❶ 小學數學課堂教學的基本理念有哪些
小學數學課堂教學是數學活動的教學,是師生之間、學生之間交往互動與共同發展的過程。小學數學課堂教學,要緊密聯系學生的生活實際,從學生的生活經驗和已有知識出發,創設生動有趣的情境,引導學生開展觀察、操作、猜想、推理、交流等活動,使學生通過數學活動,掌握基本的數學知識和技能,初步學會從數學的角度去觀察事物、思考問題,激發對數學的興趣。
學生是數學教學的主體,教師是學生數學活動的組織者、引導者與合作者。教師要正確地認識學生個體差異,因材施教,使每個學生都在原有的基礎上得到充分的發展;要關注學生的學習過程,不僅要關注學生觀察、分析、自學、表達、操作、與人合作等一般能力的發展,以及運算、空間觀念、統計、解決問題等數學能力的發展,更要關注學生在情感、態度與價值觀等方面的健康和諧的發展;不僅要關注課堂教學的結果,更要關注課堂教學的過程。
小學數學課堂教學是教師依據數學課程標準的理念與基本要求,在全面駕馭教科書的知識體系、知識結構和編寫意圖的基礎上,根據學生的具體情況,對教學內容進行再創造的過程。小學數學課堂教學是數學教師的教學技能、教學能力、業務水平、文化修養、教育觀點、師德和思想素質的綜合表現。
❷ 小學數學教學活動的基本理念是什麼
4.數學教學活動必須建立在學生的認知發展水平和已有的知識經驗的基礎上。教師應激發學生學習積極性,向學生提供充分從事數學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數學知識和技能、數學思想和方法,獲得廣泛的數學活動的經驗。學生是數學學習的主人,教師是數學學習的組織者、引導者和合作者。
祝願工作順利!
❸ 小學數學思想方法的意義
個人覺得:「數學是思維的體操」,數學思想對思維品質的提升舉足輕重,我們說數學是一種思維工具,實質上就是指它的思想。
從思維科學論的角度看,數學教學過程實際上是數學思維活動的過程,在這一過程中,學生在教師的啟發引導下,圍繞數學問題展開數學思維,學生的思維活動主要體現在數學思想方法的領悟上,進而獲取數學知識、培養數學能力。從學生發展的角度說,數學是促進學生思維發展的重要途經。數學思想方法的學習過程,就是培養數學思維品質、提高自身數學素養的重要過程,數學思想的教學是提高數學思維能力的核心環節,是培養學生數學意識,形成優良思維品質的關鍵。事實表明,數學上的發現、發明主要是方法上的創新,在數學教學中,不能滿足於單純的知識灌輸,而是要再現數學的發現過程,揭示蘊含於知識中的數學思想方法,只有讓學生通過深入體會、思考,才能領悟到其中的奧妙,發展學生的思維能力,促進良好思維素質的形成。
實踐表明:小學數學教育的現代化,主要不是內容的現代化,而是數學思想及教育手段的現代化,加強數學思想的教學是基礎數學教育現代化的關鍵。特別是對能力培養這一問題的探討與摸索,以及社會對數學價值的要求,使我們更進一步地認識到數學思想的重要性,掌握科學的數學思想方法對數學學科的後續學習,對提升學生的思維品質,對其它學科的學習,乃至對學生的終身發展都具有十分重要的意義。因此,小學教學的教學過程中,數學思想的滲透是至關重要的。
哲學角度的理解。從數學哲學的角度講,數學科學中最有生命力統攝力的是數學觀和數學方法論,即數學思想方法;從數學教育哲學的角度講,決定一生數學修養的高低,最為重要的標志是看他能否用數學的思想方法去解決數學問題以至日常生活問題。
數學課程標准》的期待。《數學課程標准》(新稿)不僅把「數學思考」作為總體目標之一提出,同時,還將「雙基」擴展為「四基」,即基礎知識、基本技能、基本數學思想、基本活動經驗。由此可見,數學思想方法教學變得越來越重要
數學教育專家的觀點。日本數學家米山國藏指出:「無論是對於科學工作者、技術人員,還是數學教育工作者,最重要的就是數學的精神、思想和方法,而數學知識只是第二位」。
希望能幫到你
❹ 小學數學教學中的思想有哪些
集合思想,函數思想,符號化思想,極限思想,化歸思想,組合思想,假設思想,變換思想
❺ 小學數學教學中滲透教學思想方法有哪些
