『壹』 極限思想在數學分析中的重要性有哪些
抽象問題具體化,復雜問題簡單化
『貳』 數學中的極限思想是一種哲學么
不知道樓主知不知道,牛逼的科學家們到最後都變成了哲學家;
有一句話叫什麼來著「任何專科學發展屬到最後都是哲學」;
數學極限思想是科學的一小部分,當然也可以作為哲學看待;
極限的思想演化為哲學思想的話可以看作事物在自然法則下的窮盡機制。
『叄』 如何在圓的面積教學中滲透極限思想
如果說數學起源於人類生存的需要,或者起源於人類理智探索真理的需要,那麼數學思想方法就是伴隨著數學的產生而產生,伴隨著數學的發展而發展的,它不僅是數學的精髓,也是數學教學的靈魂,更是體現數學本質的重要方面和評價數學教學的主要依據。因此,在小學數學教學過程中,加強數學思想方法的滲透,會有利於教師深刻地認識數學內容,有利於增強學生的數學觀念和數學意識,形成學生良好的思維品質。下面從教學過程的角度關注數學思想方法,來交流自己一些不成熟、不全面的認識和看法。
1.在知識的呈現過程中,適時滲透數學思想方法
對於數學而言,知識的發生過程,實際上也就是思想方法的發生過程。因此,象概念的形成過程、結論的推導過程、方法的思考過程、問題的發現過程、規律的被揭示過程等等,都蘊含著向學生滲透數學思想方法、訓練思維的極好機會。對於學生來說,最常見的困難之源是:一項工作、一個發現、一個規律、……很少以創始人當初所用的形式出現,它們已經被濃縮了,隱去了曲折、復雜的思維過程,呈現出整理加工的嚴密、抽象、精煉的結論,而導致其誕生的那些思想方法卻往往隱為內在形式,成為數學結構系統的具有潛在價值的「內河流」。我們教學工作的一項重要任務,就是揭開數學這種嚴謹、抽象的面紗,將發現過程中的活生生的教學「反樸歸真」地交給學生,讓學生親自參與「知識再發現」的過程,經歷探索過程的磨礪,汲取更多的思維營養。例如,在教學圓的面積時,先引導學生回憶以往在推導平行四邊形、三角形、梯形等圖形面積計算時的方法,再把圓轉化成長方形,進而推導出圓的面積計算公式。我們從方法人手,將待解決的問題,通過某種途徑進行轉化,歸納成已解決或易解決的問題,最終使原問題得到解決。這樣的教學活動讓學生經歷了知識的形成過程,滲透了化歸、極限的數學思想,為後繼學習起到了非常重要的作用。
2.在解題思路的探索中,恰當滲透數學思想方法
課堂教學中,學生是學習的主人。在學習過程中,要引導學生積極主動地參與,親自去發現問題、解決問題、掌握方法,其實,對於數學思想方法的學習也不例外,在數學教學中,解題思路的探索過程是最基本的活動形式之一,數學問題的解答過程是對數學思想方法親身體驗和獲得的過程,也是通過運用對其加深認識和理解的過程。例如,在解決「雞兔同籠」問題時,學生初讀題目,有些無從下手。這時就需要教師引導學生用容易探究的小數量代替《孫子算經》原題中的大數量讓學生探究整理,滲透了轉化的思想方法;用列表法解決問題,滲透了函數的思想方法;用算術法解決問題,滲透了假設的思想方法;用方程法解決問題,滲透了代數的思想方法;在梳理方法時,利用課件出示簡筆畫,幫助學生理解各種演算法等,滲透了數形結合的思想方法,這樣將數學思想方法的滲透和知識教學緊密地結合,幫助學生掌握正確的解題方法,提高發散思維能力。
3.在實際問題的解決中,靈活滲透數學思想方法
解題是數學的心臟,學生不僅通過解題掌握和鞏固數學基礎知識,而且由於數學解題重在解題的整個過程,所以還能培養和發展學生的數學能力,而教師應對學生的解題活動加以指導,不能為了解題而解題,而忽視對思維過程的展示,要在解題過程中揭示後續解題活動中解決類似問題的通用思想方法。因此,加強數學應用意識,鼓勵學生運用數學思想方法去分析解決生活實際問題,引導學生抽象、概括、建立數學模型,探求問題解決的方法,使學生把實際問題抽象成數學問題,在應用數學知識解決實際問題的過程中進一步滲透和領悟數學思想方法。例如,客車和貨車同時從甲、乙兩鎮的中點向相反的方向行駛。3小時後客車到達甲鎮,而貨車離乙鎮還有30千米。已知貨車的速度是客車的3/4,求甲、乙兩鎮相距多少千米?分析:由題意知,客車3小時行完全程一半,貨車3小時行完全程的一半少30千米。如設甲乙兩鎮相距z千米,依據「貨車的速度是客車的3/4」,可得方程:多數學生都選用了這種方法。