導航:首頁 > 小學學科 > 小學數學的基本結構

小學數學的基本結構

發布時間:2020-12-09 01:47:54

Ⅰ 小學5、6年級數學知識結構表

五年級上冊數學知識點
第一單元:《認識負數》

0即不是正數也不是負數,正數都大於0,負數都小於0。
第二單元:《多邊形面積的計算》
1、一個平行四邊形能分割成兩個完全相同的三角形;兩個完全相同的三角形能拼成一個平行四邊形。一個平行四邊形能分割成兩個完全相同的梯形;兩個完全相同的梯形可能拼成一個平行四邊形。等底等高的三角形的面積相等;一個三角形的面積是與它等底等高的平行四邊形面積的一半。

2、平行四邊形的面積 = 底×高 (用S表示平行四邊形的面積,用a和h分別表示平行四邊形的底和高,公式就可以寫作:S = a h)。

3、三角形的面積= 底×高÷2 (用S表示三角形的面積,用a和h分別表示三角形的底和高,公式就可以寫作: S = a h÷2)。

4、梯形的面積 = (上底+ 下底)×高÷2 (用S表示平行梯形的面積,用a 、b和h分別表示平行四邊形的上、下底和高,公式就可以寫作:S = (a + b ) h÷2)。
第三單元:《認識小數》

1、分母是10、100、1000……的分數都可以用小數表示,一位小數表示十分之幾、兩位小數表示百分之幾、三位小數表示千分之幾……
2、小數點右邊第一位是十分位,計數單位是十分之一(0.1);小數點右邊第二位是百分位,計數單位是百分之一(0.01);小數點右邊第三位是千分位,計數單位是千分之一(0.001); 每相鄰的兩個計數單位之間的進率都是10。

3、小數的末尾添上0或者去掉0,小數的大小不變,這是小數的性質。根據小數的性質,通常可以去掉小數末尾的0把小數化簡。
4、把一個數改寫成用「萬」作單位的數,只要在這個數萬位的右下角點上小數點,再在數的末尾添寫「萬」字。把一個數改寫成用「億」作單位的數,只要在這個數億位的右下角點上小數點,再在數的末尾添寫「億」字。
第四單元:《小數加法和減法》
1、小數加減法的計算方法:相同數位對齊;從最低位算起:各位滿十要進一;不夠減時要向前一位借10再減。
如:

2、整數加法的運算定律對小數同樣適用。
加法交換律:a+b=b+a
加法結合律:(a+b)+c=a+(b+c)
減法性質:a-b-c=a-(b+c)

第五單元:《找規律》

( )
( )
( )
第六單元:《解決問題的策略》
1、當長方形的周長不變時,長與寬長度相差的越大,這個長方形的面積就越小;長與寬長度相差的越小,這個長方形的面積就越大。
2、當長方形的面積不變時,長與寬長度相差的越大,這個長方形的周長就越長;長與寬長度相差的越小,這個長方形的周長就越短。
3、長方形的長 + 寬 = 長方形周長的一半
第七單元:《小數乘法和除法(一)》

1、把一個小數乘10、100、1000……只要把這個小數的小數點向右移動一位、兩位、三位……;把一個小數的小數點向右移動了一位、兩位、三位……這個小數就擴大了10倍、100倍、1000倍……。
2|、把一個小數除以10、100、1000 只要把這個小數的小數點向左移動一位、兩位、三位……;把一個小數的小數點向左移動了一位、兩位、三位……這個小數就縮小了10倍、100倍、1000倍……。
3、被除數不變,除數擴大(或縮小)幾倍,商就隨著縮小(或擴大)相同的倍數:除數不變,被除數擴大(或縮小)幾倍,商就隨著擴大(或縮小)相同的倍數。被除數與除數同時擴大(或縮小)相同的倍數,商不變。
第八單元:《公頃和平方千米》
測量和計算土地面積,通常用公頃作單位。邊長是100米的正方形土地,面積是1公頃(ha)。測量和計算大面積土地,通常用平方千米作單位。邊長是1000米的正方形土地,面積是1平方千米(km)。1公頃=10000平方米 ,1平方千米=1000000平方米=100公頃。
第九單元:《小數乘法和除法(二)》
1.小數乘法的計算演算法,按整數乘法的計算方法計算。

2.觀察因數中的小數位數共有幾位,就從積的右邊起數出相同的位數點上小數點。在積里點小數點時,位數不夠的,要在前面用0補足。如:

0 . 07 8 4
3、小數除法的計算方法,按商不變的原理把除數轉換成整數,再按整數除法的計算方法計算。
4、商的小數點要與被除數的小數點對齊;
5、有餘數可以根據小數的性質補零繼續除。
一個不是零的數乘一個小於1的數,得到的數會比原來小。例如:160×0.05=8 48×0.5=24 89×0.1=8.9 20×0.25=5
6、一個小數從小數部分的某一位起一個數字或者幾個數字依次不斷地重復出現這樣的小數叫做循環小數。依次不斷重復出現的一個數字或者幾個數字是這個循環小數的循環節。如:2.56565656.…..
第十單元:《統計》

合計 男 女
總 計 39 18 21
航模小組 14 8 6
民樂小組 8 3 5
書法小組 7 3 4
美術小組 10 4 6
六年級上冊數學知識點

χ第一單元:《方程》
1 aх±b=c 2 aх÷b=c 3 aх+ bх=c
如: 6х+5=23 2х÷5=4 2x+3x=10
解:6х+5-5=23-5 解:2х=4×5 解 5x=10
6х=18 2х=20 x=10÷5
Х=18÷6 х=20÷2 x=2
Х=3 х=10
4、用方程解應用題的關鍵是找出題中相等的數量關系。
如:大樹高64米,比小樹高度的2倍少22米,小樹高多少米?(小樹高度×2-22=大樹高度)
第二單元:《分數乘法、分數除法》
1、求幾個幾分之幾是多少,可以用加法或乘法計算。用乘法計算就是用整數分子與分子相乘,分母不變,結果能約分的要約分。
如:3個 是多少? ×3= + + = 或 ×3= =
2、求一個數的幾分之幾是多少,可以用乘法計算。分數乘分數就是用分子相乘的積作為分子,分母相乘的積作為分母,結果能約分的要約分。
如: 的 是多少? × = = =
3、乘積是1的兩個數互為倒數。如: 和 互為倒數,也可以說成 的倒數是 。 如: × =1
4、甲數除以乙數(0除外),等於甲數乘乙數的倒數。
如: ÷2= × = = =
5、分數的四則混合運算的運算順序與整數的四則混合運算的運算順序相同。
第三單元:《比》
1、比的意義 a:b 中的 「:」是比號,比號前面的數a叫做比的前項,比號後面的數b叫做比的後項。兩個數的比表示兩個數相除,比的前項除以比的後項所得的商叫比值。
如: 比 比值
3 : 5 =
比的前項 比的後項
2、兩個數的比可以寫成除法的形式,也可以寫成分數的形式。三者的聯系與區別如下表:

