導航:首頁 > 教師教學 > 小學數學推理教學視頻

小學數學推理教學視頻

發布時間:2021-01-28 20:25:10

小學數學教學中要處理好合情推理和演繹推理的關系

小學數學教學中的合情推理
在當今和未來社會中,人們面對紛繁復雜的信息經常需要作出選擇和判斷,進而進行推理、作出決策。因而,義務教育《數學課程標准》指出:「數學課程的學習,強調學生的數學活動,發展學生的推理能力。」推理分論證推理和合情推理兩種。數學對發展推理能力的作用,人們早已認同並深信不疑。但是,長期以來數學教學注重採用「形式化」的方式發展學生的論證推理能力,忽視了合情推理能力的培養。應當指出,數學需要論證推理,更需要合情推理。
一、合情推理的含義
合情推理是一種合乎情理、好像為真的推理,它是數學發現的方法之一。合情推理,不全都依據數學公理體系和數學定理進行推理,而是運用了一些特殊的推理方法,從所得命題的真假性來看,不像論證推理所得的命題那樣嚴密和穩定。似真非真和似真確真這兩種情況都有可能發生。因此,合情推理又被稱為似真推理。數學中的合情推理是多種多樣的,其中歸納推理和類比推理是兩種用途最廣的特殊合情推理。法國數學家拉普拉斯說:「甚至在數學里,發現真理的工具也是歸納和類比。」
二、發展學生合情推理的意義
首先,是實施新課標的需要。《數學課程標准》中明確:歸納和類比是合情推理的主要形式,並指出:第一學段「初步學會選擇有用的信息進行簡單的歸納和類比」,第二學段「進行歸納、類比與猜測,發展初步的合情推理能力」,第三學段「體會證明的必要性,發展初步的演繹推理能力」。其目的是有序地培養學生的推理能力,但小學階段以發展學生初步的合情推理能力為主要目標。
其次,是由小學生的認知特點決定的。鑒於小學生的年齡與認知特點,他們不可能通過具有嚴格標準的邏輯推理來發現和掌握數學原理和概念。因此,在小學數學教材中大量地採用了像數學猜想、枚舉歸納、類比遷移等合情推理的方法。
再次,是學生學習數學的過程要求。波利亞說過:「數學家的創造性工作成果是論證推理,即證明;但是這個證明是通過合情推理,通過猜想而發現的。只要數學的學習過程稍能反映出數學發明過程的話,那麼應當讓猜測、合情推理佔有適當的位置。」費賴登塔爾認為,學生學習數學是一個有指導的再創造的過程。數學學習本質是學生的再創造。數學知識的學習並不是簡單的接受,而必須以再創造的方式進行。因此,在數學學習的過程中,應給學生提供具有充分再創造的通道,以激勵學生進行再創造的活動。把數學知識學習的過程展開、還原,讓學生經歷觀察、比較、歸納、類比……即合情推理提出猜想,然後再通過演繹,推理證明猜想正確或錯誤。
三、發展學生合情推理的策略
1、從特殊到一般,發展學生的歸納推理能力
把某類事物中個別事物所具有的規律作為該類事物的普遍規律,這種思維過程中由特殊到一般的推理稱為歸納推理或稱歸納法。這是一種從個別到一般、從實驗事實到理論的一種尋找真理和發現真理的手段。波利亞盛贊歐拉「是數學研究中善於用歸納法的大師,使用歸納法,也就是說,他憑觀察、大膽猜測和巧妙證明得出了許多重要的發現。」高斯也曾說他的許多定理都是靠歸納法發現的,證明只是補行的手續。
2、從特殊到特殊,發展學生的類比推理能力
類比推理是根據兩個不同的對象的某些方面(如特性、屬性、關系等)相同或相似,推出它們在其他方面也可能相同或相似的思維形式,它是思維進程中由特殊到特殊的推理。這也是一種尋找真理和發現真理的基本而重要的手段。
3、從聯想到驗證,發展學生的數學猜想能力
猜想又是合理推理最普遍、最重要的一種,歸納也好、類比也好都包含猜想的成分。波利亞認為:「說得直截了當一點,合情推理就是猜想。」傳統的教學留給學生思維活動的內容和時間太少,不僅削弱了學生認知的發生過程,而且導致學生思維禁錮,不敢或不能提出猜想。這與培養學生的創新能力的時代要求是相悖的。為了發展學生的創造性思維,教師應該教給學生思維方法,鼓勵學生對具體問題和具體教材進行分析,通過觀察、實驗、類比、歸納等手段提出猜想。這樣,不僅有助於學生掌握數學知識,滿足學生的求知慾望,而且學會探求知識的方法。

