導航:首頁 > 小學學科 > 轉化思想在小學數學

轉化思想在小學數學

發布時間:2020-12-18 01:46:58

㈠ 如何在小學數學教學中滲透轉化思想

如何在小學數學教學中滲透轉化思想
日本著名教育家米山國藏指出:「學生所學的數學知識,在進入社會後幾乎沒有什麼機會應用,因而這種作為知識的數學,通常在走出校門後不到一兩年就忘掉了。然而不管他們從事什麼工作,唯有深深銘刻於頭腦中的數學思想和方法等隨時地發生作用,使他們受益終身。」小學是學生學習數學知識的啟蒙時期,這一階段注意給學生滲透基本的數學思想便顯得尤為重要。
轉化思想是解決數學問題的一個重要思想。任何一個新知識,總是原有知識發展和轉化的結果。它可以將某些數學問題化難為易,另闢蹊徑,通過轉化途徑探索出解決問題的新思路。在教學中我們教師應結合恰當的教學內容逐步滲透給學生轉化的思想,使他們能用轉化的思想去學習新知識、分析並解決問題。那麼在小學數學教學中如何去挖掘並適時地加以滲透呢?以下根據自身的數學教學實踐談談自己的粗淺見解。
一、 在教學新知識時滲透轉化思想
例:在教學「異分母分數加減法」一課時,我是這樣設計的。
1、在情境中產生關於異分母分數加減法的問題,引入異分母分數加減法的學習。
2、讓學生獨立思考,嘗試計算異分母分數加法。
3、小組交流異分母分數加法的方法。整理並匯報。
方法1:將兩個異分母分數都變成小數,再相加。
方法2:將兩個異分母分數都通分變成同分母分數後,再相加。
4、歸納整理,滲透轉化思想
思考以上兩種方法,你有什麼發現?(兩種方法均是將異分母分數轉化成已學過的知識,即將異分母分數轉化成與其相等的小數或同分母分數之後,再相加。)……
5、回顧反思,強化思想
回顧本節課的學習,談談你的收獲和體會。(在轉化完成之後及時的反思,是對轉化思想的進一步鞏固與提升——進入思想的內核,再次深刻理解。)
在我們小學數學教材中,像這樣,需教師巧妙地創設問題情境,讓學生自主產生轉化的需要來學習新知識的例子很多,需要我們教師深入分析教材,理解教材,進而挖掘出其蘊含的轉化思想。
二、在數學公式推導過程中滲透轉化思想
如平行四邊形、三角形、梯形等圖形的面積公式推導,它們均是在學生認識了這些圖形,掌握了長方形面積的計算方法之後安排的,是整個小學階段平面圖形面積計算的一個重點,也是整個小學階段中能較明顯體現轉化思想的內容之一。教學這些內容,一般是將要學習的圖形轉化成已經學會的圖形,在引導學生比較之後得出將要學習圖形的面積計算方法。隨著教學的步步深入,轉化思想也漸漸浸入學生們的頭腦中。
如平行四邊形面積推導,當教師通過創設情境使學生產生迫切要求出平行四邊形面積的需要時,可以將「怎樣計算平行四邊形的面積」直接拋向學生,讓學生獨立自由地思考。這個完全陌生的問題,需學生調動所有的相關知識及經驗儲備,尋找可能的方法,解決問題。當學生將沒有學過的平行四邊形的面積計算轉化成已經學過的長方形的面積的時候,要讓學生明確兩個方面:
一是在轉化的過程,把平行四邊形剪一剪、拼一拼,最後得到的長方形和原來的平行四邊形的面積是相等的(等積轉化)。在這個前提之下,長方形的長就是平行四邊形的底,寬就是高,所以平行四邊形的面積就等於底乘高。
二是在轉化完成之後應提醒學生反思「為什麼要轉化成長方形的」。因為長方形的面積我們先前已經會計算了,所以,將不會的生疏的知識轉化成了已經會了的、可以解決的知識,從而解決了新問題。在此過程中轉化的思想也就隨之潛入學生的心中。其他圖形的教學亦是如此。需要注意的是轉化應該成為學生在解決問題過程中的內在的迫切需要,而不應該是教師提出的要求,因為這樣,學生的操作、思考都將處於被動的狀態,對轉化的理解則可能浮於表面。
三、在數學練習題中挖掘轉化思想
在三角形內角和教學後,書中有一練習題,「求出四邊形和正六邊形的內角和是多少?」這一問題的解決完全依賴於轉化思想,即:把四邊形和正六邊形都轉化成若干個三角形的和。即連接對角線把四邊形轉化成兩個三角形,那麼四邊形內角和就等於兩個180度,即360度。而正六邊形通過連接對角線轉化成了四個三角形,則內角和是四個180度,即720度。教師在處理習題時,不能僅僅教給學生解題術,更重要的是要讓學生收獲其數學思想,用知識里蘊含的「魂」去塑造學生的靈魂。這是讓學生受益終生的。
總之,轉化的思想應用於數學學習的各個領域,但不管在哪方面,它都是以已知的、簡單的、具體的、基本的知識為基礎,將未知的化為已知的,復雜的化為簡單的,抽象的化為具體的,一般的化為特殊的,非基本的化為基本的,從而得出正確的解答。其實,轉化本是化歸數學思想方法的一種體現(把所要解決的問題,經過某種變化,使之歸結為另一個問題,再通過另一個問題的求解,把解得結果作用於原有問題,從而使原有問題得解)。因此在轉化的過程中,教師自身應該有一個寬闊的轉化意識,夯實轉化過程中的每一個細節,在單元結束後的「整理與練習」中,再次提升轉化思想,並在後續的學習中有意識地關注轉化思想,進行必要的溝通與整合。

