4)還可以寫成6×3+9、6×4+3,雖然改寫的是乘加、乘減算式,但卻說明學生善於提出意見,體現了創新意識,我也給予了熱情的鼓勵「你真會動腦筋!」、「你真聰明!」,保護了學生的創新積極性。
三、關注合作學習的教學形式
小學低年級數學課堂教學中,小組合作學習的教學形式已基本採用。教師是教育活動的設計者,在備課時教師要深入研究教材,理解教學目標,認識教學對象,確定需要合作學習的內容,為合作學習提供可研究的問題。如我在教學一年級《分類》一課時,開展小組合作,利用所提供的商品布置「小商店」;在教學《立體圖形的認識》一課時,讓學生組內合作,利用長方體、正方體、圓柱體、球體拼擺出你喜歡的東西。通過這樣的練習,使學生真正參與到合作學習中來,體驗到合作學習的樂趣,培養了學生主動參與的意識。
小組合作學習問題的難度就是要處於學生的最近發展區,這些問題不能離開學生已有的知識結構,也不能超越學生當前的認識能力,要使問題經過小組的努力合作能夠得到解決。
四、有效運用激勵性的評價
激勵性評價就是對學生在學習過程中所表現出來的積極進取方面的贊許,哪怕是回答錯誤,教師也要善於捕捉其閃光點進行適當的鼓勵。尤其是低年級學生,一次激勵性的評價可能會影響其一生。這種評價不僅僅是為了檢查學生的表現,更在於提高學習的效率,促進學生的發展,讓學生在評價過程中增強信心、體驗學習成功的喜悅,獲得成功的感受。
課堂上,教師面對的是一個個活生生的學生,這些學生的文化環境、家庭背景和自身的思維方式不同,而且他們的基礎、性格、智力等都存在著差異,如果用同一標准去衡量學生那是不合適的。對不同層次的學生,評價標准應不同。同一問題對不同類別的學生的不同回答,也應做出不同的評價。對學困生哪怕是微小的進步,也要給予肯定和鼓勵,要使他們真正感受到老師在關心他們,幫助他們。而對優等生的正確回答,除了要給予充分肯定外,還要對他們提出期待和希望,讓他們更加努力,去爭取更大的成功。
知識來源於實踐,數學教學要盡可能地接近學生的現實生活,要盡量給學生提供合作的素材和機會。我認為有效的課堂不僅有利於學生掌握知識,而且有助於學生提高能力。如果我們能遠離形式上的浮躁,多做務實的探索,及時反思,及時改進,我想這樣才能真正落實新課程改革,實現有效的課堂教學,使學生素質得到全面發展