② 小學數學 簡單推理

先找出有判斷相同的:
B說:D第二,E第四
E說:D第二,A第三
假設:D第二正確,那麼:
由「B說:D第二,E第四 C說:A第一,E第四」得出:A第一;
再由「D說:D第一,B第二」得出:B第二,與假設「D第二」矛盾。
所以:D第二錯誤。即「E第四,A第三」正確。
結合「A說:B第三,C第五」得出「C第五」正確;剩下第一第二名。
由於D不是第二,只能是第一,B只能第二。此時「D說:D第一,B第二」都正確。

所以本題題目有誤

③ 在小學數學教學中怎樣培養學生的「推理能力」

新的數學課程標准認為:學生應"經歷觀察、實驗、猜想、證明等數學活動,發展合情推理能力和初步的演繹推理能力"。由此可見猜測是發展數學,學好數學的重要方式之一。通過對課程標準的進一步解讀,我們了解到合情推理就是一種合乎情理的推理,主要包括觀察、比較、不完全歸納、類比、猜想、估算、聯想、自覺、頓悟、靈感等思維形式。 作為教育工作者我們在教學中應加強中學生的合情推理能力的培養,使學生在日常的學習中積累的經驗、方法用於學習,提高學習的興趣,提高解決問題的能力。而在其中,又將那自然狀態下的合情推理,提高到一個更加合理更加科學的層次,可能成為「科學發現的金鑰匙」。 關於如何培養學生這一方面的能力,具體要做好以下幾點:一、引導並指導學生運用合情推理探索和發現數學 l、要重視引導學生運用合情推理去發現問題的結論、明確目標,是研究問題的起點。用合情推理去發現問題的結論,等於明確了方向,從而使得思維更具體,變形或推理更具有目的性和針對性。 2、要重視引導學生運用合情推理去發現解題途徑和方法,模擬數學家的思維活動.引導學生進行「似真性」地發現定理(公式)以及構想定理(公式)證明的方法.是培養學生創造思維能力的重要途徑。 3、要重視引導學生運用合情推理將問題進行引申或推廣,數學研究的很多問題都是某種形式的引申或推廣。運用合情推理將問題進行引申或推廣,既符合數學知識本身發展的規律,也符合學生個體心理發展的規律為學生的合情推理創設空間。二、波利亞說:「有效地應用合情推理是一種實際技能」,「要通過模仿和實踐來學習它,在實踐中發展合情推理能力」。 因此,教師要充分發揮其主導作用,引導學生參與教學。問題情境的創設是學生參與學習的前提。把學科的內容隱入情境,提供給學生足以探索的數學材料,創設具有一定合理自由度的思維空間,要突出問題(應有一定的難度和開放性),把問題放在「需要」與「認知結構」矛盾的風口浪尖,同時也注意對學生情緒背景的創設。不僅要創設引入問題的情境,也要創設好每個環節的情境。情境的創設應滿足:a.可能導致發現;b.一定的趣味性;C.便於學生參與,但要防止讓學生看了書上的結論一語點破。如學習「圓的認識」時為學生創設一個操作情境:可以提供圖釘、鉛筆、棉線等材料,讓學生在自主探索如何畫圓時,發現圓的基本性質和概念。三、在生活與游戲中運用合情推理 除了數學課堂教學活動能推進學生的合情推理能力發展外,還有很多活動也能有效地發展學生的合情推理能力。 《新課標》指出要使學生「經歷觀察、實驗、猜想、證明等數學活動過程,發展合情推理能力和初步的演繹推理能力,能有條理地、清晰地闡述自己的觀點」。在學生進行合情推理的過程中,教師作為學生學習的合作者和指導者都必須對學生的合情推理進行評價。教師要鼓勵學生大膽猜想、合理猜想,敢於打破思維定勢。對學生提出的獨特猜想,教師要給予支持和鼓勵,並予以適當的評價;對學生提出的不合理的猜測,教師應注意引導、幫助修正。在數學教學中,要有意識地培養和發展學生的合情推理,經常開展操作、實驗、觀察等數學活動,讓合情推理能力的培養貫穿於數學教學的始終。 我們數學學科總的指導思想是加強科學思想方法的教育,合理推理與其他學科思想方法之間相互協調發展,科學園地才會百花齊放。在猜想的獲得、修正、驗證及證明中都應用科學的思想方法和辯證法的指導及滲透,將合情推理與其他思想方法的教育有機結合,才能真正提高科學品質,發展能力。如果只重視合情推理,而忽略了其他思想方法的教育,可能將會導致無意義學習,與我們的初衷相違背,合情推理能力的培養也將是一紙空文,毫無特色可言。同樣的只重視其他思想方法的教育,而忽視合情推理能力的培養也是不可取的。