系 比 前項 比號 後項 比值 區
別 兩個數的關系
除法 被除數 除號 除數 商 一種運算
分數 分子 分數線 分母 分數值 一個數
3、比的基本性質。比的前項和後項同時乘以或除以相同的數(0除外),比值不變,這就是比的基本性質。
4、把不是整數比的比化成整數比,再把不是最簡整數比的化成最簡整數比,這就叫化簡比。如:
30:20=(30÷10):(20÷10) (除以最大公約數)
=3:2 (最簡整數比)
2.4:3.6=(2.4×5):(3.6×5) (把小數化成整數)
=12:18
=(12÷6):(18÷6) (除以最大公約數)
=2:3 (最簡整數比)
: = ×6: ×6 (乘以分母的最小公倍數)
=2:3 (最簡整數比)
第四單元:《百分數》
1、百分數的意義。表示一個數是另一個數的百分之幾的數,叫做百分數,百分數又叫做百分比或百分率,百分號為「%」。
如:32.5%讀作百分之三十二點五。
2、百分數與分數的區別:意義不同;記法不同;分數既可作分率,也可作量,而百分數是分率,不能作量,後面不能帶單位。
3、百分數、小數的互化。
百分數化為小數:去掉%號,將小數點向左移動兩位,如:78%=0.78
小數化為百分數:小數點向右移動兩位,在後面加上百分號,
如:1.02=102%
4、百分數、分數的互化。
分數化成百分數,用分子除以分母,得小數後,按小數化百分數的方法進行。如: =4÷5=0.8=80%
百分數化分數,寫成分數形式,再進行化簡,如:20%= =
5、求一個數是另一個數的百分之幾,如甲是30,乙是50,甲是乙的百分之幾?如:30÷50=0.6=60%
6、各種百分率的意義:
出勤率=出勤人數÷應出勤人數×100%
稻穀出米率=大米數量÷稻穀數量×100%
合格率=合格人數÷總人數×100%
第五單元:《替換和假設,就是把復雜問題變為簡單問題》
1、替換。如:鋼筆的價錢是鉛筆的3倍。
策略:把鋼筆換成3支鉛筆,或把3支鉛筆換成1支鋼筆
2、假設。如:蘋果每千克11元,梨每千克8元,共買了蘋果和梨11千克,一共用100元,各買了多少千克?
策略1:假設每千克梨也是11元,就有
11×11-100=21(元)
21÷(11-8)=7(千克)
策略2:假設每千克蘋果也是8元,就有
100-11×8=12(元)
12÷(11-8)=4(千克)
第六單元:《可能性》

第七單元:《空間與圖形》
1、長方體的特點:長方體有6個面,12條棱,8個頂點,相對應的面完全相同,相對的棱長度相等。從不同的角度觀察一個長方體,最多能同時看到3個面。

2、正方體的特點:正方體有6個面,12條棱,正方體的每個面都是完全相同的正方形,12條棱也相等。
3、表面積:長(正)方體6個面的總面積,叫做它的表面積。
(1)長方體(正方體)6個面的總面積,叫做它的表面積,表面積的單位是「平方」。
(2)長方體表面積=(長×寬+長×高+寬×高)×2
用字母表示 S=2(ab+ah+bh)
正方體表面積=棱長×棱長×6
用字母表示 S=6a²
4、 體積和容積
(1)、物體所佔空間的大小叫物體的體積。常用的體積單位有立方厘米(cm³)、立方分米(dm³)、立方米(m³)。1立方米=1000立方分米, 1立方分米=1000立方厘米。
(2)、容器所能容納物體的體積,叫做這個容器的容積。常用的容積單位有升、毫升。1升=1000毫升, 1立方分米=1升=1000毫升,1毫升=1立方厘米。
(3)、長方體的體積=長×寬×高
正方體的體積=棱長×棱長×棱長
長方體(正方體)的體積=底面積×高
(4)、長(正)方體容積的計算與體積求法相同,但長度要取內沿。

小學數學基本概念大全

統計概率與小學數學教學

北京師范大學教育學院 劉京莉

《全日制義務教育數學課程標准》(實驗稿)中較大幅度地增加了「統計與概率」的內容。因為在信息社會,收集、整理、描述、展示和解釋數據,根據情報作出決定和預測,已成為公民日益重要的技能。因此小學數學加入這部分內容是完全必要的,本文將探討的問題是小學教師應明確哪些基本概念,使教學既具有科學性同時又符合學生的認知特點;如何使學生在形成和解決現實世界問題的過程中,發展統計意識、發展用統計的方法解釋數據、表達及交流信息的能力,以及用多種方式來收集、整理和展示他們的思考的能力;統計與概率與小學其它部分的內容是如何聯系的。

一、基本概念

1.描述統計。

通過調查、試驗獲得大量數據,用歸組、製表、繪圖等統計方法對其進行歸納、整理,以直觀形象的形式反映其分布特徵的方法,如:小學數學中的製表、條形統計圖、折線統計圖、扇形統計圖等都是描述統計。另外計算集中量所反映的一組數據的集中趨勢,如算術平均數、中位數、總數、加權算術平均數等,也屬於描述統計的范圍。其目的是將大量零散的、雜亂無序的數字資料進行整理、歸納、簡縮、概括,使事物的全貌及其分布特徵清晰、明確地顯現出來。

2.概率的統計定義。

人們在拋擲一枚硬幣時,究竟會出現什麼樣的結果事先是不能確定的,但是當我們在相同的條件下,大量重復地拋擲同一枚均勻硬幣時,就會發現「出現正面」或「出現反面」的次數大約各占總拋擲次數的: 左右。這里的「大量重復」是指多少次呢?歷史上不少統計學家,例如皮爾遜等人作過成千上萬次拋擲硬幣的試驗,其試驗記錄如下:

可以看出,隨著試驗次數的增加,出現正面的頻率波動越來越小,頻率在0.5這個定值附近擺動的性質是出現正面這一現象的內在必然性規律的表現,0.5恰恰就是刻畫出現正面可能性大小的數值,0.5就是拋擲硬幣時出現正面的概率。這就是概率統計定義的思想,這一思想也給出了在實際問題中估算概率的近似值的方法,當試驗次數足夠大時,可將頻率作為概率的近似值。

例如100粒種子平均來說大約有90粒種子發芽,則我們說種子的發芽率為90%;

某類產品平均每1000件產品中大約有10件廢品,則我們說該產品的廢品率為1%。在小學數學中用概率的統計定義,一般求得的是概率的近似值,特別是次數不夠大時,這個概率的近似值存在著一定的誤差。例如:某地區30年來的10月6日的天氣記錄里有25次是秋高氣爽、晴空萬里,問下一年的10月6日是晴天的概率是多少?

因為前30年出現晴天的頻率為0.83,所以概率大約是0.83。

3.概率的古典定義。

對某一類特殊的試驗,還可以從另一個角度求它的概率。拋擲一枚硬幣時,試驗的結果有2種:出現正面、出現反面;由於硬幣是均勻的,通過直觀分析可以看出出現正面和反面的可能性相同,都是。進一步研究:

某試驗具有以下性質

(1)試驗的結果是有限個(n個)

(2)每個結果出現的可能性是相同的 (硬幣、骰子是均勻的,拋擲時出現每一面的可能性都相同)

如果事件A是由上述n個結果中的m個組成,則稱事件A發生的概率為m/n。

例:擲一顆均勻的骰子,求出現2點的概率。

由於這個試驗滿足概率的古典定義的兩個條件,且n=6,m=1,∴出現2點的概率是。

又:求出現偶數點的概率?出現偶數點這一事件包含3個結果,2點、 4點、6點。m=3

出現偶數點的概率是,即。

概率的古典定義不用大量地去試驗,只要試驗的結果為等可能的有限個的情況,通過分析找出m、n,其概率就可以求出了,其優點是便於計算,但概率的古典定義不如概率的統計定義適用面廣,如拋擲一個酒瓶蓋子時,就不滿足出現每一面的可能性都相同的條件,因此出現正面的概率就不能用概率的古典定義去求,而要用統計定義去近似地求它的概率。

在小學數學的教學中,根據小學生的認知水平,應避免學習過多或艱深的術語,從小學低年級開始應該非形式地介紹概率思想,而非嚴格的定義、單純的計算,因此,在小學經常用「可能性」來代替「概率」這個概念。但作為教師應該懂得它的意義,否則就會出笑話。有的教師讓學生在課上做 20次拋擲硬幣的試驗,希望學生能得到出現正面的可能性是,因為拋擲的次數少,所以要得出10次正面,是很難做到的,概率的統計定義一般得出的是概率的近似值。

二、在學習統計與概率的過程中發展學生的能力

統計的內容是用數字描述和解釋我們周圍的世界,應結合學生生活的實際,如:可以設計成一個活動,使學生主動地投入其中;提出關鍵的問題;搜集和整理數據;應用圖表來表示數據;分析數據;作出推測,並用一種別人信服的方式交流信息。同時體會對數據的收集、處理會獲得某些新的信息。

例如:組織一次班會活動,目的是增進同學之間的互相了解和交流。首先讓學生們自己選題,希望了解哪些信息:「同學們每天怎麼來上學?」;「每個月都有多少同學過生日?」;「同學們喜歡讀哪類圖書?」;「同學們的愛好是什麼?」;「我們最喜愛的運動」;「我們最喜愛的動物」…然後學生們分組去調查收集數據,用表格歸納整理,並且製成各種統計圖:如:

從統計圖可以知道,喜歡動物故事的同學最多,根據這個統計結果,班裡可以組織一個動物研究會,辦一個動物圖片展覽,到野生動物園去參觀等。全班同學還可以把各種圖表製成牆報、手抄報把自己的班級介紹給全校其他同學等。

三、統計、概率與小學其它內容的聯系

例1

上面各圖中表示黑色區域的分數分別為;;;,小學生即使沒有學習幾何圖形的概念也可以通過分數的意義知道2號黑色區域最容易投中,因為根據分數的意義它占總面積的比最大,為。

例2

從紅球所佔的比例來看,1號袋為; 2號袋為;3號袋為擊,因此相比之下,1號袋最容易抽出紅球。

例3下面是用扇形統計圖統計的資料

對小學生來講,扇形統計圖的難點在於不同的圓心角所代表的部分的百分數表示及百分數表示的圓心角的度數,而對於—上面圖中有特殊圓心角時,可避開圓心角,用分數、百分數的意義得出喜歡英語課的,科學課的,數學課的;參加球類興趣小組的有50%;參加樂隊的18%。

從上面的例子可以看出,統計與概率可以為發展和運用比、分數、百分數和小數這些概念提供背景。因此我們可以用建構的方式,建立這部分內容與小學其它知識的聯系和建構有意義的認知結構,從而更深入、更靈活地學習。

總之,在小學,統計與概率的教學既要具有科學性又要符合小學生的認知特點,同時,它還是解決問題的有力工具,它也是架起與其它內容之間的橋梁。

和差問題

已知兩個數的和與差,求這兩個數的應用題,叫做和差問題。一般關系式有:

(和-差)÷2=較小數

(和+差)÷2=較大數

例:甲乙兩數的和是24,甲數比乙數少4,求甲乙兩數各是多少?

(24+4)÷2

=28÷2

=14 →乙數

(24-4)÷2

=20÷2

=10 →甲數

答:甲數是10,乙數是14。

差倍問題

已知兩個數的差及兩個數的倍數關系,求這兩個數的應用題,叫做差倍問題。基本關系式是:

兩數差÷倍數差=較小數

例:有兩堆煤,第二堆比第一堆多40噸,如果從第二堆中拿出5噸煤給第一堆,這時第二堆煤的重量正好是第一堆的3倍。原來兩堆煤各有多少噸?

分析:原來第二堆煤比第一堆多40噸,給了第一堆5噸後,第二堆煤比第一堆就只多40-5×2噸,由基本關系式列式是:

(40-5×2)÷(3-1)-5

=(40-10)÷2-5

=30÷2-5

=15-5

=10(噸) →第一堆煤的重量

10+40=50(噸) →第二堆煤的重量

答:第一堆煤有10噸,第二堆煤有50噸。

還原問題

已知一個數經過某些變化後的結果,要求原來的未知數的問題,一般叫做還原問題。

還原問題是逆解應用題。一般根據加、減法,乘、除法的互逆運算的關系。由題目所敘述的的順序,倒過來逆順序的思考,從最後一個已知條件出發,逆推而上,求得結果。

例:倉庫里有一些大米,第一天售出的重量比總數的一半少12噸。第二天售出的重量,比剩下的一半少12噸,結果還剩下19噸,這個倉庫原來有大米多少噸?

分析:如果第二天剛好售出剩下的一半,就應是19+12噸。第一天售出以後,剩下的噸數是(19+12)×2噸。以下類推。

列式:[(19+12)×2-12]×2

=[31×2-12]×2

=[62-12]×2

=50×2

=100(噸)

答:這個倉庫原來有大米100噸。

置換問題

題中有二個未知數,常常把其中一個未知數暫時當作另一個未知數,然後根據已知條件進行假設性的運算。其結果往往與條件不符合,再加以適當的調整,從而求出結果。

例:一個集郵愛好者買了10分和20分的郵票共100張,總值18元8角。這個集郵愛好者買這兩種郵票各多少張?

分析:先假定買來的100張郵票全部是20分一張的,那麼總值應是20×100=2000(分),比原來的總值多2000-1880=120(分)。而這個多的120分,是把10分一張的看作是20分一張的,每張多算20-10=10(分),如此可以求出10分一張的有多少張。

列式:(2000-1880)÷(20-10)

=120÷10

=12(張)→10分一張的張數

100-12=88(張)→20分一張的張數

或是先求出20分一張的張數,再求出10分一張的張數,方法同上,注意總值比原來的總值少。

盈虧問題(盈不足問題)

題目中往往有兩種分配方案,每種分配方案的結果會出現多(盈)或少(虧)的情況,通常把這類問題,叫做盈虧問題(也叫做盈不足問題)。

解答這類問題時,應該先將兩種分配方案進行比較,求出由於每份數的變化所引起的余數的變化,從中求出參加分配的總份數,然後根據題意,求出被分配物品的數量。其計算方法是:

當一次有餘數,另一次不足時:

每份數=(余數+不足數)÷兩次每份數的差

當兩次都有餘數時:

總份數=(較大余數-較小數)÷兩次每份數的差

當兩次都不足時:

總份數=(較大不足數-較小不足數)÷兩次每份數的差

例1、解放軍某部的一個班,參加植樹造林活動。如果每人栽5棵樹苗,還剩下14棵樹苗;如果每人栽7棵,就差4棵樹苗。求這個班有多少人?一共有多少棵樹苗?

分析:由條件可知,這道題屬第一種情況。

列式:(14+4)÷(7-5)

=18÷2

= 9(人)

5×9+14

=45+14

=59(棵)

或:7×9-4

=63-4

=59(棵)

答:這個班有9人,一共有樹苗59棵。

年齡問題

年齡問題的主要特點是兩人的年齡差不變,而倍數差卻發生變化。

常用的計算公式是:

成倍時小的年齡=大小年齡之差÷(倍數-1)

幾年前的年齡=小的現年-成倍數時小的年齡

幾年後的年齡=成倍時小的年齡-小的現在年齡

例1、父親今年54歲,兒子今年12歲。幾年後父親的年齡是兒子年齡的4倍?

(54-12)÷(4-1)

=42÷3

=14(歲)→兒子幾年後的年齡

14-12=2(年)→2年後

答:2年後父親的年齡是兒子的4倍。

例2、父親今年的年齡是54歲,兒子今年有12歲。幾年前父親的年齡是兒子年齡的7倍?

(54-12)÷(7-1)

=42÷6

=7(歲)→兒子幾年前的年齡

12-7=5(年)→5年前

答:5年前父親的年齡是兒子的7倍。

例3、王剛父母今年的年齡和是148歲,父親年齡的3倍與母親年齡的差比年齡和多4歲。王剛父母親今年的年齡各是多少歲?

(148×2+4)÷(3+1)

=300÷4

=75(歲)→父親的年齡

148-75=73(歲)→母親的年齡

答:王剛的父親今年75歲,母親今年73歲。

或:(148+2)÷2

=150÷2

=75(歲)

75-2=73(歲)

雞兔問題

已知雞兔的總只數和總足數,求雞兔各有多少只的一類應用題,叫做雞兔問題,也叫「龜鶴問題」、「置換問題」。

一般先假設都是雞(或兔),然後以兔(或雞)置換雞(或兔)。常用的基本公式有:

(總足數-雞足數×總只數)÷每隻雞兔足數的差=兔數

(兔足數×總只數-總足數)÷每隻雞兔足數的差=雞數

例:雞兔同籠共有24隻。有64條腿。求籠中的雞和兔各有多少只?

3k W UEw9I0

R,@ F/|1V7YWd-r0

Gb(e(o/X3QE&dL$Z0 鳳凰博客h7IM?pJ'u7NV

'IG\ rf Y E0
(64-2×24)÷(4-2)

=(64-48)÷(4-2)

=16 ÷2

=8(只)→兔的只數

24-8=16(只)→雞的只數

答:籠中的兔有8隻,雞有16隻

鳳凰博客3@8Zp|S5|+U



牛吃草問題(船漏水問題)

若干頭牛在一片有限范圍內的草地上吃草。牛一邊吃草,草地上一邊長草。當增加(或減少)牛的數量時,這片草地上的草經過多少時間就剛好吃完呢?

