1. 小學數學的基本圖形有哪些
平面圖形:三角形
平行四邊形
正方形
長方形
菱形
圓形
立體圖形:圓錐
圓柱
長方體
正方體
(球體一般用不到)
這是小學數學用到的基本圖形
2. 如何進行小學數學「圖形與幾何」領域的教學
1、注意揭示幾何圖形基本概念源於現實世界的抽象性特點。 幾何圖形、點、線、面、體、平面圖形、立體圖形、幾何圖形等概念,是從現實中抽象出來的最基本的幾何概念,必須注意這些基本概念與客觀現實的聯系,初步了解這些概念的抽象性特點,從而能初步用幾何觀點認識現實世界。2、讓學生在觀察、操作、想像、交流等活動中學習知識發展空間觀念。3、重視幾何語言的培養和訓練。4、重視培養學生學習幾何知識的興趣。5、注意與小學知識內容的銜接。6、要充分發揮實物、模型、圖片的作用和信息技術的應用。7、注重概念間的聯系,在對比中加深理解。8、要重視畫圖技能的培養。在幾何圖形的教學中,繪圖和作圖是重要的教學內容,在教學過程中畫出高質量的幾何圖形對於培養學生的空間觀念、空間想像力具有重要意義。 9、注意把握教學要求。10、注意突出重點內容。 教學中,由於內容較多,每課教學時都要突出一兩個重點,課堂活動也要圍繞這一兩個重點進行。12、把握好對推理與證明的教學要求。 教學中,把握好對證明的教學要求,要求學生知道什麼是證明,能在給出的推理過程中,填出一些關鍵步驟和理由即可,不要求學生寫出完整的證明過程。13、處理好平移內容。教學中,注意整套教科書的安排,使學生從感性到理性、從靜態到動態逐步加深對平移的理解。14、注重設計讓學生自主探究的活動 ,讓學生充分經歷探究過程。幾何學習中,學生的動手操作和自主探究對他們運用幾何思想、發現幾何結論具有積極的意義。15、要重視將研究幾何圖形的基本思想和方法貫穿於教學中。在教學中要充分利用學生已有的研究幾何圖形的思想方法,用幾何思想貫穿教學。16、重視對學生推理論證能力的培養。教學中可以以具體的問題為載體,先引導學生分析由已知推出結論的思路,由教師示範證明的格式,再逐步要求學生獨立分析、寫出完整的證明過程。同時要注意根據教學內容及時地安排相應的訓練,讓學生切實提高推理論證能力。17、滿足學生多樣化的學習需求,為學生提供個性化學習的時間和空間 18、注意推理證明的教學。不僅要求學生通過觀察、實驗、探究得出一些有關圖形的結論,還要求學生對這些結論進行證明,使推理證明成為學生探究得出結論的自然延續,進一步體會證明的必要性。 同時還要加強證明題前分析的教學 。
3. 小學數學《圖形的運動》有哪些類型
小學數學《圖形的運動》有三種類型,分別是平行,旋轉,軸對稱。
平行是在平面上兩條直線、空間的兩個平面以及空間的一條直線與一平面之間沒有任何公共點時,稱它們平行。如圖直線AB平行於直線CD,記作AB∥CD,平行線在無論多遠都不相交。
旋轉是物體圍繞一個點或一個軸做圓周運動。如地球繞地軸旋轉,同時也圍繞太陽旋轉。(《新華字典》(第11版)[1]及《現代漢語詞典》(第7版)[2]讀音均為xuánzhuǎn;但天旋地轉的轉為zhuàn無爭議。)數學中,旋轉是圖形運動的一種。
軸對稱是如果一個平面圖形沿著一條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形(a figure has reflectional symmetry),這條直線叫做對稱軸。
平行,旋轉,軸對稱都是圖形運動的基本類型。
(3)小學數學關於圖形的教案擴展閱讀
直線與曲面也是可以平行的,曲面與曲面也可以是平行的(這就如同平面與平面是可以平行的一樣),當然曲線與曲線也可以是平行的。