④ 小學數學推理

三個人都有可能
因為沒說有幾個人說真話。
如果沒有人說真話,矛盾,無解。
如果一個人說真話,則如果小明真,則小紅、小壯假,矛盾,捨去;
小紅真,則小明假,小壯假,應該是小壯;
小壯真,矛盾,無解。
所以一個人說真話,則是小壯。
如果一個人說假話,則如果小明假,則小明會;
小紅假,則小紅會;
小壯假,矛盾,無解。
三個人都說真話,矛盾,無解。

⑤ 小學數學邏輯推理

這三個數都出現了三次,所以13+15+23=51,這三個數相加的和就是51÷3=17,因為甲的13不是3的倍數回也就是甲不答可能拿了三次一樣的數,所以至少拿了兩個不一樣的數,同理丙也至少拿了兩個不一樣的數,又因為他們三人拿到的數都不為17,所以三人都是拿了兩個相同的數,用17-13=4,17-15=2,23-17=6,即此三個數的差分別為2,4,6,也就是說有大中小三個數,中數比小數大2,大數比中數大4,大數比小數大6,並且它們的和為17,所以即便用列舉法(如果學過方程,就是x+x+2+x+4=17)也能算出小數為3,中數為5,大數為9,甲是3,5,5,乙是3,3,9,丙是5,9,9

⑥ 小學數學核心概念中的推理能力中有哪些推理能力

數學具有嚴謹邏輯性的特點,邏輯推理能力應該是學生必須具有的基本數學能力之一。數學中的邏輯推理能力是指正確地運用思維規律和形式對數學對象的屬性或數學問題進行分析綜合、推理證明的能力。那教學中如何培養學生數學邏輯推理能力呢?一、重視基本概念和基本原理的教學數數學具有嚴謹邏輯性的特點,邏輯推理能力應該是學生必須具有的基本數學能力之一。數學中的邏輯推理能力是指正確地運用思維規律和形式對數學對象的屬性或數學問題進行分析綜合、推理證明的能力。那教學中如何培養學生數學邏輯推理能力呢?一、重視基本概念和基本原理的教學數學知識中的基本概念、基本原理和基本方法是數學教學中的核心內容。基本概念、基本原理一旦為學生所掌握,就成為進一步認識新對象,解決新問題的邏輯思維工具。如果沒有系統的科學概念和原理的掌握作為前提,要進行分析、判斷、推理等思維活動是困難的。二、結合具體數學內容講授一些必要的邏輯知識在數學教學中,結合具體數學內容講授一些必要的邏輯知識,是學生能運用它們來進行推理和證明。培養學生的推理能力,必須掌握邏輯的同一律、矛盾律、排中律和充足理由律等基本規律。教師應該結合數學的具體教學幫助學生掌握這些基本規律,使他們明了不能偷換概念和論題。要使學生懂得論斷不能自相矛盾,在同一關系下對同一對象的互相矛盾的判斷至少有一個是錯誤的;論斷不得含糊其詞,模稜兩可,在同一關系下,對同一對象的判斷或者肯定或者否定,不能有第三種情況成立.引導學生把這些已有的知識和資料進行分析、邏輯、推理,也就培養了學生的推理能力。總之,在科學課教學中,培養和發展學生的邏輯推理能力,是科學教學要求的一個重要方面。我們要深挖教材內涵,採用多種有效的教學手段,激發和培養學生的學習興趣。在培養學生的觀察實驗能力同時,逐步培養學生的分析、綜合、歸納、邏輯、推理等方面的能力。.

