導航:首頁 > 小學學科 > 20012小學數學奧林匹克競賽試題

20012小學數學奧林匹克競賽試題

發布時間:2020-12-09 11:53:25

小學六年級數學奧林匹克競賽題

.計算:
784070+78407.1+7840.72+784.073+78.407=( )
2.計算:
=( )
3.去年某校參加各種體育興趣小組的同學中,女生占總數的 ,今年全校的學生與去年一樣。為迎接2008年奧運會,全校今年參加各種體育興趣小組的學生增加了20%,其中女生占總數的 ,那麼女生參加各種體育興趣小組的人數比去年增加( )%。
4.大、小兩個正方形,已知它們的邊長之差為12厘米,面積之差為984平方厘米,那麼它們的面積之和為( )平方厘米。
5.有兩個自然數相除,商是17,余數是13,已知被除數、除數、商與余數之和為,則被除數是( )。
6.已知某足球教練與兩位足球隊員的年齡之和為100歲,12年後教練的年齡是這兩位隊員年齡之和,那麼教練今年的年齡是( ) 歲。
7.某班有30多個同學,在一次滿分為100分的數學考試中,小明得分是一個整數分,如果將小明的成績的十位數與個位數互換,而班上其餘同學的成績不變,則全班的平均分恰好比原來的平均分少了2分,那麼小明這次考試得了( )分。
8.有一項工程,甲單獨做需36天完成,乙單獨做需30天完成,丙單獨做需48天完成,現在由甲、乙、丙三人同時做,在工作期間,丙休息了整數天,而甲和乙一直工作至完成,最後完成這項工程也用了整數天,那麼丙休息了( )天。
9.某停車場中共有三輪農用車、四輪中巴車和六輪大卡車44輛,各種輪子共有171個,已知四輪中巴車比六輪大卡車的2倍少一輛,那麼這個停車場中共有( )輛三輪農用車。
10.一船從甲港順水而下行到乙港,馬上又從乙港逆水行回甲港,共用了8小時,已知順水每小時比逆水多行20千米,又知前4小時比後4小時多行60千米,那麼,甲、乙兩港相距( )千米。
11.袋子里紅球與白球數量之比是19∶13,放入若干紅球後,紅球與白球數量之比變為5∶3;再放入若干白球後,紅球與白球數量之比變為13∶11;已知放入的紅球比白球少80隻,那麼原先袋子里共有( )只球。
12.某市為合理用電,鼓勵各用戶安裝「峰谷」電表,該市原電價為每度0.53元,改裝新電表後,每天晚上10點至次日早上8點為「低谷」,每度收取0.28元,其餘時間為「高峰」,每度收取0.56元,為改裝新電表每個用戶需收取100元改裝費,假定某用戶每月用200度電,兩個不同時段的耗電量各為100度,那麼改裝電表12個月後,該用戶可節約( )元。
1998年小學數學奧林匹克競賽試卷
1.已知等式 ×(19.98-□× )×(0.75+ )=0,那麼式中□所表示的數是( )。

2.下面是一個乘法算式,每個□內填一個數字,那麼這個算式中的乘積應該是( )。
1□
× □□
□5□
□□□
□8□□

3.上圖中,大正方形的邊長為10厘米,連接大正方形的各邊中點得小正方形,將小正方形每邊三等分,再將三等分點與大正方形的中心和一個頂點相連(如圖),那麼圖中陰影部分的面積總和等於( )平方厘米。

4.由1,2,3,4四個數字組成的沒有重復數字的四位數共有24個,將它們從小到大排列起來,第18個數等於( )。

5.已知兩數互質,它們的和被5除餘1,它們的積是2924,那麼它們的差是( )。

6.如圖,正方形ACEF的邊界上有6個點A,B,C,D,E,F,其中B,D分別在邊AC,CE上,那麼,以這6個點中的三個點為頂點組成的不同的三角形的個數是( )。

7.在從1到1998的自然數中,能被37整除,但不能被2整除,也不能被3整除的數的個數等於( )。

8.小趙的電話號碼是一個五位數,它由五個不同的數字組成,小張說:「它是84261。」小王說:「它是26048。」小李說:「它是49280。」小趙說:「誰說的某一位上的數字與我的電話號碼上的同一位數字相同,就算誰猜對了這個數字,現在你們每人都猜對了位置不相鄰的2個數字。」這個電話號碼是( )。

9.某商品每件成本72元,原來按定價出售,每天可售出100件,每件利潤為成本的25%,後來按定價的90%出售,每天銷售量提高到原來的2.5倍,照這樣計算,每天的利潤比原來增加( )元。