例1、一片草地,可供15頭牛吃10天,而供25頭牛吃,可吃5天。如果青草每天生長速度一樣,那麼這片草地若供10頭牛吃,可以吃幾天?

分析:一般把1頭牛每天的吃草量看作每份數,那麼15頭牛吃10天,其中就有草地上原有的草,加上這片草地10天長出草,以下類推……其中可以發現25頭牛5天的吃草量比15頭牛10天的吃草量要少。原因是因為其一,用的時間少;其二,對應的長出來的草也少。這個差就是這片草地5天長出來的草。每天長出來的草可供5頭牛吃一天。如此當供10牛吃時,拿出5頭牛專門吃每天長出來的草,餘下的牛吃草地上原有的草。

(15×10-25×5)÷(10-5)

=(150-125)÷(10-5)

=25÷5

=5(頭)→可供5頭牛吃一天。

150-10×5

=150-50

=100(頭)→草地上原有的草可供100頭牛吃一天

100÷(10-5)

=100÷5

=20(天)

答:若供10頭牛吃,可以吃20天。

例2、一口井勻速往上涌水,用4部抽水機100分鍾可以抽干;若用6部同樣的抽水機則50分鍾可以抽干。現在用7部同樣的抽水機,多少分鍾可以抽干這口井裡的水?

(100×4-50×6)÷(100-50)

=(400-300)÷(100-50)

=100÷50

=2

400-100×2

=400-200

=200

200÷(7-2)

=200÷5

=40(分)

答:用7部同樣的抽水機,40分鍾可以抽干這口井裡的水。

公約數、公倍數問題

運用最大公約數或最小公倍數解答應用題,叫做公約數、公倍數問題。

例1:一塊長方體木料,長2.5米,寬1.75米,厚0.75米。如果把這塊木料鋸成同樣大小的正方體木塊,不準有剩餘,而且每塊的體積盡可能的大,那麼,正方體木塊的棱長是多少?共鋸了多少塊?

分析:2.5=250厘米

1.75=175厘米

0.75=75厘米

其中250、175、75的最大公約數是25,所以正方體的棱長是25厘米。

(250÷25)×(175÷25)×(75÷25)

=10×7×3

=210(塊)

答:正方體的棱長是25厘米,共鋸了210塊。

例2、兩嚙合齒輪,一個有24個齒,另一個有40個齒,求某一對齒從第一次接觸到第二次接觸,每個齒輪至少要轉多少周?

分析:因為24和40的最小公倍數是120,也就是兩個齒輪都轉120個齒時,第一次接觸的一對齒,剛好第二次接觸。

120÷24=5(周)

120÷40=3(周)

答:每個齒輪分別要轉5周、3周。

分數應用題

指用分數計算來解答的應用題,叫做分數應用題,也叫分數問題。

分數應用題一般分為三類:

1.求一個數是另一個數的幾分之幾。

2.求一個數的幾分之幾是多少。

3.已知一個數的幾分之幾是多少,求這個數。

其中每一類別又分為二種,其一:一般分數應用題;其二:較復雜的分數應用題。

例1:育才小學有學生1000人,其中三好學生250人。三好學生佔全校學生的幾分之幾?

答:三好學生佔全校學生的。

例2:一堆煤有180噸,運走了。走了多少噸?

180×=80(噸)

答:運走了80噸。

例3:某農機廠去年生產農機1800台,今年計劃比去年增加。今年計劃生產多少台?

1800×(1+)

=1800×

=2400(台)

答:今年計劃生產2400台。

例4:修一條長2400米的公路,第一天修完全長的,第二天修完餘下的。還剩下多少米?

2400×(1-)×(1-)

=2400××

=1200(米)

答:還剩下1200米。

例5:一個學校有三好學生168人,佔全校學生人數的。全校有學生多少人?

168÷=840(人)

答:全校有學生840人。

例6:甲庫存糧120噸,比乙庫的存糧少。乙庫存糧多少噸?

120÷=120×=180(噸)

答:乙庫存糧180噸。

例7:一堆煤,第一次運走全部的,第二次運走全部的,第二次比第一次少運8噸。這堆煤原有多少噸?

8÷(-)

= 8÷

=48(噸)

答:這堆煤原有48噸。

工程問題

它是分數應用題的一個特例。是已知工作量、工作時間和工作效率,三個量中的兩個求第三個量的問題。

解答工程問題時,一般要把全部工程看作「1」,然後根據下面的數量關系進行解答:

6q1U]7in!S7x0
鳳凰博客tr IJ0OYWV

P tAd)J.IH0
&h|il)t&ZS6h&kC0
nVg2v IdgI0
工作效率×工作時間=工作量

'F5q/f,z5b@y0
工作量÷工作時間=工作效率

鳳凰博客q!q1Nc3E-n`a9[Q$M

工作量÷工作效率=工作時間

鳳凰博客9FA*o d#`7I!l

例1:一項工程,甲隊單獨做需要18天,乙隊單獨做需要24天。如果兩隊合作8天後,餘下的工程由甲隊單獨做,還要幾天完成?

N W5l,VjH`|0
鳳凰博客+ZO'R HhI

鳳凰博客hq$TU!bO$rEQ
鳳凰博客6O]p/ZV2wc
[1-()×8]÷
,l!l9zI"b&W0
=[1-]÷

=×18

=4(天)

答:(略)。

鳳凰博客1Q0RO&]%owG

例2:一個水池,裝有甲、乙兩個進水管,一個出水管。單開甲管2小時可以注滿;單開乙管3小時可以注滿;單開出水管6小時可以放完。現在三管在池空時齊開,多少小時可以把水池注滿?

|5W.WuC3p0
鳳凰博客 SX}9q7|f

鳳凰博客UO`8_%F(u8Br

"[6Xr3MHv)I0 1÷(+-) 鳳凰博客I@ ?b&W+CD

=1÷

=1(小時)

答:(略)

鳳凰博客o Sj4ON:}2\/a+N

百分數應用題

這類應用題與分數應用題的解答方式大致相同,僅求「率」時,表達方式不同,意義不同。

例1.某農科所進行發芽試驗,種下250粒種子。發芽的有230粒。求發芽率。

答:發芽率為92%。

1、長方形的周長=(長+寬)×2 C=(a+b)×2
2、正方形的周長=邊長×4 C=4a
3、長方形的面積=長×寬 S=ab
4、正方形的面積=邊長×邊長 S=a.a= a
5、三角形的面積=底×高÷2 S=ah÷2
6、平行四邊形的面積=底×高 S=ah
7、梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2
8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2
9、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr
10、圓的面積=圓周率×半徑×半徑 Ѕ=πr
11、長方體的表面積=(長×寬+長×高+寬×高)×2
12、長方體的體積 =長×寬×高 V =abh
13、正方體的表面積=棱長×棱長×6 S =6a
14、正方體的體積=棱長×棱長×棱長 V=a.a.a= a
15、圓柱的側面積=底面圓的周長×高 S=ch
16、圓柱的表面積=上下底面面積+側面積
S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch
17、圓柱的體積=底面積×高 V=Sh
V=πr h=π(d÷2) h=π(C÷2÷π) h
18、圓錐的體積=底面積×高÷3
V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3
19、長方體(正方體、圓柱體)的體
1、 每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數
2、 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數
3、 速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、 單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率
6、 加數+加數=和 和-一個加數=另一個加數
7、 被減數-減數=差 被減數-差=減數 差+減數=被減數
8、 因數×因數=積 積÷一個因數=另一個因數
9、 被除數÷除數=商 被除數÷商=除數 商×除數=被除數
小學數學圖形計算公式
1 、正方形 C周長 S面積 a邊長 周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a
2 、正方體 V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a
3 、長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 、長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
植樹問題
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
時間單位換算
1世紀=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 閏年2月29天
平年全年365天, 閏年全年366天
1日=24小時 1時=60分
1分=60秒 1時=3600秒積=底面積×高 V=Sh

