1. 小學所有數學廣角公式
1、 每份數×份數=總數 總數÷每份數=份數總數÷份數=每份數 2、 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數幾倍數÷倍數=1倍數 3、 速度×時間=路程 路程÷速度=時間 路程÷時間=速度 4、 單價×數量=總價 總價÷單價=數量 總價÷數量=單價 5、 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間工作總量÷工作時間=工作效率 6、 加數+加數=和 和-一個加數=另一個加數 7、 被減數-減數=差 被減數-差=減數 差+減數=被減數 8、 因數×因數=積 積÷一個因數=另一個因數 9、 被除數÷除數=商 被除數÷商=除數 商×除數=被除數 小學數學圖形計算公式 1 、正方形 C周長 S面積 a邊長 周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a 2 、正方體 V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a 3 、長方形 C周長 S面積 a邊長 周長=(長+寬)×2 C=2(a+b) 面積=長×寬 S=ab 4 、長方體 V:體積 s:面積 a:長 b: 寬 h:高 (1)表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh) (2)體積=長×寬×高 V=abh 5 三角形 s面積 a底 h高 面積=底×高÷2 s=ah÷2 三角形高=面積 ×2÷底 三角形底=面積 ×2÷高 6 平行四邊形 s面積 a底 h高 面積=底×高 s=ah 7 梯形 s面積 a上底 b下底 h高 面積=(上底+下底)×高÷2 s=(a+b)× h÷2 8 圓形 S面積 C周長 ∏ d=直徑 r=半徑 (1)周長=直徑×∏=2×∏×半徑 C=∏d=2∏r (2)面積=半徑×半徑×∏ 9 圓柱體 v:體積 h:高 s;底面積 r:底面半徑 c:底面周長 (1)側面積=底面周長×高 (2)表面積=側面積+底面積×2 (3)體積=底面積×高 (4)體積=側面積÷2×半徑 10 圓錐體 v:體積 h:高 s;底面積 r:底面半徑 體積=底面積×高÷3 總數÷總份數=平均數 和差問題的公式 (和+差)÷2=大數 (和-差)÷2=小數 和倍問題 和÷(倍數-1)=小數 小數×倍數=大數 (或者 和-小數=大數) 差倍問題 差÷(倍數-1)=小數 小數×倍數=大數 (或 小數+差=大數) 植樹問題 1 非封閉線路上的植樹問題主要可分為以下三種情形: ⑴如果在非封閉線路的兩端都要植樹,那麼: 株數=段數+1=全長÷株距-1 全長=株距×(株數-1) 株距=全長÷(株數-1) ⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼: 株數=段數=全長÷株距 全長=株距×株數 株距=全長÷株數 ⑶如果在非封閉線路的兩端都不要植樹,那麼: 株數=段數-1=全長÷株距-1 全長=株距×(株數+1) 株距=全長÷(株數+1) 2 封閉線路上的植樹問題的數量關系如下 株數=段數=全長÷株距 全長=株距×株數 株距=全長÷株數 盈虧問題 (盈+虧)÷兩次分配量之差=參加分配的份數 (大盈-小盈)÷兩次分配量之差=參加分配的份數 (大虧-小虧)÷兩次分配量之差=參加分配的份數 相遇問題 相遇路程=速度和×相遇時間 相遇時間=相遇路程÷速度和 速度和=相遇路程÷相遇時間 追及問題 追及距離=速度差×追及時間 追及時間=追及距離÷速度差 速度差=追及距離÷追及時間 流水問題 順流速度=靜水速度+水流速度 逆流速度=靜水速度-水流速度 靜水速度=(順流速度+逆流速度)÷2 水流速度=(順流速度-逆流速度)÷2 濃度問題 溶質的重量+溶劑的重量=溶液的重量 溶質的重量÷溶液的重量×100%=濃度 溶液的重量×濃度=溶質的重量 溶質的重量÷濃度=溶液的重量 利潤與折扣問題 利潤=售出價-成本 利潤率=利潤÷成本×100%=(售出價÷成本-1)×100% 漲跌金額=本金×漲跌百分比 折扣=實際售價÷原售價×100%(折扣<1) 利息=本金×利率×時間 稅後利息=本金×利率×時間×(1-20%) 長度單位換算 1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米 面積單位換算 1平方千米=100公頃 1公頃=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 體(容)積單位換算 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升 重量單位換算 1噸=1000 千克 1千克=1000克 1千克=1公斤 人民幣單位換算 1元=10角 1角=10分 1元=100分 時間單位換算 1世紀=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月 平年2月28天, 閏年2月29天 平年全年365天, 閏年全年366天 1日=24小時 1時=60分 1分=60秒 1時=3600秒 小學數學幾何形體周長 面積 體積計算公式 1、長方形的周長=(長+寬)×2 C=(a+b)×2 2、正方形的周長=邊長×4 C=4a 3、長方形的面積=長×寬 S=ab 4、正方形的面積=邊長×邊長 S=a.a= a 5、三角形的面積=底×高÷2 S=ah÷2 6、平行四邊形的面積=底×高 S=ah 7、梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2 8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2 9、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr 10、圓的面積=圓周率×半徑×半徑 定義定理公式 三角形的面積=底×高÷2。 公式 S= a×h÷2 正方形的面積=邊長×邊長 公式 S= a×a 長方形的面積=長×寬 公式 S= a×b 平行四邊形的面積=底×高 公式 S= a×h 梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2 內角和:三角形的內角和=180度。 長方體的體積=長×寬×高 公式:V=abh 長方體(或正方體)的體積=底面積×高 公式:V=abh 正方體的體積=棱長×棱長×棱長 公式:V=aaa 圓的周長=直徑×π 公式:L=πd=2πr 圓的面積=半徑×半徑×π 公式:S=πr2 圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh 圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2πr2 圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh 圓錐的體積=1/3底面×積高。