10.甲、乙兩列火車的速度比是5∶4。乙車先發,從B站開往A站,當走到離B站72千米的地方時,甲車從A站發車往B站,兩列火車相遇的地方離A、B兩站距離的比是3∶4,那麼A、B兩站之間的距離為( )千米。

11.大小猴子共35隻,它們一起去採摘水蜜桃。猴王不在的時候,一個大猴子一小時可採摘15千克,一個小猴子一小時可採摘11千克;猴王在場監督的時候,每個猴子不論大小每小時都可以多採摘12千克。一天,採摘了8小時,其中只有第一小時和最後一小時有猴王在場監督,結果共採摘4400千克水蜜桃,那麼在這個猴群中,共有小猴子( )個。

12.某次數學競賽設一、二等獎,已知:(1)甲、乙兩校獲獎人數的比為6∶5;(2)甲、乙兩校獲二等獎的人數總和占兩校獲獎人數總和的60%;(3)甲、乙兩校獲二等獎的人數之比為5∶6;那麼甲校獲二等獎的人數占該校獲獎總人數的百分數等於( )。

⑵ 小學數學奧林匹克競賽解題方法大全這本書在哪買

中心書店

⑶ 第一屆華博士小學數學奧林匹克競賽試題(三年級)

分析如下,原題略:
1、(奇數位依次減3,偶數為一直為2)
2、(150×3-48)內÷2
3、(9行9列,容9×9=81)
4、(B=9,C=8)
5、(縱向2刀,橫向1刀)
6、(35÷4=8…3,4個數只能為8、9、9、9,排列有8999,9899,9989,9998四種)
7、(就以行看,每行2個,3×2=6)

8、(28+26+26=80)
9、(9÷1×(6+7)×(8-2)
10、(6+6÷3=8,先借1瓶,喝完再還,共9瓶)
11、(左右兩邊等於正方形邊長,左向上展開,右向下展開,都是8+6=14,所以總的周長為14+14=28)

在這串數中 到第40位時的總和是( )。
規律為199重復,40÷3=13…1,和為13×(1+9+9)+1=248

好累!樓主應加分!

⑷ 小學數學奧林匹克競賽試題與答案

1.一個三位數除以9餘7,除以5餘2,除以4餘3。這樣的三位數共有________個。

2.每千克價分別為2元、3元、2元4角、4元的桔子、蘋果、香蕉、柿子四種水果共買了83千克,用去228元。已知買桔子用去的前與買蘋果用去的錢一樣多,買柿子用去的錢是買香蕉所用的錢的2倍。那麼桔子買了________千克,蘋果買了________千克,香蕉買了________千克,柿子買了________千克。

3.稅法規定,一次性勞務收入若低於800原,免交所得稅。若超過800元,需教所得稅,具體標准為:800~2000的部分按10%計,2000~5000元部分按15%計,5000~10000元部分安20%計。某人一次勞務收入上稅1300元,他在這次勞務中稅後的凈收入為________元。

4.八進制加法是逢八進一,例如:13+6=21,77+4=103。在下面的八進制加法豎式中,a、b、c、d、e、f這六個數恰好由1、2、3、4、5、6這六個數組成,那麼滿足題中條件的加法式子共有________個。

5.下圖的正六邊形是由24個邊長為1的小等邊三角形組成的。在以格點為頂點、面積與陰影部分相同的三角形中,邊長都不是1的三角形共有________個。

6.1到2000這2000個數中,最大可取出________個數,使得這些數中任意三個數的和都不能被7整除。

7.某商品成本為每個80原,如果按每個100賣,可賣出1000個。當這種商品每個漲價1元,銷售量就減少20個。為了賺取最多的利潤,售價應定為每個________元。

8.一隻小蟲從A處爬到B處。如果它的速度每分增加1米,可提前15分到達。如果它的速度每分再增加2米,則又可提前15分到達。A處到B處之間的路程是________米。

9.甲瓶中酒精濃度為70%,乙瓶中酒精的濃度為60%,兩瓶酒精混合後的濃度為66%。如果兩瓶酒精各用去5升後再混合,則混合後的濃度為66.25%。問:原來甲、乙兩瓶酒精分別有________升與________升。

10.用1、2、3、4、5、6、7、8、9這9個數字排成一個最小的能被11整除的九位數,這個九位數是________。

11.把1~625這625個自然數按順時針方向依次排列成一個圓圈。從1開始順時針方向擦去1,保留2,再擦去3、4,保留5,擦去6,保留7,再擦去8、9,保留10……這樣擦去一個數,保留一個數,擦去兩個數,保留一個數;再擦去一個數,保留下一個數,擦去兩個數,保留一個數……一直轉圈擦下去,最後剩下的數是________。

12、一根鋼條截下全長的1/8,再接上15米,結果比原來的長度多1/2,求鋼條原來的長度?(接頭不計算)

13、食堂有大小兩堆煤,一共重24噸。大堆煤中用去1/4後,還比小堆煤多4噸。這兩堆煤原來各有多少噸?