『陸』 如何進行小學集合概念教學

一、什麼是數學概念
數學概念是客觀現實中的數量關系和空間形式的本質屬性在人腦中中的反映。數學的研究對象是客觀事物的數量關系和空間形式。在數學中,客觀事物的顏色、材料、氣味等方面的屬性都被看作非本質屬性而被舍棄,只保留它們在形狀、大小、位置及數量關系等方面的共同屬性。在數學科學中,數學概念的含義都要給出精確的規定,因而數學概念比一般概念更准確。
小學數學中有很多概念,包括:數的概念、運算的概念、量與計量的概念、幾何形體的概念、比和比例的概念、方程的概念,以及統計初步知識的有關概念等。這些概念是構成小學數學基礎知識的重要內容,它們是互相聯系著的。如只有明確牢固地掌握數的概念,才能理解運算概念,而運算概念的掌握,又能促進數的整除性概念的形成。
二、小學數學概念的表現形式
在小學數學教材中的概念,根據小學生的接受能力,表現形式各不相同,其中描述式和定義式是最主要的兩種表示方式。
1.定義式
定義式是用簡明而完整的語言揭示概念的內涵或外延的方法,具體的做法是用原有的概念說明要定義的新概念。這些定義式的概念抓住了一類事物的本質特徵,揭示的是一類事物的本質屬性。這樣的概念,是在對大量的探究材料的分析、綜合、比較、分類中,使之從直觀到表象、繼而上升為理性的認識。如「有兩條邊相等的三角形叫等腰三角形」;「含有未知數的等式叫方程」等等。這樣定義的概念,條件和結論十分明顯,便於學生一下子抓住數學概念的本質。
2.描述式
用一些生動、具體的語言對概念進行描述,叫做描述式。這種方法與定義式不同,描述式概念,一般藉助於學生通過感知所建立的表象,選取有代表性的特例做參照物而建立。如:「我們在數物體的時候,用來表示物體個數的1、2、3、4、5……叫自然數」;「象1.25、0.726、0.005等都是小數」等。這樣的概念將隨著兒童知識的增多和認識的深化而日趨完善,在小學數學教材中一般用於以下兩種情況。
一種是對數學中的點、線、體、集合等原始概念都用描述法加以說明。例如,「直線」這一概念,教材是這樣描述的:拿一條直線,把它拉緊,就成了一條直線。「平面」就用「課桌面」、「黑板面」、「湖面」來說明。
另一種是對於一些較難理解的概念,如果用簡練、概括的定義出現不易被小學生理解,就改用描述式。例如,對直圓柱和直圓錐的認識,由於小學生還缺乏運動的觀點,不能像中學生那樣用旋轉體來定義,因此只能通過實物形象地描述了它們的特徵,並沒有以定義的形式揭示它們的本質屬性。學生在觀察、擺拼中,認識到圓柱體的特徵是上下兩個底面是相等的圓,側面展開的形狀是長方形。
一般來說,在數學教材中,小學低年級的概念採用描述式較多,隨著小學生思維能力的逐步發展,中年級逐步採用定義式,不過有些定義只是初步的,是有待發展的。在整個小學階段,由於數學概念的抽象性與學生思維的形象性的矛盾,大部分概念沒有下嚴格的定義;而是從學生所了解的實際事例或已有的知識經驗出發,盡可能通過直觀的具體形象,幫助學生認識概念的本質屬性。對於不容易理解的概念就暫不給出定義或者採用分階段逐步滲透的辦法來解決。因此,小學數學概念呈現出兩大特點:一是數學概念的直觀性;二是數學概念的階段性。在進行數學概念教學時,我們必須注意充分領會教材的這兩個特點。
三、小學數學概念教學的意義
首先,數學概念是數學基礎知識的重要組成部分。
小學數學的基礎知識包括:概念、定律、性質、法則、公式等,其中數學概念不僅是數學基礎知識的重要組成部分,而且是學習其他數學知識的基礎。學生掌握基礎知識的過程,實際上就是掌握概念並運用概念進行判斷、推理的過程。數學中的法則都是建立在一系列概念的基礎上的。事實證明,如果學生有了正確、清晰、完整的數學概念,就有助於掌握基礎知識,提高運算和解題技能。相反,如果一個學生概念不清,就無法掌握定律、法則和公式。例如,整數百以內的筆算加法法則為:「相同數位對齊,從個位加起,個位滿十,就向十位進一。」要使學生理解掌握這個法則,必須事先使他們弄清「數位」、「個位」、「十位」、「個位滿十」等的意義,如果對這些概念理解不清,就無法學習這一法則。又如,圓的面積公式S=πr2,要以「圓」、「半徑」、「平方」、「圓周率」等概念為基礎。總之小學數學中的一些概念對於今後的學習而言,都是一些基本的、基礎的知識。小學數學是一門概念性很強的學科,也就是說,任何一部分內容的教學,都離不開概念教學。
其次,數學概念是發展思維、培養數學能力的基礎。
概念是思維形式之一,也是判斷和推理的起點,所以概念教學對培養學生的思維能力能起重要作用。沒有正確的概念,就不可能有正確的判斷和推理,更談不上邏輯思維能力的培養。例如,「含有未知數的等式叫做方程」,這是一個判斷。在這個判斷中,學生必須對「未知數」、「等式」這幾個概念十分清楚,才能形成這個判斷,並以此來推斷出下面的6道題目,哪些是方程。
(1)56+23=79 (2)23-x=67 (3)x÷5=4.5
(4)44×2=88 (5)75÷x=4 (6)9+x=123
在概念教學過程中,為了使學生順利地獲取有關概念,常常要提供豐富的感性材料讓學生觀察,在觀察的基礎上通過教師的啟發引導,對感性材料進行比較、分析、綜合,最後再抽象概括出概念的本質屬性。通過一系列的判斷、推理使概念得到鞏固和運用。從而使學生的初步邏輯思維能力逐步得到提高。
6.1.3 數學概念教學的一般要求
1.使學生准確理解概念
理解概念,一要能舉出概念所反映的現實原型,二要明確概念的內涵與外延,即明確概念所反映的一類事物的共同本質屬性,和概念所反映的全體對象,三要掌握表示概念的詞語或符號。
2.使學生牢固掌握概念
掌握概念是指要在理解概念的基礎上記住概念,正確區分概念的肯定例證和否定例證。能對概念進行分類,形成一定的概念系統。