㈡ 小學數學思想中的化歸思想與轉化思想怎麼區分

化歸思想和轉化思想實質上是一樣的。都是將一個問題由難化易,由繁化簡,由復雜化簡單的過程

㈢ 小學數學轉化思想的書籍有哪些

《舉一反三》、《小小數學家》、《中國小學生數學大全》、《小學生數學訓練大全》、《小學學應用題大全》、《新課標:小學數學四庫全書》、《幫助小學生學好數學的77個秘訣》、《小學數學應用題典型題1000例》、《小學數學游戲大全》、《小學應用題的解法》、《小學數學解決問題方法大全》、《幸福的小學生數學》、《小學數學奧林匹克初級教程》.

㈣ 小學數學中哪些知識用了轉化思想

1、平行四邊形面積公式的推導:把平行四邊形轉化成長方形。
2、三角形面積公式的推導:把兩個完全一樣的三角形拼成一個平行四邊形。
3、梯形面積公式的推導:把兩個完全一樣的梯形拼成一個平行四邊形。
4、圓面積公式的推導:把圓轉化成近似的長方形。
5、圓柱體積公式的推導:把圓柱轉化成長方體。
6、簡便計算時湊整十或整百法。如:253-99=253-100+1
7、數和式子的轉化:25×16=25×4×4
16轉化成4×4
8、數和數的轉化:1÷0.125=1÷1/8
……
比、除法、分數、小數、百分數之間的轉化等。

㈤ 轉化思想在小學數學教學中的應用普遍嗎

普遍
數學知識中概念、法則、公式、性質等都是明顯地寫在教材中,是有「形」的,而數學思想方法卻隱含在數學知識體系裡,是無「形」的,並且不成體系地散見於教材各章節中,關鍵是教師如何去發現、發掘教材中蘊含的轉化思想。為此,我們有必要對此進行系統的梳理,在理清知識網路的同時系統了解數學思想方法在小學各階段、各章節中的分布,例如小學數學的教學內容中,加法與減法的轉化、乘法與除法的轉化,分數與小數的轉化,除法、分數與比的轉化,二維空間(平面圖形)之間的轉化、三維空間(立體圖形)之間的轉化、二維與三維空間之間的轉化,數與形的轉化等等。這樣才能結合雙基的教學,有意識地向學生滲透,逐步培養他們初步地掌握相關的轉化的思想和方法。
數學教學論告訴我們,數學知識是數學思想的載體,進行數學思想方法教學時要注意以數學知識為載體,把隱藏於知識背後的思想方法揭示出來,使之明朗化,這樣才能通過知識傳授過程達到思想方法教學之目的。因此一節課結合具體教學內容考慮滲透哪些數學思想方法、怎麼滲透、滲透到什麼程度,老師都應有一個精心的設計和具體的要求。如《平行四邊形的面積》的教學可以設計如下相關的教學目標:引導學生經歷平行四邊形面積計算的探究過程,初步理解化歸思想,掌握方法,滲透「變與不變」的函數思想;培養學生分析、綜合、抽象、概括和解決實際問題的能力,發展學生的空間觀念。