⑸ 中國數學奧林匹克全國決賽

看了這個你就知道區別了

一、什麼是「奧數」?
1、「奧數」究竟學些什麼?
奧數」究竟是什麼?它和我們平時學的數學課有什麼區別和聯系?我想大多數的家長和老師都不一定很清楚,可能就覺得只有那些思路比較新、怪,難度比較大的所謂「難題」、「偏題」才是「奧數」。其實不然。
奧數仍然是屬於數學這一門學科,我想這是毫無疑問的。奧數中當然也有和我們平時所學的課堂上的數學相聯系的部分,是課堂內容的深化和提高;但是奧數中更多的是和課堂上的數學看起來不沾邊的內容,那麼這部分內容究竟是什麼,又來自於哪裡呢?
數學的范圍是極其廣泛的,世界上最權威的分類法大概把數學分成了幾十個大類,一百多個小類。我們從小學高年級的一元一次方程開始算起,一直到高中畢業,在七、八年的時間里,所涉及的數學類別也就是平面幾何、三角函數、線性方程(組)、解析幾何、立體幾何、集合論、不等式、數列等等。作為數學教育,當然應該以這些內容為主,因為它們是數學的核心方法和領域,但是這些內容就是連初等數學的范疇也沒有完全覆蓋。
那好了,什麼是奧數?其實就是我們平常數學課上所不講、也沒有時間去講的一些數學分支的基礎內容,比如圖論、組合數學、數論,以及重要的數學思想,比如構造思想、特殊化思想、化歸思想等等。這些內容的選擇是很科學的,因為這些領域的基本方法和簡單應用是不需要專門的數學工具的,而且帶有很強的趣味性和游戲性。這些方法對於培養學生的數學興趣,拓展它們的思維和知識面自然是很有幫助的。
順便說一句,其實奧數裡面,特別是中低年級奧數中,有很多內容是來自於中國古代數學專著的方法和思想,比如「盈虧問題」,比如「雞兔同籠」,還比如高年級或中學奧數中要介紹的「中國剩餘定理」等等。我認為這些方法看似簡單,但是其中的確凝聚了中國古代數學家的超凡智慧,並且與西方的數學方程思想很不一樣,獨辟蹊徑,自成一派。我想這也是中華優秀文化遺產的一部分,學習它自然是很有裨益的。
我們在「奧數」的教學實踐中,並不是一味的去追求難,追求怪,也一直是本著「打實基礎,靈活運用」的目的在操作,主要拓展學生的思維,加深它們對一些數學中看似不起眼的常識、小結論的認識,比如乘法分配律可以用來解決對角線垂直的任意四邊形面積問題,再比如等比數列求和與循環小數化分數的方法間其實存在著本質的聯系,並且裡面還涉及到了一點「構造」的思想等等,於平凡處見不平凡,化腐朽為神奇,讓學生在「我怎麼沒想到」的感嘆聲中不斷加深對數學的認識,在不知不覺中進步。
2、「奧數」適合什麼樣的學生學習?
在我看來,奧數主要是針對課堂上的數學學得相對比較扎實,學有餘力且又對於數學有著一定興趣的學生。
但同時也要看到,適合學奧數的學生之間也是有差別的,奧數學習也是必須要分層次、分難度,根據不同的學生安排不同的內容和難度,因人因地因時而宜的。我覺得難度的選擇,最好是以學生上課能聽懂,課下花點功夫就能基本掌握為准。另一方面,我也很不贊成本末倒置的做法,如果平時數學課上的內容暫時還都沒有學得比較好的話,那麼還是要以平時課堂的數學內容為主,要不然花時花力花錢還於事無補。
3、「奧數」不等於「提前學」