3.使學生能正確運用概念
概念的運用主要表現在學生能在不同的具體情況下,辨認出概念的本質屬性,運用概念的有關屬性進行判斷推理。
四、小學數學概念教學的過程與方法
根據數學概念學習的心理過程及特徵,數學概念的教學一般也分為三個階段:①引入概念,使學生感知概念,形成表象;②通過分析、抽象和概括,使學生理解和明確概念;③通過例題、習題使學生鞏固和應用概念。
(一)數學概念的引入
數學概念的引入,是數學概念教學的第一個環節,也是十分重要的環節。概念引入得當,就可以緊緊地圍繞課題,充分地激發起學生的興趣和學習動機,為學生順利地掌握概念起到奠基作用。
引出新概念的過程,是揭示概念的發生和形成過程,而各個數學概念的發生形成過程又不盡相同,有的是現實模型的直接反映;有的是在已有概念的基礎上經過一次或多次抽象後得到的;有的是從數學理論發展的需要中產生的;有的是為解決實際問題的需要而產生的;有的是將思維對象理想化,經過推理而得;有的則是從理論上的存在性或從數學對象的結構中構造產生的。因此,教學中必須根據各種概念的產生背景,結合學生的具體情況,適當地選取不同的方式去引入概念。一般來說,數學概念的引入可以採用如下幾種方法。
1、以感性材料為基礎引入新概念。
用學生在日常生活中所接觸到的事物或教材中的實際問題以及模型、圖形、圖表等作為感性材料,引導學生通過觀察、分析、比較、歸納和概括去獲取概念。
例如,要學習「平行線」的概念,可以讓學生辨認一些熟悉的實例,像鐵軌、門框的上下兩條邊、黑板的上下邊緣等,然後分化出各例的屬性,從中找出共同的本質屬性。鐵軌有屬性:是鐵制的、可以看成是兩條直線、在同一個平面內、兩條邊可以無限延長、永不相交等。同樣可分析出門框和黑板上下邊的屬性。通過比較可以發現,它們的共同屬性是:可以抽象地看成兩條直線;兩條直線在同一平面內;彼此間距離處處相等;兩條直線沒有公共點等,最後抽象出本質屬性,得到平行線的定義。
以感性材料為基礎引入新概念,是用概念形成的方式去進行教學的,因此教學中應選擇那些能充分顯示被引入概念的特徵性質的事例,正確引導學生去進行觀察和分析,這樣才能使學生從事例中歸納和概括出共同的本質屬性,形成概念。
2、以新、舊概念之間的關系引入新概念。
如果新、舊概念之間存在某種關系,如相容關系、不相容關系等,那麼新概念的引入就可以充分地利用這種關系去進行。
例如,學習「乘法意義」時,可以從「加法意義」來引入。又如,學習「整除」概念時,可以從「除法」中的「除盡」來引入。又如,學習「質因數」可以從「因數」和「質數」這兩個概念引入。再如,在學習質數、合數概念時,可用約數概念引入:「請同學們寫出數1,2,6,7,8,12,11,15的所有約數。它們各有幾個約數?你能給出一個分類標准,把這些數進行分類嗎?你能找出多種分類方法嗎?你找出的所有分類方法中,哪一種分類方法是最新的分類方法?」
3、以「問題」的形式引入新概念。
以「問題」的形式引入新概念,這也是概念教學中常用的方法。一般來說,用「問題」引入概念的途徑有兩條:①從現實生活中的問題引入數學概念;②從數學問題或理論本身的發展需要引入概念。
4、從概念的發生過程引入新概念。
數學中有些概念是用發生式定義的,在進行這類概念的教學時,可以採用演示活動的直觀教具或演示畫圖說明的方法去揭示事物的發生過程。例如,小數、分數等概念都可以這樣引入。這種方法生動直觀,體現了運動變化的觀點和思想,同時,引入的過程又自然地、無可辯駁地闡明了這一概念的客觀存在性。
(二)數學概念的形成
引入概念,僅是概念教學的第一步,要使學生獲得概念,還必須引導學生准確地理解概念,明確概念的內涵與外延,正確表述概念的本質屬性。為此,教學中可採用一些具有針對性的方法。
1、對比與類比。
對比概念,可以找出概念間的差異,類比概念,可以發現概念間的相同或相似之處。例如,學習「整除」概念時,可以與「除法」中的「除盡」概念進行對比,去比較發現兩者的不同點。用對比或類比講述新概念,一定要突出新、舊概念的差異,明確新概念的內涵,防止舊概念對學習新概念產生的負遷移作用的影響。
2、恰當運用反例。
概念教學中,除了從正面去揭示概念的內涵外,還應考慮運用適當的反例去突出概念的本質屬性,尤其是讓學生通過對比正例與反例的差異,對自己出現的錯誤進行反思,更利於強化學生對概念本質屬性的理解。
用反例去突出概念的本質屬性,實質是使學生明確概念的外延從而加深對概念內涵的理解。凡具有概念所反映的本質屬性的對象必屬於該概念的外延集,而反例的構造,就是讓學生找出不屬於概念外延集的對象,顯然,這是概念教學中的一種重要手段。但必須注意,所選的反例應當恰當,防止過難、過偏,造成學生的注意力分散,而達不到突出概念本質屬性的目的。
3、合理運用變式。
依靠感性材料理解概念,往往由於提供的感性材料具有片面性、局限性,或者感性材料的非本質屬性具有較明顯的突出特徵,容易形成干擾的信息,而削弱學生對概念本質屬性的正確理解。因此,在教學中應注意運用變式,從不同角度、不同方面去反映和刻畫概念的本質屬性。一般來說,變式包括圖形變式、式子變式和字母變式等。
例如,講授「等腰三角形」概念,教師除了用常見的圖形展示外,還應採用變式圖形去強化這一概念,因為利用等腰三角形的性質去解題時,所遇見的圖形往往是後面幾種情形。
(三)數學概念的鞏固
為了使學生牢固地掌握所學的概念,還必須有概念的鞏固和應用過程。教學中應注意如下幾個方面。
1、注意及時復習
概念的鞏固是在對概念的理解和應用中去完成和實現的,同時還必須及時復習,鞏固離不開必要的復習。復習的方式可以是對個別概念進行復述,也可以通過解決問題去復習概念,而更多地則是在概念體系中去復習概念。當概念教學到一定階段時,特別是在章節末復習、期末復習和畢業總復習時,要重視對所學概念的整理和系統化,從縱向和橫向找出各概念之間的關系,形成概念體系。