教學時不能停留在此,繼續引導學生變換一種方式思考:將已知條件「貨車的速度是客車的3/4」改變一種敘述方式「貨車與客車的速度比是3:4」,因行車時間相同,所以貨車與客車所行路程比是3:4,即貨車行3份,客車行了4份,貨車比客車少行1份少行30千米,因此易知客車行了4份行了120千米,貨車行了90千米,甲乙兩鎮相距240千米。這樣,通過轉化,使學生體會到分數應用題也可採用整數解法,即可採用比例應用題的方法進行解答,從而鞏固與提高學生解答分數應用題的能力,更重要的是讓學生感受到轉化的方法能變繁為簡、化難為易,有助於培養思維的靈活性,克服思維的呆板性。實際上,在數學解題中經常用到的還有諸如數形結合、化歸、符號化等思想方法,恰當運用這些思想方法不僅能提高解題效率,還能激發學生強烈的求知慾與創造精神。
總之,在教學過程中,加強數學思想方法的滲透,在知識的呈現過程中,讓學生感知數學思想方法,在解題思路的探索中,讓學生感受數學思想方法,在實際問題的解決中,讓學生體驗數學思想方法,這不僅會提高學生的數學素養,還會為他們進一步學習數學打下扎實的基礎
『肆』 小數乘法的教學滲透了什麼數學思想
數混來合運算數四則運算綜合運用整源數四則混合運算運算順序運算律拓展應用教已整數四則混合運算運算順序運算律知識引導交流通遷移類推教思想讓自主發現數四則混合運算運算順序與整數四則混合運算運算順序相同運算律同同使用解決產實際問題
『伍』 2011版小學數學新課程標准極限思想是什麼意思
一、來理解新課標基本理念自,靈活運用教學方法。 二 把握新課程總體目標, 三 在教學中如何事實新課標,完成教學任務? 首先,遵循有效的教學活動是學生學與教師教的統一,學生是學習的主體,教師是學習的組織者、引導者與合作者的原則。
『陸』 數學思想的極限思想
極限思想是微來積分的基本思想,數源學分析中的一系列重要概念,如函數的連續性、導數以及定積分等等都是藉助於極限來定義的。如果要問:「數學分析是一門什麼學科?」那麼可以概括地說:「數學分析就是用極限思想來研究函數的一門學科」。
『柒』 極限思想是什麼
極限的思想是近代數學的一種重要思想,數學分析就是以極限概念為基礎、極限理論(包括級數)為主要工具來研究函數的一門學科。
『捌』 極限思想在數學分析中的重要性有哪些
極限的思想是近代數學的一種重要思想,數學分析就是以極限概念為內基礎、極限理容論(包括級數)為主要工具來研究函數的一門學科。所謂極限的思想,是指用極限概念分析問題和解決問題的一種數學思想。用極限思想解決問題的一般步驟可概括為:對於被考察的未知量,先設法構思一個與它有關的變數,確認這變數通過無限過程的結果就是所求的未知量;最後用極限計算來得到這結果。極限思想是微積分的基本思想,數學分析中的一系列重要概念,如函數的連續性、導數以及定積分等等都是藉助於極限來定義的。如果要問:「數學分析是一門什麼學科?」那麼可以概括地說:「數學分析就是用極限思想來研究函數的一門學科」。1) 運演算法則 2) 線性運算3) 非線性運算
『玖』 淺談小學數學如何滲透數學思想
一、「符號思想」的滲透。
「符號思想」是數學的基本思想。數學作為一種學科語言,是描述世界的工具,而符號能使數學研究對象更加具體、形象,能夠簡明地表示出事物的本質特徵與規律。符號的使用在很大程度上決定著數學的進展情況,同時它具有培養人們高度抽象思維的能力。比如:小學數學書中的「簡易方程」這一部分內容向學生提出用字母表示數,它的實質是一種抽象化。其目的是為了更深刻地探索、揭示數學規律,達到更准確、更簡潔地表達數學規律,在較大范圍內肯定數學規律的正確性。加法的交換律用a+b=b+a,圓面積用S=πr2表示等等。此外,用方程解法來解答應用題,解法的本身也蘊含著符號思想,它主要體現在如下幾個方面:(1)代數假設,用字母代替未知數,與已知數平等地參與運算;(2)代數翻譯,把題中自然語言表述的已知條件,譯成用符號化語言表述的方程。(3)解代數方程。把字母看成已知數,並進行四則運算,進而達到求解的目的。
可見,數學符號是貫穿於數學全部的支柱,數學符號凝結了特有的簡潔性、抽象性和概括性,所以相對來說難以掌握和使用。作為數學教師,深入了解數學符號的思想,研究數學符號的教學,對促進數學教學、提高其教學質量具有重要意義。