⑦ 小學數學簡單邏輯推理題!~急,給分~

1,是玻璃.
小欣完全錯誤
小磊完全正確,
小陳一半對一半錯

2
C,D

⑧ 如何培養小學生小學數學的推理能力

小學生在數學課上學習一點有關推理的知識,是《課標》指定的一個重要的教學內容。《數學課程標准》中指出:「推理能力的發展應貫穿在整個數學學習過程中。推理是數學的基本思維方式,也是人學習和生活經常使用的思維方式。推理一般的包括合情推理和演繹推理,合情推理是從已有的事實出發,憑借經驗和直覺,通過歸納和類比推斷某些結果;演繹推理是從已有的事實(包括定義、公理、定理等)和確定的規則(包括運算的定義、法則、順序等)出發按照邏輯推理的法則證明和計算。在解決問題的過程中,合情推理用於探索思路,發現結論;演繹推理用於證明結論。在小學階段,主要學習合情推理,即歸納推理和類比推理。而歸納推理又多表現為不完全歸納推理」。數學推理,是從數和形的角度對事物進行歸納類比、判斷、證明的過程,它是數學發現的重要途徑,也是幫助學生理解數學抽象性的有效工具。在小學數學教學中,如能重視強化學生的推理意識,培養學生的推理能力,既有利於幫助學生形成言必有據一絲不苟的良好習慣,也有利於學生掌握科學的思維方法,促進已有知識、經驗、技能的有效遷移,提高學生的學習效率。在小學數學教學中如何培養小學生的推理能力?下面談談我在教學中的一些體會。
一、在小學數學教學中,要讓學生說理,養成學生推理有據的好習慣
語言是思維的外殼,組織數學語言的過程,也是教給學生如何判斷的推理過程,而與語言最密不可分的是演繹推理,小學生解題時大多是不自覺地運用了演繹推理,因此教學中教師必須追問為什麼,要求學生會想、會說推理依據,養成推理有據的習慣,例如:14和15是不是互質數時一定要學生這樣回答:公因數只有1的兩個數叫做互質數,因為14和15 只有公因數1,所以14和15是互質數。這樣運用演繹推理方法,經常進行說理訓練,有利於培養學生的演繹推理能力。
二、教給學生正確的推理方法
小學生學習模仿性大,如何推理、需要提出範例,然後才有可能讓學生學會推理。小學數學中不少數學結論的得出是運用了歸納推理,教學時就要有意識地結合數學內容為學生示範如何進行正確的推理。例如,在教乘法交換律時,我是這樣引導學生學習的,計算多組算式:5×3=15、3×5=15所以5×3=3×5還有:15×4=4×15引導學生觀察、分析,找出這些算式的共同點:左、右兩邊因數相同,交換因數的位置積不變,歸納出乘法交換律。
三、要把培養學生的推理能力貫穿在日常的數學教學中
能力的發展決不等同於知識技能的獲得。知識可以用「懂」來描述,技能可以用「會」來描述,都可以立竿見影。能力的形成是一個緩慢的過程,有其自身的特點和規律,它不是學生「懂」了,也不是學生「會」了,而是學生自己「悟」出了道理、規律和思考方法等。這種「悟」只有在數學活動中才能得以進行,因此教學活動必須給學生提供探索交流的空間,組織、引導學生經歷觀察、實驗、猜想、驗證等數學活動過程,並把推理能力的培養有機地結合在這一過程中。例如;在講《分數的初步認識》這一課時時,學生在認識了二分之一,三分之一,四分之一……這些分數後,提出問題:二分之一和三分之一哪個分數大?先讓學生說出自己的的猜想,接著驗證:取兩張相同的紙片,一個折出二分之一,另一個折出三分之一,再比較大小,一目瞭然,二分之一大於三分之一。接著再推理三分之一和四分之一哪個分數大?從而得出結論:分子為一的分數,分母小的分數大。這樣再完成教學任務的同時,不知不覺中培養了學生的推理能力。
四、要把推理能力的培養植根於學生熟悉的生活實踐中
要想促進學生推理能力更好地發展,除了書本知識外,還有很多活動能有效地發展學生的推理能力,例如:①大樹與影子有什麼關系,成什麼比例,計算糖水裡含糖量可能用什麼比例解答,在解答之前,要用變化規律進行猜想,得到合情推理,再進行驗證。②用舉反例的方式證明結論不成立,如給小明家打電話,若多次接通但無人接聽,則由此得出「小明不在家」的判斷。③開展一些有趣的游戲或活動,培養學生的推理能力,如分圓比賽,就能得出「圓的周長與∏有關系」這一結論。
五、把推理能力的培養落實到《數學課程標准》的四個內容領域之中
「數與代數」、「空間與圖形」、「統計與概率」、「實踐與綜合運用」這四個領域的內容都為發展學生的推理能力提供了很好的平台。
1、在「數與代數」中培養學生的推理能力