2、重視應用
在概念教學中,既要引導學生由具體到抽象,形成概念,又要讓學生由抽象到具體,運用概念,學生是否牢固地掌握了某個概念,不僅在於能否說出這個概念的名稱和背誦概念的定義,而且還在於能否正確靈活地應用,通過應用可以加深理解,增強記憶,提高數學的應用意識。
概念的應用可以從概念的內涵和外延兩方面進行。
(1)概念內涵的應用
①復述概念的定義或根據定義填空。
②根據定義判斷是非或改錯。
③根據定義推理。
④根據定義計算。
例4(1)什麼叫互質數?答: 是互質數。
(2)判斷題:
27和20是互質數( )
34與85是互質數( )
有公約數1的兩個數是互質數( )
兩個合數一定不是互質數( )
( 3)鈍角三角形的一個角是 82o,另兩個角的度數是互質數,這兩個角可能是多少度?
(4)如果P是質數,那麼比P小的自然數都與P互質。這句話對嗎?請說明理由?
2.概念外延的應用
(1)舉例
(2)辨認肯定例證或否定例證。並說明理由。
(3)按指定的條件從概念的外延中選擇事例。
(4)將概念按不同標准分類。
例5(1)列舉你所見到過的圓柱形物體。
(2)下列圖形中的陰影部分,哪些是扇形?(圖6-2)
(3)分母是9的最簡真分數有_分子是9的假分數中,最小的一個是
(4)將自然數2-19按不同標准分成兩類(至少提出3種不同的分法)
概念的應用可分為簡單應用和綜合應用,在初步形成某一新概念後通過簡單應用可以促進對新概念的理解,綜合應用一般在學習了一系列概念後,把這些概念結合起來加以應用,這種練習可以培養學生綜合運用知識的能力。
五、小學數學概念教學中應注意的問題
1、把握概念教學的目標,處理好概念教學的發展性與階段性之間的矛盾。
概念本身有自己嚴密的邏輯體系。在一定條件下,一個概念的內涵和外延是固定不變的,這是概念的確定性。由於客觀事物的不斷發展和變化,同時也由於人們認識的不斷深化,因此,作為人們反映客觀事物本質屬性的概念,也是在不斷發展和變化的。但是,在小學階段的概念教學,考慮到小學生的接受能力,往往是分階段進行的。如對「數」這個概念來說,在不同的階段有不同的要求。開始只是認識1、2、3、……,以後逐漸認識了零,隨著學生年齡的增大,又引進了分數(小數),以後又逐漸引進正、負數,有理數和無理數,把數擴充到實數、復數的范圍等。又如,對「0」的認識,開始時只知道它表示沒有,然後知道又可以表示該數位上一個單位也沒有,還知道「0」可以表示界限等。
因此,數學概念的系統性和發展性與概念教學的階段性成了教學中需要解決的一對矛盾。解決這一矛盾的關鍵是要切實把握概念教學的階段性目標。
為了加強概念教學,教師必須認真鑽研教材,掌握小學數學概念的系統,摸清概念發展的脈絡。概念是逐步發展的,而且諸概念之間是互相聯系的。不同的概念具體要求會有所不同,即使同一概念在不同的學習階段要求也有差別。
有許多概念的含義是逐步發展的,一般先用描述方法給出,以後再下定義。例如,對分數意義理解的三次飛躍。第一次是在學習小數以前,就讓學生初步認識了分數,「像上面講的 、、、、、等,都是分數。」通過大量感性直觀的認識,結合具體事物描述什麼樣的是分數,初步理解分數是平均分得到的,理解誰是誰的幾分之幾。第二次飛躍是由具體到抽象,把單位「1」平均分成若干份,表示其中的一份或幾份都可以用分數來表示。從具體事物中抽象出來。然後概括分數的定義,這只是描述性地給出了分數的概念。這是感性的飛躍。第三次飛躍是對單位「1」的理解與擴展,單位「1」不僅可以表示一個物體、一個圖形、一個計量單位,還可以是一個群體等,最後抽象出,分誰,誰就是單位「1」,這樣單位「1」與自然數「1」的區別就更加明確了。這樣三個層次不是一蹴而就的,要展現知識的發展過程,引導學生在知識的發生發展過程中去理解分數。
再如長方體和立方體的認識在許多教材中是分成兩個階段進行教學的。在低年級,先出現長方體和立方體的初步認識,通過讓學生觀察一些實物及實物圖,如裝墨水瓶的紙盒、魔方等。積累一些有關長方體和立方體的感性認識,知道它們各是什麼形狀,知道這些形狀的名稱。然後,通過操作、觀察,了解長方體和立方體各有幾個面,每個面是什麼形狀,進一步加深對長方體和立方體的感性認識。再從實物中抽象出長方體和立方體的圖形(並非透視圖)。但這一階段的教學要求只要學生知道長方體和立方體的名稱,能夠辨認和區分這些形狀即可。僅僅停留在感性認識的層次上。第二階段是在較高年級。教學時仍要從實例引入。教學長方體的認識時,先讓學生收集長方體的物體,教師先說明什麼是長方體的面、棱和頂點,讓學生數一數面、棱和頂點各自的數目,量一量棱的長度,算一算各個面的大小,比較上下、左右、前後棱和面的關系和區別。然後歸納出長方體的特徵。再從長方體的實例中抽象出長方體的幾何圖形。進而可以讓學生對照實物,觀察圖形,弄清楚不改變觀察方向,最多可以看到幾個面和幾條棱。哪些是看不見的,圖中是怎樣來表示的。還可以讓學生想一想,看一看,逐步看懂長方體的幾何圖形,形成正確的表象。
在把握階段性目標時,應注意以下幾點:
(1)在每一個教學階段,概念都應該是確定的,這樣才不致於造成概念混亂的現象。有些概念不嚴格下定義,但也要依據學生的接受能力,或者用描述代替定義,或者用比較通俗易懂的語言揭示概念的本質特徵。同時注意與將來的嚴格定義不矛盾。
(2)當一個教學階段完成以後,應根據具體情況,酌情指出概念是發展的,不斷變化的。如:有一位學生在認識了長方體之後,認為課本中的任何一張紙的形狀也是長方體的。說明該學生對長方體的概念有了更進一步的理解,教師應加以肯定。