公式:V=1/3Sh 分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。 分數的乘法則:用分子的積做分子,用分母的積做分母。 分數的除法則:除以一個數等於乘以這個數的倒數。 單位換算 (1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米 (2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 (3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米 (4)1噸=1000千克 1千克= 1000克= 1公斤 = 2市斤 (5)1公頃=10000平方米 1畝=666.666平方米 (6)1升=1立方分米=1000毫升 1毫升=1立方厘米 數量關系計算公式方面 1.單價×數量=總價 2.單產量×數量=總產量 3.速度×時間=路程 4.工效×時間=工作總量 小學數學定義定理公式(二) 一、算術方面 1.加法交換律:兩數相加交換加數的位置,和不變。 2.加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第 三個數相加,和不變。 3.乘法交換律:兩數相乘,交換因數的位置,積不變。 4.乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。 5.乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×5。 6.除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。0除以任何不是0的數都得0。 7.等式:等號左邊的數值與等號右邊的數值相等的式子叫做等式。等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。 8.方程式:含有未知數的等式叫方程式。 9.一元一次方程式:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。 學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。 10.分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。 11.分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。 12.分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。 13.分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。 14.分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。 15.分數除以整數(0除外),等於分數乘以這個整數的倒數。 16.真分數:分子比分母小的分數叫做真分數。 17.假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。 18.帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。 19.分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
2. 小學數學廣角知識整理
- 0 - 數學廣角 二上【搭配(一):簡單的排列組合思想、有序思想和邏輯推理能力】 教材97-99頁,例1要探索用非0的3個數字組成沒有重復數字的兩位數的個數,是排列問題。教材分兩個層次編排:第一個層次是找出所有滿足條件的兩位數,第二個層次是數出滿足條件的兩位數的個數。 例2緊密結合學生已有知識,讓學生從3個數中任取2個求和,確定得數的種類數。兩個數相加之和與數的位置無關,是組合問題。其編排層次有2個。第一層次是找出所有滿足條件的和,第二層次是數出滿足條件的和的個數。
3. 小學數學廣角有哪些
找規律
植樹問題
烙餅
原理
打電話
雞兔同籠
抽屜原理
4. 一至六年級所學過的數學廣角
一、雞兔同籠
雞兔同籠,是中國古代著名趣題之一,記載於《孫子算經》之中。雞兔同籠問題,是小學奧數的常見題型。許多小學算術應用題都可以轉化成這類問題,或者用解它的典型解法--"假設法"來求解。因此很有必要學會它的解法和思路。通常是假設法比較簡單易懂一點。
二、抽屜原理
抽屜原理的一般含義為:「如果每個抽屜代表一個集合,每一個蘋果就可以代表一個元素,假如有n+1個元素放到n個集合中去,其中必定有一個集合里至少有兩個元素。」 抽屜原理有時也被稱為鴿巢原理。它是組合數學中一個重要的原理。
三、分類
分類,是指按照種類、等級或性質分別歸類。
四、找規律
找規律是小學數學和中學數學教學的基本技能,目的是讓學生發現、經歷、探究圖形和數字簡單的排列規律,通過比較,從而理解並掌握找規律的方法,培養學生初步的觀察、操作、推理能力。
五、簡單的排列組合
排列和組合的思想方法不僅應用廣泛,而且是學生學習概率統計的知識基礎,同時也是發展學生抽象能力和邏輯思維能力的好素材,在滲透數學思想方法方面做了一些努力和探索,把重要的數學思想方法通過學生日常生活中最簡單的事例呈現出來。
六、邏輯推理
所謂演繹推理,就是從一般性的前提出發,通過推導即「演繹」,得出具體陳述或個別結論的過程。演繹推理的邏輯形式對於理性的重要意義在於,它對人的思維保持嚴密性、一貫性有著不可替代的校正作用。
七、重疊問題
日常生活或數學問題中,在把一些數據按照某個標准分類時,常常出現其中的一部分數據同時屬於兩種或兩種以上不同的類別,這樣在計算總數時就會出現重復計算的情況,這類問題就叫做重疊問題,解答重疊問題常用方法是:先不考慮重疊的情況,把有重復包含的幾個計數部分加起來,再從它們的和中排除重復部分元素的個數,使得計算的結果既無遺漏又不重復。這個原理叫做包含與排除原理,也叫容斥原理。
八、烙餅問題
通過討論烙餅時如何合理安排操作最節省時間,讓學生體會在解決問題中優化思想的利用。因為五年級的學生已經有了一定的解決問題的能力和基礎,可以說,在日常的學習生活中,學生能很容易找到解決問題的方法,而且還會找到解決問題的不同策略,但這里的關鍵是讓學生理解優化的思想,形成從多種方案中尋找最優方案的意識,提高學生的解決問題的能力。
九、植樹問題
為使其更直觀,用圖示法來說明。樹用點來表示,植樹的沿線用線來表示,這樣就把植樹問題轉化為一條非封閉或封閉的線上的「點數」與相鄰兩點間的線的段數之間的關系問題。
十、找次品
現實生活生產中的「次品」有許多種不同的情況,有的是外觀與合格品不同,有的是所用材料不符合標准等。這節課的學習中要找的次品是外觀與合格品完全相同,只是質量有所差異,且事先已經知道次品比合格品輕(或重),另外在所有待測物品中只有唯一的一個次品。