我看到網上有一篇名叫《小學奧數熱過了頭》的文章,作者是上海數學特級教師周繼光老師。在周老師看來,奧數好像就變成了是「提前學」的代名詞。他在該文章中這樣說道:最近筆者在書城的奧數「書海」中隨意買了一本《沖刺金牌——全國小學數學奧林匹克競賽最新優秀試題精選與題解》,它幾乎囊括了全國各地2000-2002年的小學數學競賽題。我從中找出38道有關幾何圖形的試題,全部做了一遍,發現竟有30道題要用到初二以上的知識,如勾股定理、根式運算、比例線段、等積變換等才能解決。另有七道題也要用到初預、初一的有關知識才能解決。只有一道題可用小學數學知識解決。書中的代數試題也有類似情況。試想一下,把這些題目讓一般的小學生去啃,不是為難他們嗎?如此不恰當的超前訓練不僅對學生的思維發展不利,而且會使絕大部分學生從此懼怕數學而遠離數學,甚至厭惡數學。沉重的心理壓力將會阻礙學生身心健康發展,對此不少老師與家長深為憂慮。
周老師以上這段話,我不敢苟同。首先,同底等高(或等底同高)的三角形面積相等這一點是小學四年級的內容,所謂的「等積變換」其實在小學奧數里也就是這么點內容,最多再深入一步,等高的三角形面積之比等於底之比,至於旋轉變換、反射變換等都是沒有的。比例也是小學的內容,當然上海小學的內容可能比別處少一些,因為它有個初中預科班,其實就相當於一般的小學六年級。全國小學數學競賽是不能因為上海的特殊情況而減少大綱內容的,如果周老師非把這部分內容也認為是初中的話,那這個問題就真的說不清楚了;其次,線段的比例自然也是小學的內容,只要不是涉及到相似三角形或平行線分線段成比例定理即可,就我的教學實踐來看,全國小學數學競賽的幾何題目基本上只要利用三角形面積的簡單變換就能解決,頂多加上一點簡單的一元一次方程或者字母表示數,這也都是小學五年級的內容。 至於勾股定理,一般只涉及到勾三股四弦五,並不要去真的計算什麼平方,即使計算也都是好數字,什麼根式運算是壓根就不會出現的。筆者曾經精選幾道競賽題寫過一篇文章《剖析小學幾何》,其中就介紹了華杯賽中的一些難題,也只要用到小學的知識,只不過靈活多了。
「提前學」好不好?我也認為不好,沒有必要。那麼奧數里究竟有沒有提前學的數學知識?有。不過占的比例很少,大部分奧數的內容我在本文的第一部分交待了,它和正統的數學課堂講的內容是沒有交集的,平時的數學課會講抽屜原理嗎?會講哥底斯堡七橋問題嗎?會講中國古代的「雞兔同籠」,「盈虧問題」嗎?不講。同時,我們在教學實踐中,一直是避免把初中的內容來講;什麼絕對值、實數、代數式(當然最基本的平方差、完全平方六年級下學期還是要教的)、嚴密的幾何論證等等都是不講的。六年級涉及到的一些證明問題,也都是一些染色問題、抽屜原則等等,並沒有提前涉及中學的幾何代數證明。
下面說說方程,就我和學生的接觸來看,大部分學生在小學學習字母表示數,一元一次方程的時候並沒有真正理解什麼是方程的思維方式。通過奧數的學習,他們認識上得到了提高,培養了良好的方程思維,也明白了列方程和解方程是完全可以分開的兩個數學思維活動過程。當然,小學奧數對方程的要求要比小學課本上稍多一些,六年級上學期要求一元一次方程的靈活運用,下學期要求簡單的二元一次方程組的求解,但是我們絕不會涉及到一元二次方程的求解和根式運算。
因此,奧數並不是「提前學」,更不是有些人說的「數學中的雜技」,它就是課堂外的數學,和課堂內的數學是主幹與支乾的關系,既是課堂的提高和深化,又是拓展視野的數學園地。所謂「提前學」帶給學生們的種種負擔與不良影響並不適用於「奧數」,至少是不適用於「奧數」中的絕大部分內容。