(3)當概念發展後,教師不但指出原來概念與發展後概念的聯系與區別,以便學生掌握,而且還應引導學生對有關概念進行研究,注意其發展變化。如「倍」的概念,在整數范圍內,通常所指的是,如果把甲量當作1份,而乙量有這樣的幾份,那麼乙量就是甲量的幾倍。在引入分數以後,「倍」的概念發展了,發展後的「倍」的概念,就包含了原來的「倍」的概念。如果把甲量當作l份,乙量也可以是甲量的幾分之幾。
因此,在數學概念教學中,要搞清概念之間的順序,了解概念之間的內在聯系。數學概念隨著客觀事物本身的發展變化和研究的深入不斷地發展演變。學生對數學概念的認識,也需要隨著數學學習的程度的提高,由淺入深,逐步深化。教學時既要注意教學的階段性,不能把後面的要求提到前面,超越學生的認識能力;又要注意教學的連續性,教前面的概念要留有餘地,為後繼教學打下埋伏。從而處理好掌握概念的階段性與連續性的關系。
2、加強直觀教學,處理好具體與抽象的矛盾
盡管教材中大部分概念沒有下嚴格的定義,而是從學生所了解的實際事例或已有的知識經驗出發,盡可能通過直觀的具體形象,幫助學生認識概念的本質屬性。對於不容易理解的概念就暫不給出定義或者採用分階段逐步滲透的辦法來解決。但對於小學生來說,數學概念還是抽象的。他們形成數學概念,一般都要求有相應的感性經驗為基礎,而且要經歷一番把感性材料在腦子里來回往復,從模糊到逐漸分明,從許多有一定聯系的材料中,通過自己操作、思維活動逐步建立起事物一般的表象,分出事物的主要的本質特徵或屬性,這是形成概念的基礎。因此,在教學中,必須加強直觀,以解決數學概念的抽象性與學生思維形象性之間的矛盾。
(1)通過演示、操作進行具體與抽象的轉化
教學中,對於一些相對抽象的內容,盡可能地利用恰當的演示或操作使其轉化為具體內容,然後在此基礎上抽象出概念的本質屬性。
幾何初步知識,無論是線、面、體的概念還是圖形特徵、性質的概念都非常抽象,因此,教學中更要加強演示、操作,通過讓學生量一量、摸一摸、擺一擺、拼一拼來讓學生體會這些概念,從而抽象出這些概念。
例如「圓周率」這一概念非常抽象,有的教師在課前,布置每個學生用硬紙製做一個圓,半徑自定。上課時,就讓每個學生在課堂作業本上寫出三個內容:(1)寫出自己做的圓的直徑;(2)滾動自己的圓,量出圓滾動一周的長度,寫在練習本上;(3)計算圓的周長是直徑的幾倍。全班同學做完後,要求每個同學匯報自己計算的結果。
然後引導學生分析發現:不管圓的大小,它的周長總是直徑的3倍多一點。這時再揭示:這個倍數是個固定的數,數學上叫做圓周率。再讓學生任意畫一個圓,量出直徑和周長加以驗證。這樣,引導學生把大量的感性材料,加以分析、綜合、抽象、概括,拋棄事物的非本質屬性(如圓的大小、測量時用的單位等),抓住事物的本質特徵(圓的周長總是直徑的3倍多一點),形成了概念。
這樣教師藉助於直觀教學,運用學生原有的一些基礎知識,逐步抽象,環環緊扣,層次清楚。通過實物演示,使學生建立表象,從而解決了數學知識的抽象性與兒童思維的形象性的矛盾。
(2)結合學生的生活實際進行具體與抽象的轉化
教學中有許多數量關系都是從具體生活內容中抽象出來的,因此,在教學中應該充分利用學生的生活實際,運用恰當的方式進行具體與抽象的轉化,即把抽象的內容轉化為學生的具體生活知識,在此基礎上又將其生活知識抽象為教學內容。
例如乘法交換律的教學,往往讓學生先解答這樣的習題:一種鋼筆,每盒10支,每支3元,買2盒鋼筆要多少元?學生在實際解答中發現,這道題可以有兩種解答思路,一種是先求出「每盒多少元」,再求出「2盒要多少元」,算式是(3×10) ×2=60元;另一種是先求出「一共有多少支鋼筆」,再求出「2盒多少元」,算式是3×(2×10)=60元。乘法分配律的教學也是讓學生解答類似的問題,如:一件上衣50元,一條褲子30元,買這樣的5套衣服需要多少元?這樣藉助於學生熟悉的生活情景,使抽象的問題變得具體化。
同樣常見數量關系中的單價、總價與數量之間的關系;路程、速度與時間的關系,工作量、工作效率與工作時間之間的關系等,都應結合學生的生活經驗,通過具體的題目將其抽象出來,然後又利用這些關系來分析解決問題。這樣的訓練有利於使學生的思維逐漸向抽象思維過渡,逐步緩解知識的抽象性與學生思維的具體形象性的矛盾。
但是,運用直觀並不是目的,它只是引起學生積極思維的一種手段。因此概念教學不能只停留在感性認識上,在學生獲得豐富的感性認識後,要對所觀察的事物進行抽象概括,揭示概念的本質屬性,使認識產生飛躍,從感性上升到理性,形成概念。
3、遵循小學生學習概念的特點,組織合理有序的教學過程
盡管小學生獲取概念有概念形成和概念同化這兩種基本形式,各類概念的形成又有各自的特點,但不管以何種方式獲得概念,一般都會遵循從「引入一理解一鞏固一深化」這樣的概念形成路徑。下面就概念教學中每個環節的教學策略及應注意的問題作一闡述。
(1)概念的引入要注重提供豐富而典型的感性材料
在概念引入的過程中,要注意使學生建立起清晰的表象。因為建立能突出事物共性的、清晰的典型表象是形成概念的重要基礎,因此,在小學數學的概念教學中,無論以什麼方式引入概念,都應考慮如何使小學生在頭腦中建立起清晰的表象。概念教學一開始,應根據教學內容運用直觀手段向學生提供豐富而典型的感性材料,如採用實物、模型、掛圖,或進行演示,引導學生觀察,並結合實驗,讓學生自己動手操作,以便讓學生接觸有關的對象,豐富自己的感性認識。
如在一節教學分數的意義的課上,一位教師為了突破單位「l」這一教學難點,事先向學生提供了各種操作材料:一根繩子,4隻蘋果圖,6隻熊貓圖,一張長方形紙,l米長的線段等,通過比較、歸納出:一個物體、一個計量單位、一個整體都可以用單位「1」表示,從而突破理解單位「1」這一難點,為理解分數的意義奠定了基礎。