在「數與代數」的教學中.計算要依據一定的「規則」公式、法則、推理律等.因而計算中有推理,現實世界中的數量關系往往有其自身的規律。對於代數運算不僅要求會運算,而且要求明白算理,能說出運算中每一步依據所涉及的概念運算律和法則,代數不能只重視會熟練地正確地運算和解題,而應充分挖掘其推理的素材,以促進思維的發展和提高。如:學習20以內進位加法時,讓學生自主探索8+7=?,孩子們想出很多方法算出得數,有一個孩子說,我知道10+7=17,那麼8+7=15,這個孩子就是很好地進行了推理,在過去一律用「湊十法」的情況下,是不會出現這種情況的,培養了學生的推理能力。
在教學中,教材的每一個知識點在提出之前都進行該知識的合理性或產生必然性的思維准備,要充分展現推理和推理過程,逐步培養學生的推理能力。
2、在「空間與圖形」中培養學生的推理能力
在「空間與圖形」的教學中.既要重視演繹推理.又要重視合情推理。小學數學新課程標准關於《空間與圖形》的教學中指出:「降低空間與圖形的知識內在要求,力求遵循學生的心理發展和學習規律,著眼於直觀感知與操作確認,多從學生熟悉的實際出發,讓學生動手做一做,試一試,想一想,認別圖形的主要特徵與圖形變換的基本性質,學會識別不同圖形;同時又輔以適當的教學說明,培養學生一定的合情的推理能力。」並為學生「利用直觀進行思考」提供了較多的機會。學生在實際的操作過程中.要不斷地觀察、比較、分析、推理,才能得到正確的答案。注意突出圖形性質的探索過程,重視直觀操作和邏輯推理的有機結合,通過多種手段,如觀察度量、實驗操作、圖形變換、邏輯推理等來探索圖形的性質。同時也有助於學生空間觀念的形成,合情推理的方法為學生的探索提供努力的方向。
3、在「統計與概率」中培養學生的推理能力
統計中的推理是合情推理,是一種可能性的推理,與其它推理不同的是,由統計推理得到的結論無法用邏輯推理的方法去檢驗,只有靠實踐來證實。因此,「統計與概率」的教學要重視學生經歷收集數據、整理數據、分析數據、作出推斷和決策的全過程。如:為籌備新年聯歡晚會,准備什麼樣的水果才能最受歡迎?首先應由學生對全班同學喜歡什麼樣的水果進行調查,然後把調查所得到的結果整理成數據,並進行比較,再根據處理後的數據作出決策,確定應該准備什麼水果。這個過程是合情推理,其結果只能使絕大多數同學滿意。
概率是研究隨機現象規律的學科,在教學中學生將結合具體實例,通過擲硬幣、轉動轉盤、摸球、計算器(機)模擬等大量的實驗學習概率的某些基本性質和簡單的概率模型,加深對其合理性的理解。
4、在學生熟悉的生活環境中培養學生的推理能力
教師在進行數學教學活動時,如果只以教材的內容為素材對學生的合情推理能力進行培養,毫無疑問,這樣的教學活動能促進學生的合情推理能力的發展。但是,除了學校的教育教學活動(以教材內容為素材)以外,還有很多活動也能有效地發展學生的推理能力。例如,人們日常生活中經常需要作出判斷和推理,許多游戲中也隱含著推理的要求。所以,要進一步拓寬發展學生推理能力的渠道,使學生感受到生活、活動中有「數學」,有「推理」,養成善於觀察、猜測、分析、歸納推理的好習慣。
在實踐活動這部分內容中,同樣也可以培養學生的推理能力,如:「估計這本書有多少字」這 一實踐活動來說,學生要選擇具有代表性的一頁,利用自己已有的知識,計算出一頁的字數,然後推算出這本書的字數,由此可見,我們要充分利用四個部分的內容,培養學生的推理能力,促進學生的全面發展。
六、把推理能力的培養置於層次性和差異性的關注中
我們面對的教育對象是第一、二、三學段的小學生,從層次上目標要求不同。第一學段要求在教師的幫助下,初步學會選擇有用的信息進行簡短的歸納、類比。第二學段則要求能根據解決問題的需要,搜集有用信息,進行歸納、類比與猜測,發展初步的合情推理能力。第三學段要求能收集、選擇、處理數學信息,並作出合理的推斷或大膽的猜測;能用實例對一些數學猜想作出檢驗,從而增加猜想的可信程度或推翻猜想。因此,我們在培養學生的推理能力時一定要把握其層次性。另外,學生的思維也存在著一定的差異,我們要把握一定的「度」,讓不同的學生得到不同的發展,因人施教,因材施教,使學生的推理能力不斷躍上新台階。
總之,數學教學中對學生進行推理能力的培養,對於老師,能提高課堂效率,增加課堂教學的趣味性,優化教學條件、提升教學水平和業務水平;對於學生,它不但能使學生學到知識,會解決問題,而且能使學生掌握在新問題出現時該如何應對的思想方法。在小學數學教學中,做為一名數學教師,應抓住時機,根據教材內容和學生的差異,設計恰當的教學內容,有的放矢地進行推理能力的訓練。讓學生積極的參與數學活動,體會數學知識的形成過程,讓學生感悟到推理的方法和效能,充分展現學生想像能力,抽象能力,發展學生的數學思維能力。