在平面內,將某個圖形,繞一個頂點沿某個方向旋轉一個角度,這樣的圖形運動稱為旋轉。在平面內,把一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動稱為旋轉。點O叫做旋轉中心,旋轉的角叫做旋轉角,如果圖形上的點P經過旋轉變為點Pˊ,那麼這兩個點叫做這個旋轉的對應點。
成軸對稱的兩個圖形全等,如果兩個圖形成軸對稱,那麼對稱軸是對稱點連線的垂直平分線。
參考資料來源
網路-軸對稱
網路-平行
網路-旋轉
4. 小學數學圖形與幾何包括哪些內容
平面圖形:線段,三角形,正方形,長方形,平行四邊形,梯形,圓,扇形等,
立體圖形:立方體,長方體,圓柱體,圓錐體
5. 人教版小學數學圖形與幾何領域有哪些
圖形與幾何學習是小學數學教學的重點內容,旨在培養學生形成初步幾何思維能力,掌握基本幾何知識,具有啟蒙作用,對今後初中乃至高中幾何學習的重要性都是不言而喻的。本文從實際出發,從學習情感體驗、教學方法、教學模式三個方面淺談如何提高小學數學圖形與幾何教學質量。
6. 怎樣開展小學數學"圖形與幾何"的教學
不知道小學的圖形與幾何到底學什麼東西,但小學生的抽象思維能力較差,應該用更形象的方式進行啟發式的教育,如用一些玩具和一些動畫的素材,如果沒有現成的,用"幾何畫板"演示的效果應該也不錯。
7. 怎樣對小學數學圖形與幾何進行有效的教學
首要的任務是要擺正師生以往不平等的關系,創設寬松和諧的教學氛圍。特別在中學,由於中學生的心理發展還極不成熟,教師的言行對學生的影響會產生很大的正向作用,所以在課堂上,教師不能擺著「師尊」的「架子」,語言應該友善親切,態度應該和藹可親,一改自上而下的傳授方式,無論是講授知識還是與學生交談,輔導學生時,都應充分尊重和熱愛學生的一切需要,努力成為學生學習的引路人。
8. 小學數學圖形與幾何教學的主要內容是什麼
小學數學圖形與幾何教學的主要內容是:
空間與圖形部分,點、線、面,基本的平面圖形專(角、三角形、四屬邊形、平行四邊形、正方形、長方形、圓)、立體圖形(長方體、正方體、圓柱、圓錐),圖形的面積計算,及表面積和體積的計算.
9. 如何進行《小學數學圖形與幾何》教學的
研究目的:更好的進行小學數學「圖形與幾何」領域的教學
研究方法:理論學習 課堂實踐 收集材料 總結反思
理論學習
一、解讀圖形與幾何
圖形與幾何是幫助學生生存並促進其發展的重要基礎,是幫助學生形成創新意識、發展數學思維所必須的土壤。
《數學課程標准》中「圖形與幾何」內容結構以「立體——平面——立體」為主線,以「圖形的認識」「測量」「圖形與位置」「圖形與變換」四條線索展開,遵循學生的認知特點,逐學段層層推進。《數學課程標准》中空間與圖形」的四條線索部以圖形為載體,以培養觀念、幾何直覺 推理能力以及更好的認識和把握我們生存的空間為目標 不僅著眼於學生理解和掌握一些必要的幾何事,而且強調學生經歷自主探索和合作交流的過程形成積極的學習態度和情。如,一年紐的第一學期的新教材,讓學生首先認識的是立體圖形,然後在以後的學習中認識和學習平面圖形,最後進一步學習和認識立體圖形。
《教學課程標准》呈現內容的結構形式,提倡以「問題情境——建立模型——解釋、應用——拓展、反思」的基本模式展現內容, 讓學生經歷「數學化」和再創造的過程。這與以往幾何教材主要採取」定義——性質——例題——習題」的結構形式有較大的區別。
《數學課程標准》呈現內容的處理方式,與以往的大綱相比,改變了以線段、面積、體積、測量、相交 平行、三角形和四邊形」呈現幾何內容的處理方式,而是以「觀察、實際動手操作、測量、計算 、變換和簡單推理」為具體處理方式。如,畫出從學校到家的路線示意圖 並註明方向及主要參照物。