『壹』 小學數學的基本圖形有哪些
平面圖形:三角形
平行四邊形
正方形
長方形
菱形
圓形
立體圖形:圓錐
圓柱
長方體
正方體
(球體一般用不到)
這是小學數學用到的基本圖形
『貳』 小學數學所有圖形公式
1 每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數 2 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數 3 速度×時間=路程 路程÷速度=時間 路程÷時間=速度 4 單價×數量=總價 總價÷單價=數量 總價÷數量=單價 5 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率 6 加數+加數=和 和-一個加數=另一個加數 7 被減數-減數=差 被減數-差=減數 差+減數=被減數 8 因數×因數=積 積÷一個因數=另一個因數 9 被除數÷除數=商 被除數÷商=除數 商×除數=被除數 小學數學圖形計算公式 1 正方形 C周長 S面積 a邊長 周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a 2 正方體 V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a 3 長方形 C周長 S面積 a邊長 周長=(長+寬)×2 C=2(a+b) 面積=長×寬 S=ab 4 長方體 V:體積 s:面積 a:長 b: 寬 h:高 (1)表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh) (2)體積=長×寬×高 V=abh 5 三角形 s面積 a底 h高 面積=底×高÷2 s=ah÷2 三角形高=面積 ×2÷底 三角形底=面積 ×2÷高 6 平行四邊形 s面積 a底 h高 面積=底×高 s=ah 7 梯形 s面積 a上底 b下底 h高 面積=(上底+下底)×高÷2 s=(a+b)× h÷2 8 圓形 S面積 C周長 ∏ d=直徑 r=半徑 (1)周長=直徑×∏=2×∏×半徑 C=∏d=2∏r (2)面積=半徑×半徑×∏ 9 圓柱體 v:體積 h:高 s;底面積 r:底面半徑 c:底面周長 (1)側面積=底面周長×高 (2)表面積=側面積+底面積×2 (3)體積=底面積×高 (4)體積=側面積÷2×半徑 10 圓錐體 v:體積 h:高 s;底面積 r:底面半徑 體積=底面積×高÷3 總數÷總份數=平均數 和差問題的公式 (和+差)÷2=大數 (和-差)÷2=小數 和倍問題 和÷(倍數-1)=小數 小數×倍數=大數 (或者 和-小數=大數) 差倍問題 差÷(倍數-1)=小數 小數×倍數=大數 (或 小數+差=大數) 植樹問題 1 非封閉線路上的植樹問題主要可分為以下三種情形: ⑴如果在非封閉線路的兩端都要植樹,那麼: 株數=段數+1=全長÷株距-1 全長=株距×(株數-1) 株距=全長÷(株數-1) ⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼: 株數=段數=全長÷株距 全長=株距×株數 株距=全長÷株數 ⑶如果在非封閉線路的兩端都不要植樹,那麼: 株數=段數-1=全長÷株距-1 全長=株距×(株數+1) 株距=全長÷(株數+1) 2 封閉線路上的植樹問題的數量關系如下 株數=段數=全長÷株距 全長=株距×株數 株距=全長÷株數 盈虧問題 (盈+虧)÷兩次分配量之差=參加分配的份數 (大盈-小盈)÷兩次分配量之差=參加分配的份數 (大虧-小虧)÷兩次分配量之差=參加分配的份數 相遇問題 相遇路程=速度和×相遇時間 相遇時間=相遇路程÷速度和 速度和=相遇路程÷相遇時間 追及問題 追及距離=速度差×追及時間 追及時間=追及距離÷速度差 速度差=追及距離÷追及時間 流水問題 順流速度=靜水速度+水流速度 逆流速度=靜水速度-水流速度 靜水速度=(順流速度+逆流速度)÷2 水流速度=(順流速度-逆流速度)÷2 濃度問題 溶質的重量+溶劑的重量=溶液的重量 溶質的重量÷溶液的重量×100%=濃度 溶液的重量×濃度=溶質的重量 溶質的重量÷濃度=溶液的重量 利潤與折扣問題 利潤=售出價-成本 利潤率=利潤÷成本×100%=(售出價÷成本-1)×100% 漲跌金額=本金×漲跌百分比 折扣=實際售價÷原售價×100%(折扣<1) 利息=本金×利率×時間 稅後利息=本金×利率×時間×(1-20%)
『叄』 小學二年級數學數角問題,第一張圖片左下角老師說有四個直角。第二張圖片中小松樹那個圖形老師說有三個直
對於角的概念本來就是,有公共端點的兩條射線組成的圖形。而直角就是90度。那個專第一張圖的直角個數就屬是兩條線交叉的的直角個數,4個。而小松樹的直角也是數裡面的,樹尖那一個直角,樹底兩個直角。一般封閉圖形不數圖形外面的角。
證明直角三角形全等時可以利用HL ,兩個三角形的斜邊長對應相等,以及一個直角邊對應相等,則兩直角三角形全等。若兩直線相交且它們的斜率之積互為負倒數,則這兩直線垂直。
(3)小學數學數圖形擴展閱讀:
(1)三角形的角平分線的交點叫做三角形的內心,它是三角形內切圓的圓心,它到各邊的距離相等.