『柒』 如何上好小學數學概念課 認識分數

數學課的課型有講授數學概念的概念課、講授數學方法的方法課、一個單元或者章節的復習課、針對試卷習題的講評課,就我的教學感悟而言,我認為最難上的是數學概念課,急需要上好的還是數學概念課,因為數學概念教學是數學教學當中的首道工序,學生對概念的理解和把握是否准確,將直接影響到後續數學學習的效果,因此我認為數學概念的表述應當用精煉的語言,准確無歧義地反映概念的本質特徵.一節好的數學概念課的教學設計需要思考:概念教學一般可以分為哪幾個階段?各個階段分別要側重解決什麼問題?數學概念課的教學設計關鍵在於科學地、藝術地處理教材內容,喚起學生強烈的求知慾,從學生熟悉的、親身感受的生活經驗入手,將其數學化,應該有概念的引入、概念的辨析、概念的深化和概念的鞏固這樣四個階段,在教材基礎上,讓學生知識遷移,主動構建對新概念認識,在小學數學概念的教學中,有些概念可以通過與生活實際的直接聯系而獲得.但也有很多數學概念並不能以此途徑獲得,他們往往只能用語言對其作出界定,學生需要理解這些語言的內涵和外延,才能獲得其確切的含義.從整個章節內容來考慮,先讓學生見識概念,為他以後的學習打下基礎.通過學生舉反例來加深對概念的認識理解,必要時概念的分析更需咬文嚼字,只有這樣才可以突出概念的本質.\x0d概念的引入側重引起學生的注意,激發學生的興趣,體現概念的本質,蘊含概念發生的思維方法,做到先聲奪人.引入的方式有很多,常見的有下面四種:一,數學故事引入數學概念;二,通過學生已有的知識和經驗引入概念;三,動手操作引入數學概念;四,通過實際問題引入數學概念.\x0d概念分析我們還要善於從逆向分析,通過反例來闡述,概念的分析,必要時我們會適當應用多媒體動畫,解決其抽象的問題,通過多媒體能把抽象問題具體化,給一個學生感性的認識.對概念的理解,特別是對一些重要的概念的理解,常常不是一節課可以解決問題的,需要我們把它放在整個數學課程中去認識一些概念,在這節課上對這個概念,我把握到什麼程度,以後在哪個地方去拓展這些概念,我們可以去講題,但是我們講題的目的是是提高學生的素養,提高對某些概念的認識,加深對某些概念的理解,概念的教學,不只是在概念課上才出現,對概念的認識,應該成為我們在其他課型中隨時隨地都應該關注的一個出發點.所以作為概念課來說,它既強調概念的講解,又滲透在其他的課中,發揮出概念課的最大的效率\x0d菏澤市牡丹區第二中學\x0d數學概念是每一個內容的靈魂,只有把數學概念講好了我們才能夠很好的去利用它.但是數學概念只是一些描述性的語言,要想讓學生很好的掌握它,下面我談幾點看法:\x0d數學概念教學一般分為三個部分:引入,分析,應用.\x0d概念的引入一定要側重引起學生的注意力,激發學生的學習興趣.在新課標中提到數學概念的引入要情境化,要順其自然,而不能強加於人.在設置情境是一定要合乎學生的認知規律,要貼近生活,而不要刻意講究形式.\x0d在分析的過程中正確、充分地提供概念的各種變式.適當應用反例,羅列一些似是而非容易產生錯誤的對象讓學生辨析,是促進學生認識概念的本質、確定概念的外延的有效手段.\x0d在概念的系統學習過程中讓學生有機會不同的角度認識概念,這不僅便於發揮知識的結構功能,使概念具有「生長活力」\x0d,有益於知識的獲得、保持和應用,而且對發展學生的概括能力有特殊的意義.精心設計練習,在應用中強化概念間的聯系,鞏固概念網路,加深概念的理解.