Ⅲ 搜集分析一套小學數學教材或中學物理教材的結構

中學物理教材的結構

教材結構主要是教材的知識結構。一般情況下,這種知識結構還可以按層次不同分為主結構、亞結構和微結構。主結構是指由教材自成體系的或相對獨立的「知識群」(如力、熱、電等)在教材中的排列順序構成。「知識群」的不同排列,就構成了不同風格的教材體系。一般情況下,「知識群」排列分以下四種情況:

A.知識群由易到難排列;

B.知識群由物理學科本身結構排列;

C.知識群按學生心理發展順序進行排列;

D.知識群按社會需要進行排列。

如我國1978年的初中物理教材體系為:「力—熱—電—磁—光」的順序排列。當然,如果兩本初中物理教材的主結構相同,但其知識群內的亞結構排列不一定相同,這樣仍能形成不同風格的物理教材。而實際教材的體系一方面反映了知識群或知識群內的各知識點的排列關系,另一方面卻又反映了編教材時社會的政治、經濟和科學技術發展的需要。如1952年的初中物理教材的主結構為「力—聲—熱—聲—光—電—磁」,這就反映了當時學習蘇聯的政治風氣,教材結構幾乎照搬蘇聯物理教材的格式。

總的來說,不同知識群的排列構成教材的主結構,並不是隨意的,而是有一定的社會原因,其與教育目的有密切的聯系。不同知識塊(如章)的排列形成亞結構,不同知識點(節或節以下的具體材料)的排列生成微結構。本節內容僅從主結構上做一些粗淺的討論。

1.中學物理教材主結構概貌

(1)初中物理教材主結構概貌。

建國以來,由人民教育出版社編印的七套初中物理教材,其主結構如下:

表2-19 中學物理(初中)教材主結構統計表

序號
出版時間
書名
主結構

1
1950年
實用物理
力—熱—聲—光—磁—電

2
1952年
初中物理
力—聲—熱—聲—光—電—磁

3
1956年
初中物理
力—聲—熱—力—熱—電—磁—光

4
1961年
初中物理
力—聲—熱—光—電—磁

5
1963年
初中物理
力—聲—光—熱—電—磁

6
1978年
初中物理
力—熱—電—磁—光

7
1987年
初中物理
力—光—熱—電—磁

(2)高中物理教材主結構概貌。

高中物理教材的主結構變化不像初中物理教材那麼頻繁。建國以後,人民教育出版社發行的七套全國統編教材,其主結構全部採用「力學—熱學—電學—光學—原子物理學」,形成了一定的體系,說明我國高中物理教材已經形成自己的特色,反映了這種結構的科學性及其發展的趨勢。

從我國不同時期的高中物理教材的主結構看,建國前主要以「力學—熱學—聲學—光學—磁學—電學」為主。隨著物理學的發展,迫切需要對物理教材充實新的物理知識,因而在建國後,自然地增加「原子物理學」內容。從建國前後的高中物理教材的主結構發現,雖然結構上有一定的變化,但是「力學—熱學」不但相對位置不變,而且在整個教材體系中被一直保留下來,表現出教材主結構的繼承性。

2.高中物理教材的亞結構

七套高中物理教材的亞結構情況是:

(1)力學部分:其亞結構形式多種多樣,還未形成一定的、比較穩固的體系。1950年版、1956年版和1963年版是以「運動」開始,到了1980年版以後,逐漸轉向以「力」的概念開始,說明這部分內容是以力的概念為基礎展開,同時也表明這種趨勢是力學部分的亞結構經過多次變動後的一種穩定。

(2)熱學部分:本部分是以「熱學—內能、能的轉化和守恆定律—物體的性質—物態變化」形式為其主流。

(3)電磁部分:除1950年版外,其亞結構都為「電學—穩恆電流—物質的導電性—磁學—電磁感應—交流電—電磁振盪和電磁波」。表現出穩定的結構體系。40年代之前高中物理教材多數把電學和磁學分開。隨著物理學本身的發展,麥克斯韋電磁理論的建立,電磁相互作用的統一,電學和磁學被歸結為同一「知識群」,其結構也由原來的「磁學—電學」變為「電學—磁學—電磁感應」。

(4)光學:除1979年版外,其餘各版的亞結構都為「光學—光的波動性—光的粒子性」,具有一定的穩定性。

(5)原子物理學:除1950年版外,其餘都為「原子結構—原子核」,具有很強的穩定性。

由上分析可知,建國以來,中學物理教材體系高中物理基本上是穩的,而初中的變化就比較明顯,尤其是1986年以後,初中物理教材出現了「一綱多本」的趨勢,仔細分析這「一綱多本」的教材,實際上各種體系變化只是稍有不同,內容基本上符合九年義務制教育物理課程。物理教材結構基本上還是以知識結構為主。如「力—熱—電—光—原」;「光—力—熱—電—原」;「電—力—熱—光—原」;或先從各種物理現象再講物理概念,然後逐步加深等體系。當然,關於教材結構的安排,先講哪些知識,後講哪些知識,這並不是關鍵。要防止為變體系而變體系。對教材體系的確定,應從實際出發,認真總結經驗,總結出符合教材體系編排規律,知識發展內在邏輯,學生認知規律的教材體系,關於如何確定體系,有待於進一步總結。

3.影響中學物理教材的結構分析

為什麼教材的結構會如此的豐富?分析其原因,其中主要的有:

(1)格致學:據《清會典》記載,格致學分為力學、水學、聲學、氣學、火學、光學、電學七部分,這對後來的初中物理教材形成力、熱、聲、光、電等結構有直接的影響,後來物理教材的力學包括格致學中的「力學、水學、氣學」。

可見《清會典》關於格致學的劃分(力、水、聲、氣、光、電等),是導致了早年物理教材「力—熱—聲—光—磁—電」這種結構之原因。

(2)繼承性:教材結構一旦被確立,定會對將來的教材產生影響。一方面說明教材體系的穩定性,另一方面也反映了教材體系的繼承性。

縱觀建國以來的教材體系,從1952年版到1963年版,教材開始都以「力—聲」為體系,就充分說明了這一點。

(3)物理學和科學的發展:物理教材的結構受物理學和科學發展的影響,如物理學在17世紀時,經典力學已有很大發展,力學在17、18世紀一直為帶頭學科,因而反映在教材之中的體系,力學內容被列為首席,這是相當自然的事情。到19世紀,物理學的帶頭學科發展為電學、熱學,因而電學、熱學成了繼力學以後又十分重要的知識群。在教材中反映出來的是「力—磁電—熱學……」。我國的早期初中教材基本上是這一模式。

在經典物理學建立和發展的年代,物理科學是以「實驗型」為主,反映在教材結構方面為「歸納型」。到了20世紀以後,物理學已由「實驗型」轉向「理論型」。物理學和科學的研究方法也由「歸納型」逐漸向探索性的「演繹法」轉化。由此,在教材中的結構也由「歸納型」逐漸過渡到「演繹型」結構。我國在60年代自編的物理教材大多屬於此類。可以說,演繹型結構是物理學研究方法及其科學思維在教材結構上的體現。

(4)課程論:教材結構的確定,通常有一定的理論作指導,而課程論恰是指導教材結構形成的基本理論,對教材結構有著直接的作用。如初中課本的體系以「力、熱、電、光」等來安排教材結構,這明顯是受知識中心課程論(也叫科目中心論,教材中心論)的影響。它強調的是知識的類別性,其次才是學科內部的邏輯性。受此影響,物理從「自然」中分離出來,並按力、熱、電等知識體系和知識的內在聯系形成教材結構。因此,力學是基礎,一直被排在教材的榜首。

(5)S—O—R理論:現代心理學的「刺激—有機體的內部變化(中間變數)—反映」理論揭示出,給出一個刺激(S),經過有機體內部變化(O),就有一個反映(R)。教師講解教材,給學生一個刺激,學生對聽課內容進行消化,然後通過做作業或回答問題的形式反映對刺激的接收程度。受此理論影響,幾乎所有教材都採用了「正文(刺激)—習題(反映)」這種結構。

4.現行高中物理教材存在的問題

21世紀將是一個高科技的時代,隨著我國教育事業現代化進程的推進,現代的教學手段將與現代教學模式的發展密切聯系,而現行的高中物理教材,很難適應這一現代教學模式的發展,也不適應社會主義市場經濟對人才的需求,問題主要有以下幾個方面:

(1)現行的高中物理課本仍然是以學科中心主義課程觀設計的。過分強調自身的知識結構和學問邏輯,造成專業化與經院式的傾向,忽視學生對實用知識的獲得和一般技能的培養。這樣培養出來的學生很難適應社會生活的需要。在教材中只重視學生的升學,很少顧及學生的就業問題;只強調知識的繼承性、結論性,忽視對學生創造性思維的培養。

(2)現行的高中「二、一分段,高三分流」體制,使得普通高中1、2年級,理科和文科學生使用同一教材,使得文科生感到物理太難,而產生重文輕理的思想,到了高三又不再學物理學。因此,這樣更不利於文科生知識結構的完整性的建立。待走上工作崗位時,對大量新的科技知識一籌莫展,而理科生又感到教材偏淺,難以在物理學方面有所發展。

(3)現行教材注重學科的邏輯結構,忽視學生的個性心理結構,忽視社會需要,也忽視與其他學科的橫向聯系,不利於對學生的整體自然觀、價值觀和科學態度的培養,不利於學生的全面發展。

Ⅳ 小學數學的基礎知識有哪些

對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?