⑨ 如何在小學數學課堂中培養小學生的推理能力

小學生在數學課上學習一點有關推理的知識,是《課標》指定的一個重要的教學內容。《數學課程標准》中指出:「推理能力的發展應貫穿在整個數學學習過程中。推理是數學的基本思維方式,也是人學習和生活經常使用的思維方式。推理一般的包括合情推理和演繹推理,合情推理是從已有的事實出發,憑借經驗和直覺,通過歸納和類比推斷某些結果;演繹推理是從已有的事實(包括定義、公理、定理等)和確定的規則(包括運算的定義、法則、順序等)出發按照邏輯推理的法則證明和計算。在解決問題的過程中,合情推理用於探索思路,發現結論;演繹推理用於證明結論。在小學階段,主要學習合情推理,即歸納推理和類比推理。而歸納推理又多表現為不完全歸納推理」。數學推理,是從數和形的角度對事物進行歸納類比、判斷、證明的過程,它是數學發現的重要途徑,也是幫助學生理解數學抽象性的有效工具。在小學數學教學中,如能重視強化學生的推理意識,培養學生的推理能力,既有利於幫助學生形成言必有據一絲不苟的良好習慣,也有利於學生掌握科學的思維方法,促進已有知識、經驗、技能的有效遷移,提高學生的學習效率。在小學數學教學中如何培養小學生的推理能力?下面談談我在教學中的一些體會。

⑩ ​小學數學推理題

根據他們的「口供」,貪吃鬼是小光。
解答推理題,一般採用假設法和列表格法。本題可以用假設法來逐一排除。(先假設是小天,那麼小天和小光說假話,與題目矛盾;再假設)
希望能幫到你。

閱讀全文

與小學數學推理教學視頻相關的資料

熱點內容
小學讀書計劃表格模板 瀏覽:342
小學語文四年級感嘆句 瀏覽:243
天通苑中山實驗小學 瀏覽:596
小學三年級語文補習班內容 瀏覽:921
吉安師范附屬小學作文 瀏覽:396
小學教師備課網站 瀏覽:1
私立美男學院 瀏覽:383
小學六年級上冊語文第六單元試卷涼州島 瀏覽:915
小學1年級手gong大全 瀏覽:459
小學生手抄報的圖片大全圖片大全 瀏覽:68
小學健康知識講座 瀏覽:120
小學畢業季適合發老師的句子 瀏覽:451
汕尾鳳山中心小學校長 瀏覽:606
小學生畢業匯演舞蹈 瀏覽:702
小學生抗擊疫情的表演 瀏覽:107
私立華聯大學本科 瀏覽:61
小學三年級作文我想謝謝你400 瀏覽:855
中小學生睡眠問題 瀏覽:174
小學生公共生活守規則教案 瀏覽:313
淮河私立學校 瀏覽:99