(三角形的外接圓圓心,即外心,是三角形三邊的垂直平分線的交點,它到三個頂點的距離相等).
(2)三角形的三條中線的交點叫三角形的重心,它到每個頂點的距離等於它到對邊中點的距離的2倍。
(3)三角形的三條高的交點叫做三角形的垂心。
(4)三角形的中位線平行於第三邊且等於第三邊的二分之一。
(5)三角形的一條內角平分線與兩條外角平分線交於一點,該點即為三角形的旁心。
『肆』 小學數學圖形公式
小學數學圖形計算公式
1、正方形 (C:周長 S:面積 a:邊長 )
周長=邊長×4 C=4a
面積=邊長×邊長 S=a×a
2、正方體 (V:體積 a:棱長 )
表面積=棱長×棱長×6 S表=a×a×6
體積=棱長×棱長×棱長 V=a×a×a
3、長方形( C:周長 S:面積 a:邊長 )
周長=(長+寬)×2 C=2(a+b)
面積=長×寬 S=ab
4、長方體 (V:體積 s:面積 a:長 b: 寬 h:高)
(1)表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh)
(2)體積=長×寬×高 V=abh
5、三角形 (s:面積 a:底 h:高)
面積=底×高÷2 s=ah÷2
三角形高=面積 ×2÷底 三角形底=面積 ×2÷高
6、平行四邊形 (s:面積 a:底 h:高)
面積=底×高 s=ah
7、梯形 (s:面積 a:上底 b:下底 h:高)
面積=(上底+下底)×高÷2 s=(a+b)× h÷2
8、圓形 (S:面積 C:周長 л d=直徑 r=半徑)
(1)周長=直徑×л=2×л×半徑 C=лd=2лr
(2)面積=半徑×半徑×л
9、圓柱體 (v:體積 h:高 s:底面積 r:底面半徑 c:底面周長)
(1)側面積=底面周長×高=ch(2лr或лd) (2)表面積=側面積+底面積×2
(3)體積=底面積×高 (4)體積=側面積÷2×半徑
10、圓錐體 (v:體積 h:高 s:底面積 r:底面半徑)
體積=底面積×高÷3
『伍』 小學數學圖形與位置
「空間與圖形」內容包括圖形的認識與測量、圖形與變換、圖形與位置三部分。
一、圖形的認識與測量,有平面圖形→立體圖形。無論是平面圖形,還是立體圖形,都可以歸結為圖形特徵的認識,圖形周長、面積、體積的測量與計算這樣兩個方面的內容。以及圖形認識與測量的簡單實際應用。
二、圖形與變換,有軸對稱、平移、旋轉三種基本的幾何變換。還有作圖操作、利用比例知識計算面積等知識。
三、圖形與位置,確定物體的相對位置,辨認方向和使用路線圖(包括比例尺的應用)。
兩條基本線索是:確定物體相對位置的兩種方式,即根據方向、距離確定物體的位置和用數對表示位置
圖形與位置需要用到角、距離等知識,此外還有數對、比例尺等知識。
『陸』 小學二年級數學圖形題目
平角不算,任意畫都是
『柒』 小學數學有哪些幾何圖形
小學數學有:
1、平面圖形:長方形、正方形、平行四邊形、三角形、梯形、圓。
2、立體圖形:長方體、正方體、圓柱體、圓錐體。
幾何圖形,即從實物中抽象出的各種圖形,可幫助人們有效的刻畫錯綜復雜的世界。生活中到處都有幾何圖形,我們所看見的一切都是由點、線、面等基本幾何圖形組成的。幾何源於西文西方的測地術,解決點線面體之間的關系。無窮盡的豐富變化使幾何圖案本身擁有無窮魅力。
(7)小學數學數圖形擴展閱讀:
平面幾何圖形可分為以下幾類:
(1)圓形:包括正圓,橢圓,多焦點圓——卵圓。
(2)多邊形:三角形、四邊形、五邊形等。
(3)弓形:優弧弓、劣弧弓、拋物線弓等。
(4)多弧形:月牙形、穀粒形、太極形、葫蘆形等。