由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.

Ⅳ 如何設計小學數學課堂教學結構

小學數學課堂教學結構是指課堂教學各個組成部分,即教學環節的搭 配和排列,它是根據教學的目的任務、教學內容、教學方式、方法和學生的實際來確定的.數學課的結構不可能有一個固定不變的模式,所以研究數學課堂教學結構 主要是探討有關講和練的搭配和排列.一般來說,數學課堂教學結構是由鋪墊、新課引入、新授、鞏固練習、本課總結和課堂作業等幾個基本教學環節組成,只有正 確處理好這些基本教學環節的關系,才能有效地提高課堂教學的效果.

Ⅵ 小學數學的基本概念都有哪些

統計概率與小學數學教學

北京師范大學教育學院 劉京莉

《全日制義務教育數學課程標准》(實驗稿)中較大幅度地增加了「統計與概率」的內容。因為在信息社會,收集、整理、描述、展示和解釋數據,根據情報作出決定和預測,已成為公民日益重要的技能。因此小學數學加入這部分內容是完全必要的,本文將探討的問題是小學教師應明確哪些基本概念,使教學既具有科學性同時又符合學生的認知特點;如何使學生在形成和解決現實世界問題的過程中,發展統計意識、發展用統計的方法解釋數據、表達及交流信息的能力,以及用多種方式來收集、整理和展示他們的思考的能力;統計與概率與小學其它部分的內容是如何聯系的。

一、基本概念

1.描述統計。

通過調查、試驗獲得大量數據,用歸組、製表、繪圖等統計方法對其進行歸納、整理,以直觀形象的形式反映其分布特徵的方法,如:小學數學中的製表、條形統計圖、折線統計圖、扇形統計圖等都是描述統計。另外計算集中量所反映的一組數據的集中趨勢,如算術平均數、中位數、總數、加權算術平均數等,也屬於描述統計的范圍。其目的是將大量零散的、雜亂無序的數字資料進行整理、歸納、簡縮、概括,使事物的全貌及其分布特徵清晰、明確地顯現出來。

2.概率的統計定義。

人們在拋擲一枚硬幣時,究竟會出現什麼樣的結果事先是不能確定的,但是當我們在相同的條件下,大量重復地拋擲同一枚均勻硬幣時,就會發現「出現正面」或「出現反面」的次數大約各占總拋擲次數的: 左右。這里的「大量重復」是指多少次呢?歷史上不少統計學家,例如皮爾遜等人作過成千上萬次拋擲硬幣的試驗,其試驗記錄如下:

可以看出,隨著試驗次數的增加,出現正面的頻率波動越來越小,頻率在0.5這個定值附近擺動的性質是出現正面這一現象的內在必然性規律的表現,0.5恰恰就是刻畫出現正面可能性大小的數值,0.5就是拋擲硬幣時出現正面的概率。這就是概率統計定義的思想,這一思想也給出了在實際問題中估算概率的近似值的方法,當試驗次數足夠大時,可將頻率作為概率的近似值。

例如100粒種子平均來說大約有90粒種子發芽,則我們說種子的發芽率為90%;

某類產品平均每1000件產品中大約有10件廢品,則我們說該產品的廢品率為1%。在小學數學中用概率的統計定義,一般求得的是概率的近似值,特別是次數不夠大時,這個概率的近似值存在著一定的誤差。例如:某地區30年來的10月6日的天氣記錄里有25次是秋高氣爽、晴空萬里,問下一年的10月6日是晴天的概率是多少?

因為前30年出現晴天的頻率為0.83,所以概率大約是0.83。

3.概率的古典定義。

對某一類特殊的試驗,還可以從另一個角度求它的概率。拋擲一枚硬幣時,試驗的結果有2種:出現正面、出現反面;由於硬幣是均勻的,通過直觀分析可以看出出現正面和反面的可能性相同,都是。進一步研究:

某試驗具有以下性質

(1)試驗的結果是有限個(n個)

(2)每個結果出現的可能性是相同的 (硬幣、骰子是均勻的,拋擲時出現每一面的可能性都相同)

如果事件A是由上述n個結果中的m個組成,則稱事件A發生的概率為m/n。

例:擲一顆均勻的骰子,求出現2點的概率。

由於這個試驗滿足概率的古典定義的兩個條件,且n=6,m=1,∴出現2點的概率是。

又:求出現偶數點的概率?出現偶數點這一事件包含3個結果,2點、 4點、6點。m=3

出現偶數點的概率是,即。

概率的古典定義不用大量地去試驗,只要試驗的結果為等可能的有限個的情況,通過分析找出m、n,其概率就可以求出了,其優點是便於計算,但概率的古典定義不如概率的統計定義適用面廣,如拋擲一個酒瓶蓋子時,就不滿足出現每一面的可能性都相同的條件,因此出現正面的概率就不能用概率的古典定義去求,而要用統計定義去近似地求它的概率。

在小學數學的教學中,根據小學生的認知水平,應避免學習過多或艱深的術語,從小學低年級開始應該非形式地介紹概率思想,而非嚴格的定義、單純的計算,因此,在小學經常用「可能性」來代替「概率」這個概念。但作為教師應該懂得它的意義,否則就會出笑話。有的教師讓學生在課上做 20次拋擲硬幣的試驗,希望學生能得到出現正面的可能性是,因為拋擲的次數少,所以要得出10次正面,是很難做到的,概率的統計定義一般得出的是概率的近似值。

二、在學習統計與概率的過程中發展學生的能力

統計的內容是用數字描述和解釋我們周圍的世界,應結合學生生活的實際,如:可以設計成一個活動,使學生主動地投入其中;提出關鍵的問題;搜集和整理數據;應用圖表來表示數據;分析數據;作出推測,並用一種別人信服的方式交流信息。同時體會對數據的收集、處理會獲得某些新的信息。

例如:組織一次班會活動,目的是增進同學之間的互相了解和交流。首先讓學生們自己選題,希望了解哪些信息:「同學們每天怎麼來上學?」;「每個月都有多少同學過生日?」;「同學們喜歡讀哪類圖書?」;「同學們的愛好是什麼?」;「我們最喜愛的運動」;「我們最喜愛的動物」…然後學生們分組去調查收集數據,用表格歸納整理,並且製成各種統計圖:如:

從統計圖可以知道,喜歡動物故事的同學最多,根據這個統計結果,班裡可以組織一個動物研究會,辦一個動物圖片展覽,到野生動物園去參觀等。全班同學還可以把各種圖表製成牆報、手抄報把自己的班級介紹給全校其他同學等。

三、統計、概率與小學其它內容的聯系

例1

上面各圖中表示黑色區域的分數分別為;;;,小學生即使沒有學習幾何圖形的概念也可以通過分數的意義知道2號黑色區域最容易投中,因為根據分數的意義它占總面積的比最大,為。

例2

從紅球所佔的比例來看,1號袋為; 2號袋為;3號袋為擊,因此相比之下,1號袋最容易抽出紅球。

例3下面是用扇形統計圖統計的資料

對小學生來講,扇形統計圖的難點在於不同的圓心角所代表的部分的百分數表示及百分數表示的圓心角的度數,而對於—上面圖中有特殊圓心角時,可避開圓心角,用分數、百分數的意義得出喜歡英語課的,科學課的,數學課的;參加球類興趣小組的有50%;參加樂隊的18%。

從上面的例子可以看出,統計與概率可以為發展和運用比、分數、百分數和小數這些概念提供背景。因此我們可以用建構的方式,建立這部分內容與小學其它知識的聯系和建構有意義的認知結構,從而更深入、更靈活地學習。

總之,在小學,統計與概率的教學既要具有科學性又要符合小學生的認知特點,同時,它還是解決問題的有力工具,它也是架起與其它內容之間的橋梁。

和差問題

已知兩個數的和與差,求這兩個數的應用題,叫做和差問題。一般關系式有:

(和-差)÷2=較小數

(和+差)÷2=較大數

例:甲乙兩數的和是24,甲數比乙數少4,求甲乙兩數各是多少?