『捌』 小學數學概念教學中涉及哪些概念

在數學學習中有很多重要的東西,包括概念、定理、性質、問題等,其中概念是一個非常重要的學習數學的載體,因此概念教學應該是我們數學教學中一個非常重要的基點,很多東西都是圍繞著一個核心概念展開的,因此必須重視概念教學,之所以把概念教學放在一個非常顯著的地位來強調,一個重要的原因就是在我們所接觸的中學數學教學中,對於概念教學有不重視的傾向,很多的課是把概念用很短的時間交代一下,定義交代完後接著變成解題了,(把概念課變成了解題課了,造成對於概念理解的不足,造成走入用做題來學習數學的誤區)

那麼在中學數學教學中應當採取哪些方式來進行概念教學呢?首先要弄清楚目前教學的現狀,在中學數學教學實際中,學生常常對第一個問題解決不好,思維受到障礙,特別是在中考、高考過程中,對綜合問題的解決不夠好,而問題的產生往往是對基礎的概念理解不好造成的。

對於概念教學的不重視來自於兩個方面,一方面老師不夠重視,另一方面學生也不重視,而實際上一個新的概念的形成是從原來的知識領域又進入到一個新的知識領域,從而建立一個新的知識領域的過程,對新概念的理解常常是因為學生對新領域知識不夠重視,導致後來學生不好的學習後果,然後再回去彌補,而這個時候的彌補,又感覺沒有多少味道,從而造成誤解的一直持續。這個問題必須引起教師的高度重視,否則教改學生的永遠是夾生飯,不光不能促進學生的發展,還很有可能引起一系列的連鎖反應,制約學生的發展。

而數學思想和數學最深刻的內涵實際上是通過數學概念反映出來的,但是從學生的表現來看,無論是考試、作業都是以習題的形式來完成的,結果造成對概念不重視(這是因為訓練形式的原因造成的,能否改變訓練和評價的形式是一個很大、也很重要的課題),而單純依靠大量的做題來彌補對概念理解的不足,造成學習效率不高,老師和學生都很疲勞,這是一個得不償失的過程,而相反,如果一個概念比較清楚的話,就能夠對題目或問題有一個清楚的認識,現實的情況是,概念用幾分鍾的時間呈現,然後靠大量的題來彌補。

概念教學中存在的幾個問題:

1.概念很多,有一些我們認為是重要的概念,有一些我們認為是不重要的概念,衡量的標準是什麼?其實很大程度上是教師人為造成的,教師以自己的喜好或者考察的重點上確定的,而不是從知識的完整和知識體系的完備考慮的,更談不上考慮學生的實際了。

2.有一些概念不那麼重要,一個重要的理念就是要學會識別在我們的**常教學中什麼是重要的概念。所謂重要的概念就是圍繞著核心的概念、能反映數學本質的概念,如何判斷那一個概念是重要的,是教師必須考慮的第一個問題,出現一次或偶爾出現的概念肯定不那麼重要,在學習中經常或不斷出現的那一定是重要的概念,比如函數、單調性等概念以及對運算的理解。

對於一個老師來說,對於概念課,他首先要整體上把握概念在整個數學上的地位或在某一個領域中的地位,比如單調性,首先從圖像上它刻畫了函數的變化,反映了函數的極值問題,對應著反函數的問題(在這個問題中,只有在連續的情況下才能保持定義域和值域之間的一一對應關系),再比如,求函數零點的唯一性問題、解不等式也可以利用單調性來處理),對老師而言,雖然這堂課不是講這個內容,但是一定要在心理上有一個整體的把握,這樣才能比較好地處理這堂課的內容。學習函數的單調性,在高中階段是一掌握函數圖形的形狀為主,單調上升、單調下降,基本上就把函數的形狀確定了,極值問題也是由單調性確定的,以後學習的問題都是對這一問題的延伸,凡是重要的數學概念,一定要思考它在整個高中數學課程中的扮演一個什麼角色,以及與其他的要學習的數學內容的內在聯系,才能在一節課中有一個重要的定位,從整體到局部,再從局部到整體,來開展備課活動,備課才是有效的。但一定要把握好一個度,要清楚需要講到什麼程度,要有一個全盤的考慮,要考慮前引後聯,防止一步到位,要明確第一堂課做什麼,後面做什麼.如果是單調性的起始課,要建立單調性的概念,幫助學生理解處理單調性函數的基本程序,還有足夠的時間和載體來考慮證明的問題,定位的問題實在重要概念教學中需要考慮的重要問題,要弄清楚在這一節課中要以什麼樣的定位為主。