二、「化歸思想」的滲透。
「化歸思想」,也稱「轉化思想」,它是小學數學中最關鍵的數學思想之一,它往往根據學生已有的經驗,通過觀察、推想、類比等手段,把一個實際問題通過某種轉化,歸結為一個數學問題,把一個較復雜的問題轉化、歸結為一個較簡單的問題,直至轉化為已經解決或容易解決的問題。其基本形式有化生為熟、化難為易、化繁為簡、化整為零、化未知為已知、化一般為特殊、化抽象為具體等。給學生滲透這種思想,有利於提高學生的邏輯思維能力。
比如:在教學平面圖形的面積計算中,就以化歸思想、轉化思想等為理論依據,實現長方形、正方形、平行四邊形、三角形、梯形和圓形的面積計算公式間的同化和順應,從而構建和完善了學生對面積計算的認知結構。小數除法通過「商不變性質」化歸為除數是整數的除法;異分母分數加減法化歸為同分母分數加減法;異分母分數比較大小通過「通分」化歸為同分母分數比較大小等等。這些知識的學習都滲透著化歸思想。
三、「數形結合」思想的滲透。
「數形結合」,就是根據數與形之間的對應關系,通過數與形的相互轉化來解決數學問題的思想,「數形結合」的思想可以使某些抽象的數學問題直觀化、生動化,能夠變抽象思維為形象思維,有助於把握數學問題的本質。在小學教學中,它主要表現在把抽象的數量關系,轉化為適當的幾何圖形,從直觀圖形的特徵到發現數量之間存在的聯系,以達到化抽象為具體、化隱為顯的目的,使問題簡單、快捷地得以解決。
它可以藉助簡單的圖形、符號和文字所作的示意圖,促進學生形象思維和抽象思維的協調發展,溝通數學知識之間的聯系,從復雜的數量關系中凸顯最本質的特徵。例如,我們常用畫線段圖的方法來解答應用題,這是用圖形來代替數量關系的一種方法。我們又可以通過代數方法來研究幾何圖形的周長、面積、體積等,這些都體現了「數形結合」的思想。
四、「極限思想」的滲透
「極限思想」是一種重要的數學思想方法。靈活的藉助極限思想,可以使某些數學問題化難為易,避免一些復雜運算,探究出解題方向或轉化途徑。在進行「圓的面積計算公式」和「圓柱的體積計算公式」的推導過程中,均採用「化圓為方」、「變曲為直」極限分割思路。在「觀察有限分割」的基礎上,「想像無限細分」,根據圖形分割拼合的變化趨勢,想像它們的終極狀態。這樣不僅使學生掌握了圓的面積和圓柱體的體積的計算公式,而且非常自然地在「曲」與「直」的矛盾轉化中萌發了無限逼近的「極限思想」。
此外,現行小學教材中有許多處注意了極限思想的滲透。 在「自然數」、「奇數」、「偶數」這些概念教學時,教師可讓學生體會自然數是數不完的,奇數、偶數的個數有無限多個,讓學生初步體會「無限」思想;在循環小數這一部分內容中,1 ÷ 3 = 0.33…是一循環小數,它的小數點後面的數字是寫不完的,是無限的,而0.99……的極限就等於1;在直線、射線、平行線的教學時,可讓學生體會線的兩端是可以無限延長的。
五、「集合思想」的滲透。
四邊形
「集合思想」 是人類早期就有的思想方法,它將一組相關聯的對象放在一起,作為討論的范圍,繼而把一定程度上抽象的思維對象,有條理的列舉出來,讓人一目瞭然。例如:教學平行四邊形、長方形、正方形之後,使學生明確長方形是一種特殊的平行四邊形,正方形是一種特殊的長方形,用右圖來表示更形象。為加深學生對這集合圖的理解,再舉例說明:我們全校同學好比這個最大的圈,我們年級同學是全校的一部分,我們班的同學又是全年級的一部分,第一小組的同學是全班的一小部分,也就是裡面的最小一個小圈。要讓學生真正理解集合圖的含義,並學會應用。集合的數學思想方法在小學1~6年級各階段都有滲透。如數的整除中就滲透了子集和交集等數學思想。集合思想可使數學與邏輯更趨於統一,從而有利於數學理論與應用的研究。利用集合思想解決問題,可以防止在分類過程中出現重復和遺漏,使抽象的數學問題具體化。
『拾』 數學中的極限思想是一種哲學么
不知道樓主知不知道,牛逼的科學家們到最後都變成了哲學家;
有一句話叫什麼回來著「任答何科學發展到最後都是哲學」;
數學極限思想是科學的一小部分,當然也可以作為哲學看待;
極限的思想演化為哲學思想的話可以看作事物在自然法則下的窮盡機制。