(24+4)÷2

=28÷2

=14 →乙數

(24-4)÷2

=20÷2

=10 →甲數

答:甲數是10,乙數是14。

差倍問題

已知兩個數的差及兩個數的倍數關系,求這兩個數的應用題,叫做差倍問題。基本關系式是:

兩數差÷倍數差=較小數

例:有兩堆煤,第二堆比第一堆多40噸,如果從第二堆中拿出5噸煤給第一堆,這時第二堆煤的重量正好是第一堆的3倍。原來兩堆煤各有多少噸?

分析:原來第二堆煤比第一堆多40噸,給了第一堆5噸後,第二堆煤比第一堆就只多40-5×2噸,由基本關系式列式是:

(40-5×2)÷(3-1)-5

=(40-10)÷2-5

=30÷2-5

=15-5

=10(噸) →第一堆煤的重量

10+40=50(噸) →第二堆煤的重量

答:第一堆煤有10噸,第二堆煤有50噸。

還原問題

已知一個數經過某些變化後的結果,要求原來的未知數的問題,一般叫做還原問題。

還原問題是逆解應用題。一般根據加、減法,乘、除法的互逆運算的關系。由題目所敘述的的順序,倒過來逆順序的思考,從最後一個已知條件出發,逆推而上,求得結果。

例:倉庫里有一些大米,第一天售出的重量比總數的一半少12噸。第二天售出的重量,比剩下的一半少12噸,結果還剩下19噸,這個倉庫原來有大米多少噸?

分析:如果第二天剛好售出剩下的一半,就應是19+12噸。第一天售出以後,剩下的噸數是(19+12)×2噸。以下類推。

列式:[(19+12)×2-12]×2

=[31×2-12]×2

=[62-12]×2

=50×2

=100(噸)

答:這個倉庫原來有大米100噸。

置換問題

題中有二個未知數,常常把其中一個未知數暫時當作另一個未知數,然後根據已知條件進行假設性的運算。其結果往往與條件不符合,再加以適當的調整,從而求出結果。

例:一個集郵愛好者買了10分和20分的郵票共100張,總值18元8角。這個集郵愛好者買這兩種郵票各多少張?

分析:先假定買來的100張郵票全部是20分一張的,那麼總值應是20×100=2000(分),比原來的總值多2000-1880=120(分)。而這個多的120分,是把10分一張的看作是20分一張的,每張多算20-10=10(分),如此可以求出10分一張的有多少張。

列式:(2000-1880)÷(20-10)

=120÷10

=12(張)→10分一張的張數

100-12=88(張)→20分一張的張數

或是先求出20分一張的張數,再求出10分一張的張數,方法同上,注意總值比原來的總值少。

盈虧問題(盈不足問題)

題目中往往有兩種分配方案,每種分配方案的結果會出現多(盈)或少(虧)的情況,通常把這類問題,叫做盈虧問題(也叫做盈不足問題)。

解答這類問題時,應該先將兩種分配方案進行比較,求出由於每份數的變化所引起的余數的變化,從中求出參加分配的總份數,然後根據題意,求出被分配物品的數量。其計算方法是:

當一次有餘數,另一次不足時:

每份數=(余數+不足數)÷兩次每份數的差

當兩次都有餘數時:

總份數=(較大余數-較小數)÷兩次每份數的差

當兩次都不足時:

總份數=(較大不足數-較小不足數)÷兩次每份數的差

例1、解放軍某部的一個班,參加植樹造林活動。如果每人栽5棵樹苗,還剩下14棵樹苗;如果每人栽7棵,就差4棵樹苗。求這個班有多少人?一共有多少棵樹苗?

分析:由條件可知,這道題屬第一種情況。

列式:(14+4)÷(7-5)

=18÷2

= 9(人)

5×9+14

=45+14

=59(棵)

或:7×9-4

=63-4

=59(棵)

答:這個班有9人,一共有樹苗59棵。

年齡問題

年齡問題的主要特點是兩人的年齡差不變,而倍數差卻發生變化。

常用的計算公式是:

成倍時小的年齡=大小年齡之差÷(倍數-1)

幾年前的年齡=小的現年-成倍數時小的年齡

幾年後的年齡=成倍時小的年齡-小的現在年齡

例1、父親今年54歲,兒子今年12歲。幾年後父親的年齡是兒子年齡的4倍?

(54-12)÷(4-1)

=42÷3

=14(歲)→兒子幾年後的年齡

14-12=2(年)→2年後

答:2年後父親的年齡是兒子的4倍。

例2、父親今年的年齡是54歲,兒子今年有12歲。幾年前父親的年齡是兒子年齡的7倍?

(54-12)÷(7-1)

=42÷6

=7(歲)→兒子幾年前的年齡

12-7=5(年)→5年前

答:5年前父親的年齡是兒子的7倍。

例3、王剛父母今年的年齡和是148歲,父親年齡的3倍與母親年齡的差比年齡和多4歲。王剛父母親今年的年齡各是多少歲?

(148×2+4)÷(3+1)

=300÷4

=75(歲)→父親的年齡

148-75=73(歲)→母親的年齡

答:王剛的父親今年75歲,母親今年73歲。

或:(148+2)÷2

=150÷2

=75(歲)

75-2=73(歲)

雞兔問題

已知雞兔的總只數和總足數,求雞兔各有多少只的一類應用題,叫做雞兔問題,也叫「龜鶴問題」、「置換問題」。

一般先假設都是雞(或兔),然後以兔(或雞)置換雞(或兔)。常用的基本公式有:

(總足數-雞足數×總只數)÷每隻雞兔足數的差=兔數

(兔足數×總只數-總足數)÷每隻雞兔足數的差=雞數

例:雞兔同籠共有24隻。有64條腿。求籠中的雞和兔各有多少只?

3k W UEw9I0

R,@ F/|1V7YWd-r0

Gb(e(o/X3QE&dL$Z0 鳳凰博客h7IM?pJ'u7NV

'IG\ rf Y E0
(64-2×24)÷(4-2)

=(64-48)÷(4-2)

=16 ÷2

=8(只)→兔的只數

24-8=16(只)→雞的只數

答:籠中的兔有8隻,雞有16隻

鳳凰博客3@8Zp|S5|+U



牛吃草問題(船漏水問題)

若干頭牛在一片有限范圍內的草地上吃草。牛一邊吃草,草地上一邊長草。當增加(或減少)牛的數量時,這片草地上的草經過多少時間就剛好吃完呢?

例1、一片草地,可供15頭牛吃10天,而供25頭牛吃,可吃5天。如果青草每天生長速度一樣,那麼這片草地若供10頭牛吃,可以吃幾天?