要求老師做到比較深入地研究學生了學生關於單調性的認知過程,將學生的認知過程分為幾個階段:概念的形成、概念的理解和概念的拓展,根據學生的認知特點,設計了問題串,通過這些問題,逐步引導學生按照自己的認知習慣、認知規律來建立比較合理、簡單的概念的認識,從具體的函數出發,從學生的認知水平和具體的東西出發,給學生營造一個直觀上是容易的印象,逐漸把它落實到文本上,在這個過程中把概念中蘊含的豐富的數學思想展現出來,從熟悉的問題中去挖掘、用好它,然後再去學習新東西,不僅僅是為了得到新概念,更重要的是體現了一種思想方法,層次感就出來了,是一種歸納式的思維,這非常重要,數學高度抽象,但是歸納的結果。

問題是數學的心臟,要重視培養學生的問題意識,上課前老師帶著學生老師的安排去讀書,通過認真閱讀教材,理解和發現問題、提出問題,上課時師生交流,師生共同解決問題,在這個過程中,培養了學生學習的能力。但是教師在進行問題設計時,必須分清楚哪些是主要問題,哪些是次要問題,哪些是比較集中的問題,哪些是比較分散的問題,哪些是共性的問題,哪些是個別的問題?在單調性的概念中,「任意」和「區間」就是本質的東西,任意說明的是其特徵,區間限定的是研究范圍,它是定義域的一個子集,這些都是必須高度重視的重要問題,但有一些是次要的,比如,學生會提出問題,為什麼有的是開區間,有的是閉區間?實際上這就是一個次要問題,開閉對單調性是沒有影響的,它只涉及一個嚴格單調和非嚴格單調的問題,對研究函數的整體性質沒有多大影響,因此不應當在此處進行過多的爭論。因此,如何把握問題,是老師必須引起關注的問題。

通過學生主動參與,可以充分了解學生的思維習慣對於培養學生數學學習方法和學習意識、學習能力極其重要,這是一個教師的思維走進學生思維的重要途徑。它體現的是一種全新的教育理念或者稱為學習理念,展現的是以學生為主體的思想,是一種承認差異基礎上的尊重。

在對學生提出的問題在回答的過程中,教師不應當以裁判的角色參與,不應當以一種權威的方式告知學生結果是什麼,而應當讓學生充分展示自己的思維,教師幫助學生診斷,找出症結,同時也給其他學生一個更深思考的機會和空間,因為,學生的思維往往是相通的,很多時候,老師往往以自己的思維習慣左右學生的思維習慣,是一種「我認為他應該能……」的想當然的行為,這就是為什麼有的問題老師講解十遍二十遍學生仍然不會,而同學只要講一遍就明白的重要原因。教師的作用更多的是引和導。在學生思考的過程中,不要急於進行,應當學會等待,在等待中發現教育素材,便於教師展示教育智慧。這有利於培養學生的思維意識和學習意識,培養學生的實踐和創新能力,使學生在探究的過程中獲得發展。合作學習的關鍵是教師的設計,教師教學設計的好壞直接影響教學的效果,因此必須弄清楚教學任務、教學目標、合作方式、需要解決的問題、可能遇到的問題等都是老師必須事先考慮的問題,老師要注意在合作學習的過程中必須發揮統帥作用,不能任由學生信馬由韁、自由馳騁,而應當控制在既定方針之下,這樣的合作才是有效的合作。

『玖』 如何進行小學數學概念課教學

數學概念比較抽象,而小學生,特別是低年級小學生,由於年齡、知識和生活的局限,其思維處在具體形象思維為主的階段。認識一個事物、理解一個數學道理,主要是憑借事物的具體形象。因此,教師在數學概念教學的過程中,一定要做到細心、耐心,盡量從學生日常生活中所熟悉的事物開始引入。這樣,學生學起來就有興趣,思考的積極性就會高。如在教平均數應用題時,利用鉛筆做教具,重溫「平均分」的概念。

閱讀全文

與小學數學低年級概念課教學相關的資料

熱點內容
小學讀書計劃表格模板 瀏覽:342
小學語文四年級感嘆句 瀏覽:243
天通苑中山實驗小學 瀏覽:596
小學三年級語文補習班內容 瀏覽:921
吉安師范附屬小學作文 瀏覽:396
小學教師備課網站 瀏覽:1
私立美男學院 瀏覽:383
小學六年級上冊語文第六單元試卷涼州島 瀏覽:915
小學1年級手gong大全 瀏覽:459
小學生手抄報的圖片大全圖片大全 瀏覽:68
小學健康知識講座 瀏覽:120
小學畢業季適合發老師的句子 瀏覽:451
汕尾鳳山中心小學校長 瀏覽:606
小學生畢業匯演舞蹈 瀏覽:702
小學生抗擊疫情的表演 瀏覽:107
私立華聯大學本科 瀏覽:61
小學三年級作文我想謝謝你400 瀏覽:855
中小學生睡眠問題 瀏覽:174
小學生公共生活守規則教案 瀏覽:313
淮河私立學校 瀏覽:99