㈥ 小學數學中對學生轉化思想的培養方法有哪些

轉化思想是把一個實際問題通過某種轉化、歸結為一個數學問題,把一個較復雜的問題轉化、歸結為一個較簡單的問題。也就是說,轉化方法的基本思想是在解決數學問題時,將待解決的問題,通過某種轉化過程,歸結到一類已經解決或者比較容易解決的問題,然後通過容易問題還原解決復雜的問題。將有待解決或未解決的問題,轉化為在已有知識的范圍內可解決的問題,是解決數學問題的基本思路和途徑之一,是一種重要的數學思想方法。
小學是學生學習數學的啟蒙階段,這一階段讓學生真正理解並掌握一些基本的數學思想便顯得尤為重要。轉化思想是數學思想的重要組成部分。它是從未知領域發展,通過數學元素之間的因果聯系向已知領域轉化,從中找出它們之間的本質聯系,解決問題的一種思想方法。在小學數學中,主要表現為數學知識的某一形式向另一形式轉變,即化新為舊、化繁為簡、化曲為直、化數為形等。21世紀的數學教師,應該結合相應的數學情景,培養學生善於和習慣利用轉化思想解決問題的意識。使復雜的問題簡單化、抽象的問題具體化,特殊的問題一般化,未知的問題已知化,提高學生解決數學問題的能力,從而使學生愛上學數學。

1.計算的縱向轉化
加減計算: 20以內數的加減←―100以內數的加減←―多位數的加減←―小數加減 ← 分數加減 。其中 20以內數的加減計算是基礎。如23+15可以轉化成2+1和3+5兩道十以內數的計算,64-38 可以轉化成14-8和5-3兩道計算。多位數計算也同樣。
分數加減計算如 7/8+3/8 就是 7個1/8 加3個1/8 ,就是(7+3)個1/8 ,最後也可以看作是20以內數的計算。乘除計算:一位數乘法← 多位數乘法← 小數乘法。一位數乘法口訣是基礎,多位數乘法都可以把它歸結到一位數乘法。除數是一位數的除法←―多位數除法←-小數除法。除法中除數是一位數除法的計算方法是基礎,多位數除法都可以把它歸結到一位數除法。 2.計算的橫向轉化
加法與減法之間可以轉化,乘法與除法之間可以轉化。幾個相同加數連加的和,可以轉化成乘法來計算。被減數連續減去幾個相同的減數,差為零,可以轉化成除法來表示。分數的除法,可以將除數顛倒位置變成乘法進行計算。
3.圖形中的轉化
面積計算公式的推導可以把長方形面積公式作為基礎,其它圖形面積公式都可以通過轉化變成長方形或平行四邊形後得出公式。體積計算公式以長方體的體積計算公式為基礎,圓柱體的體積公式的推導也是通過轉化為長方體來得出。轉化思想是解決數學問題的一種最基本的數學思想,在研究數學問題時,我們通常是將未知問題轉化為已知的問題,將復雜的問題轉化為簡單的問題,將抽象的問題轉化為具體的問題,將實際問題轉化為數學問題,我們也常常在不同的數學問題之間互相轉化,可以說在解決數學問題時轉化思想幾乎是無處不在的。

㈦ 小學數學教學中的轉化思想是指什麼

小學數學教學復中的轉化思想制是指把生疏問題轉化為熟悉問題,把抽象問題轉化為具體問題,把復雜問題轉化為簡單問題,把一般問題轉化為特殊問題,把高次問題轉化為低次問題,把未知條件轉化為已知條件,把一個綜合問題轉化為幾個基本問題,把順向思維轉化為逆向思維。在小學數學教學中,應當結合具體的教學內容,滲透數學轉化思想,有意識地培養學生學會用「轉化」思想解決問題,從而提高數學能力。

閱讀全文

與轉化思想在小學數學相關的資料

熱點內容
小學讀書計劃表格模板 瀏覽:342
小學語文四年級感嘆句 瀏覽:243
天通苑中山實驗小學 瀏覽:596
小學三年級語文補習班內容 瀏覽:921
吉安師范附屬小學作文 瀏覽:396
小學教師備課網站 瀏覽:1
私立美男學院 瀏覽:383
小學六年級上冊語文第六單元試卷涼州島 瀏覽:915
小學1年級手gong大全 瀏覽:459
小學生手抄報的圖片大全圖片大全 瀏覽:68
小學健康知識講座 瀏覽:120
小學畢業季適合發老師的句子 瀏覽:451
汕尾鳳山中心小學校長 瀏覽:606
小學生畢業匯演舞蹈 瀏覽:702
小學生抗擊疫情的表演 瀏覽:107
私立華聯大學本科 瀏覽:61
小學三年級作文我想謝謝你400 瀏覽:855
中小學生睡眠問題 瀏覽:174
小學生公共生活守規則教案 瀏覽:313
淮河私立學校 瀏覽:99