分析:一般把1頭牛每天的吃草量看作每份數,那麼15頭牛吃10天,其中就有草地上原有的草,加上這片草地10天長出草,以下類推……其中可以發現25頭牛5天的吃草量比15頭牛10天的吃草量要少。原因是因為其一,用的時間少;其二,對應的長出來的草也少。這個差就是這片草地5天長出來的草。每天長出來的草可供5頭牛吃一天。如此當供10牛吃時,拿出5頭牛專門吃每天長出來的草,餘下的牛吃草地上原有的草。

(15×10-25×5)÷(10-5)

=(150-125)÷(10-5)

=25÷5

=5(頭)→可供5頭牛吃一天。

150-10×5

=150-50

=100(頭)→草地上原有的草可供100頭牛吃一天

100÷(10-5)

=100÷5

=20(天)

答:若供10頭牛吃,可以吃20天。

例2、一口井勻速往上涌水,用4部抽水機100分鍾可以抽干;若用6部同樣的抽水機則50分鍾可以抽干。現在用7部同樣的抽水機,多少分鍾可以抽干這口井裡的水?

(100×4-50×6)÷(100-50)

=(400-300)÷(100-50)

=100÷50

=2

400-100×2

=400-200

=200

200÷(7-2)

=200÷5

=40(分)

答:用7部同樣的抽水機,40分鍾可以抽干這口井裡的水。

公約數、公倍數問題

運用最大公約數或最小公倍數解答應用題,叫做公約數、公倍數問題。

例1:一塊長方體木料,長2.5米,寬1.75米,厚0.75米。如果把這塊木料鋸成同樣大小的正方體木塊,不準有剩餘,而且每塊的體積盡可能的大,那麼,正方體木塊的棱長是多少?共鋸了多少塊?

分析:2.5=250厘米

1.75=175厘米

0.75=75厘米

其中250、175、75的最大公約數是25,所以正方體的棱長是25厘米。

(250÷25)×(175÷25)×(75÷25)

=10×7×3

=210(塊)

答:正方體的棱長是25厘米,共鋸了210塊。

例2、兩嚙合齒輪,一個有24個齒,另一個有40個齒,求某一對齒從第一次接觸到第二次接觸,每個齒輪至少要轉多少周?

分析:因為24和40的最小公倍數是120,也就是兩個齒輪都轉120個齒時,第一次接觸的一對齒,剛好第二次接觸。

120÷24=5(周)

120÷40=3(周)

答:每個齒輪分別要轉5周、3周。

分數應用題

指用分數計算來解答的應用題,叫做分數應用題,也叫分數問題。

分數應用題一般分為三類:

1.求一個數是另一個數的幾分之幾。

2.求一個數的幾分之幾是多少。

3.已知一個數的幾分之幾是多少,求這個數。

其中每一類別又分為二種,其一:一般分數應用題;其二:較復雜的分數應用題。

例1:育才小學有學生1000人,其中三好學生250人。三好學生佔全校學生的幾分之幾?

答:三好學生佔全校學生的。

例2:一堆煤有180噸,運走了。走了多少噸?

180×=80(噸)

答:運走了80噸。

例3:某農機廠去年生產農機1800台,今年計劃比去年增加。今年計劃生產多少台?

1800×(1+)

=1800×

=2400(台)

答:今年計劃生產2400台。

例4:修一條長2400米的公路,第一天修完全長的,第二天修完餘下的。還剩下多少米?

2400×(1-)×(1-)

=2400××

=1200(米)

答:還剩下1200米。

例5:一個學校有三好學生168人,佔全校學生人數的。全校有學生多少人?

168÷=840(人)

答:全校有學生840人。

例6:甲庫存糧120噸,比乙庫的存糧少。乙庫存糧多少噸?

120÷=120×=180(噸)

答:乙庫存糧180噸。

例7:一堆煤,第一次運走全部的,第二次運走全部的,第二次比第一次少運8噸。這堆煤原有多少噸?

8÷(-)

= 8÷

=48(噸)

答:這堆煤原有48噸。

工程問題

它是分數應用題的一個特例。是已知工作量、工作時間和工作效率,三個量中的兩個求第三個量的問題。

解答工程問題時,一般要把全部工程看作「1」,然後根據下面的數量關系進行解答:

6q1U]7in!S7x0
鳳凰博客tr IJ0OYWV

P tAd)J.IH0
&h|il)t&ZS6h&kC0
nVg2v IdgI0
工作效率×工作時間=工作量

'F5q/f,z5b@y0
工作量÷工作時間=工作效率

鳳凰博客q!q1Nc3E-n`a9[Q$M

工作量÷工作效率=工作時間

鳳凰博客9FA*o d#`7I!l

例1:一項工程,甲隊單獨做需要18天,乙隊單獨做需要24天。如果兩隊合作8天後,餘下的工程由甲隊單獨做,還要幾天完成?

N W5l,VjH`|0
鳳凰博客+ZO'R HhI

鳳凰博客hq$TU!bO$rEQ
鳳凰博客6O]p/ZV2wc
[1-()×8]÷
,l!l9zI"b&W0
=[1-]÷

=×18

=4(天)

答:(略)。

鳳凰博客1Q0RO&]%owG

例2:一個水池,裝有甲、乙兩個進水管,一個出水管。單開甲管2小時可以注滿;單開乙管3小時可以注滿;單開出水管6小時可以放完。現在三管在池空時齊開,多少小時可以把水池注滿?

|5W.WuC3p0
鳳凰博客 SX}9q7|f

鳳凰博客UO`8_%F(u8Br

"[6Xr3MHv)I0 1÷(+-) 鳳凰博客I@ ?b&W+CD

=1÷

=1(小時)

答:(略)

鳳凰博客o Sj4ON:}2\/a+N

百分數應用題

這類應用題與分數應用題的解答方式大致相同,僅求「率」時,表達方式不同,意義不同。

例1.某農科所進行發芽試驗,種下250粒種子。發芽的有230粒。求發芽率。

答:發芽率為92%。

Ⅶ 小學數學教材的基本結構

數學教材是教師進行教學活動的主要依據,也是學生進行學習活動的主要基礎,它是師生完成教與學雙邊活動必不可少的媒體。教學中,教師根據教材所提供的信息資源和基本內容引導學生探索數學規律,學習數學方法。讀教材的就是把教材「死」的結果變為學生靈活的學習過程。讀懂教材是教師必備的基本功,讀懂教材是使用教材、有效教學的基礎。
我認為要讀懂教材必須做到:(1)要用整體聯系的觀點讀教材;(2)要持課程改革的理念讀教材;(3)要懷著質疑好問的態度解讀教材;(4)要抓住數學的本質去解讀教材。

我認為要讀懂教材就要學會「煮書」。第一遍以成人的角度去讀;第二遍以作者的角度去讀;第三遍以孩子的角度去讀。讀未必懂,我們每一個人可能都有過這樣的體會,一遍遍的看教材看教參,卻陷入了誤區和苦惱的困惑。讀與懂之間必須有「想」這座橋。多問自己幾個什麼?即為什麼?用什麼方法?原來在什麼地方?要達到什麼地方?當自己能夠完全說服自己,回答清楚的時候才走出了讀懂的第一步。正如張丹老師說的那樣:由「讀」想到了歌曲《讀你千遍不厭倦》帶著思考去讀。

Ⅷ 把小學數學課堂的基本結構按照在小學數學教學中應用的多少排序

346464659656556655

Ⅸ 小學數學新授課的一般結構是什麼

啟蒙 啟蒙學生的數學思維 感覺
圍繞這方面授課 設計課堂結構 基本就是成功的一堂課了

閱讀全文

與小學數學的基本結構相關的資料

熱點內容
小學讀書計劃表格模板 瀏覽:342
小學語文四年級感嘆句 瀏覽:243
天通苑中山實驗小學 瀏覽:596
小學三年級語文補習班內容 瀏覽:921
吉安師范附屬小學作文 瀏覽:396
小學教師備課網站 瀏覽:1
私立美男學院 瀏覽:383
小學六年級上冊語文第六單元試卷涼州島 瀏覽:915
小學1年級手gong大全 瀏覽:459
小學生手抄報的圖片大全圖片大全 瀏覽:68
小學健康知識講座 瀏覽:120
小學畢業季適合發老師的句子 瀏覽:451
汕尾鳳山中心小學校長 瀏覽:606
小學生畢業匯演舞蹈 瀏覽:702
小學生抗擊疫情的表演 瀏覽:107
私立華聯大學本科 瀏覽:61
小學三年級作文我想謝謝你400 瀏覽:855
中小學生睡眠問題 瀏覽:174
小學生公共生活守規則教案 瀏覽:313
淮河私立學校 瀏覽:99