至於全國決賽的資格,一般都是你所在學校選拔優秀學生參加地方上的預賽,然後再繼續考試選拔最終代表本省/市參加全國決賽

⑹ 小學六年級數學奧林匹克競賽題的答案(要有步驟)

1.設784070=a,則

原式=a+[(a+1)/10]+[(a+2)/100]+[(a+3)/1000]

+(a/10000)=

(10000a+1000a+1000+100a+200+10a+30+a)/1000

0=

(11111a+1230)/10000

將a=784070代入,得

原式=871180.3

2.1、2、3、4在千位的數分別有6個

因為18=6*3

所以這個數是千位為3的最大數,即3421

3.條件不足,無法計算

4.設小正方形邊長為a厘米,則

(a+12)^2-a^2=984

24a+144=984

a=35

35+12=47(厘米)

35^2+47^2=3434(平方厘米)

5.設除數為a,則

13+17+17a+13+a=

18a=2070

a=115

被除數為:115*17+13=1968

6.設教練今年年齡為a歲,則

因為12年後教練年齡為兩隊員年齡和

所以兩隊員今年年齡和為:a+12-24=a-12(歲)

所以有:a+a-12=100

a=56

7.設小明得分十位數為a,個位數為b,全班x人,



原分數為(10a+b)分

改後分數為(10b+a)分

分差為10a+b-10b-a=9a-9b(分)

所以有:9a-9b=2x

9(a-b)=2x

因為2不為9的倍數

所以x為9的倍數

因為x是三十多

所以x只能為36

所以9(a-b)=72

a-b=8

因為a、b均為一位數,且b不為0(若為b=0,則

10b+a不為十位數)

所以只有a=9,b=1

所以小明考了91分。

8.設甲乙合作x天,丙工作y天,則

設總工作量為單位「1」,則

甲工作效率為:1/36

乙工作效率為:1/30

丙工作效率為:1/48

甲乙合作工作效率:(1/36)+(1/30)=11/180

有 (11/180)x+(1/48)y=1

44x+15y=720

y=(720-44x)/15

因為720-44x是15的倍數,720又是15的倍數,且

44不是5的倍數(y為整數)

所以x為15的倍數

因為y不小於0

所以x=15

所以y=(720-44*15)/15=4

15-4=11(天)

所以丙休息了11天。

9.設六輪車x輛,則四輪車為(2x-1)輛,三輪

車為(45-3x)輛[44-2x+1-x],則

3(45-3x)+6x+4(2x-1)=171

5x=40

x=8

四輪車有: 8*2-1=15(輛)

三輪車有:44-15-8=21(輛)

10.設船順水從甲港到乙港花t小時,船速為v千

米/小時,水速為a千米/小時,則

v+a-20=v-a

a=10

因為前4小時比後4小時多行60千米

假若剛好到乙港,相差應為20*4=80(千米)大

於60千米

所以前4小時一定已到乙港,並在返回的路上,



順流行了: t(v+10)千米

前4小時內返回了: (4-t)(v-10)千米

後4小時行了: 4(v-10)千米

則有

t(v+10)+(4-t)(v-10)-4(v-10)=60

tv+10t+4v+10t-tv-40-4v+40=60

20t=60

t=3

所以又有 3(v+10)=5(v-10)

v=40

40*3=120(千米)

⑺ 小學五年級數學奧林匹克競賽題

增加的面積是一個小正方形(邊長2分米)和兩個小長方形(寬是2分米,長是原正方形的邊長)
則:
20-2*2=16分米——兩個長方形面積和
16/2=8分米——一個長方形面積
8/2=4分米——長方形的長(即原正方形的邊長)
4*4=16平方分米

⑻ 六年級數學奧林匹克競賽題----------急需 懸賞20

學校把414本書分給三個班,是1 2 3 班
2和3班得到書的本數的比是5比7
1和2班得到書的本數的比是2比3
每個班各得回到書多少答本?

答案:1班90本
2班135本
3班189本

解題的過程
2X5=10 3X5=15 3X7=21 10+15+21=46
414X46分之10=90 414X46分之15=135 414X46分之21=189

閱讀全文

與20012小學數學奧林匹克競賽試題相關的資料

熱點內容
小學讀書計劃表格模板 瀏覽:342
小學語文四年級感嘆句 瀏覽:243
天通苑中山實驗小學 瀏覽:596
小學三年級語文補習班內容 瀏覽:921
吉安師范附屬小學作文 瀏覽:396
小學教師備課網站 瀏覽:1
私立美男學院 瀏覽:383
小學六年級上冊語文第六單元試卷涼州島 瀏覽:915
小學1年級手gong大全 瀏覽:459
小學生手抄報的圖片大全圖片大全 瀏覽:68
小學健康知識講座 瀏覽:120
小學畢業季適合發老師的句子 瀏覽:451
汕尾鳳山中心小學校長 瀏覽:606
小學生畢業匯演舞蹈 瀏覽:702
小學生抗擊疫情的表演 瀏覽:107
私立華聯大學本科 瀏覽:61
小學三年級作文我想謝謝你400 瀏覽:855
中小學生睡眠問題 瀏覽:174
小學生公共生活守規則教案 瀏覽:313
淮河私立學校 瀏覽:99