一、小學數學教學中滲透數學思想方法的必要性 所謂數學思想,是指人們對數學理論與內容的本質認識,它直接支配著數學的實踐活動。所謂數學方法, 是指某一數學活動過程的途徑、程序、手段,它具有過程性、層次性和可操作性等特點。數學思想是數學方法 的靈魂,數學方法是數學思想的表現形式和得以實現的手段,因此,人們把它們稱為數學思想方法。 小學數學教材是數學教學的顯性知識系統,許多重要的法則、公式,教材中只能看到漂亮的結論,許多例 題的解法,也只能看到巧妙的處理,而看不到由特殊實例的觀察、試驗、分析、歸納、抽象概括或探索推理的 心智活動過程。因此,數學思想方法是數學教學的隱性知識系統,小學數學教學應包括顯性和隱性兩方面知識 的教學。如果教師在教學中,僅僅依照課本的安排,沿襲著從概念、公式到例題、練習這一傳統的教學過程, 即使教師講深講透,並要求學生記住結論,掌握解題的類型和方法,這樣培養出來的學生也只能是「知識型」 、「記憶型」的,將完全背離數學教育的目標。 在認知心理學里,思想方法屬於元認知范疇,它對認知活動起著監控、調節作用,對培養能力起著決定性 的作用。學習數學的目的「就意味著解題」(波利亞語),解題關鍵在於找到合適的解題思路,數學思想方法 就是幫助構建解題思路的指導思想。因此,向學生滲透一些基本的數學思想方法,提高學生的元認知水平,是 培養學生分析問題和解決問題能力的重要途徑。 數學知識本身是非常重要的,但它並不是惟一的決定因素,真正對學生以後的學習、生活和工作長期起作 用,並使其終生受益的是數學思想方法。未來社會將需要大量具有較強數學意識和數學素質的人才。21世紀國 際數學教育的根本目標就是「問題解決」。因此,向學生滲透一些基本的數學思想方法,是未來社會的要求和 國際數學教育發展的必然結果。 小學數學教學的根本任務是全面提高學生素質,其中最重要的因素是思維素質,而數學思想方法就是增強 學生數學觀念,形成良好思維素質的關鍵。如果將學生的數學素質看作一個坐標系,那麼數學知識、技能就好 比橫軸上的因素,而數學思想方法就是縱軸的內容。淡化或忽視數學思想方法的教學,不僅不利於學生從縱橫 兩個維度上把握數學學科的基本結構,也必將影響其能力的發展和數學素質的提高。因此,向學生滲透一些基 本的數學思想方法,是數學教學改革的新視角,是進行數學素質教育的突破口。
二、小學數學教學中應滲透哪些數學思想方法 古往今來,數學思想方法不計其數,每一種數學思想方法都閃爍著人類智慧的火花。一則由於小學生的年 齡特點決定有些數學思想方法他們不易接受,二則要想把那麼多的數學思想方法滲透給小學生也是不大現實的 。因此,我們應該有選擇地滲透一些數學思想方法。筆者認為,以下幾種數學思想方法學生不但容易接受,而 且對學生數學能力的提高有很好的促進作用。 1.化歸思想 化歸思想是把一個實際問題通過某種轉化、歸結為一個數學問題,把一個較復雜的問題轉化、歸結為一個 較簡單的問題。應當指出,這種化歸思想不同於一般所講的「轉化」、「轉換」。它具有不可逆轉的單向性。 例1 狐狸和黃鼠狼進行跳躍比賽,狐狸每次可向前跳4 1/2 米,黃鼠狼每次可向前跳2 3/4米。它們每 秒種都只跳一次。比賽途中,從起點開始,每隔12 3/8米設有一個陷阱, 當它們之中有一個掉進陷阱時,另 一個跳了多少米? 這是一個實際問題,但通過分析知道,當狐狸(或黃鼠狼)第一次掉進陷阱時,它所跳過的距離即是它每 次所跳距離4 1/2(或2 3/4)米的整倍數,又是陷阱間隔12 3/8米的整倍數,也就是4 1/2和12 3/8的「 最小公倍數」(或2 3/4和12 3/8的「最小公倍數」)。針對兩種情況,再分別算出各跳了幾次,確定誰先掉 入陷阱,問題就基本解決了。上面的思考過程,實質上是把一個實際問題通過分析轉化、歸結為一個求「最小 公倍數」的問題,即把一個實際問題轉化、歸結為一個數學問題,這種化歸思想正是數學能力的表現之一。 2.數形結合思想 數形結合思想是充分利用「形」把一定的數量關系形象地表示出來。即通過作一些如線段圖、樹形圖、長 方形面積圖或集合圖來幫助學生正確理解數量關系,使問題簡明直觀。 例2 一杯牛奶,甲第一次喝了半杯,第二次又喝了剩下的一半,就這樣每次都喝了上一次剩下的一半。甲 五次一共喝了多少牛奶? 附圖{圖} 此題若把五次所喝的牛奶加起來,即1/2+1/4+1/8+1/16+1/32就為所求,但這不是最好的解題策 略。我們先畫一個正方形,並假設它的面積為單位「1」,由圖可知,1-1/32就為所求, 這里不但向學生滲 透了數形結合思想,還向學生滲透了類比的思想。 3.變換思想 變換思想是由一種形式轉變為另一種形式的思想。如解方程中的同解變換,定律、公式中的命題等價變換 ,幾何形體中的等積變換,理解數學問題中的逆向變換等等。 例3 求1/2+1/6+1/12+1/20+……+1/380的和。 仔細觀察這些分母,不難發現:2=1×2,6=2×3,12=3×4, 20=4×5……380=19×20,再用拆分的 方法,考慮和式中的一般項 a[,n]=1/n×(n+1)=1/n-1/n+1 於是,問題轉換為如下求和形式: 原式=1/1×2+1/2×3+1/3×4+1/4×5+……+1 /19×20 =(1-1/2)+(1/2-1/3)+(1/3-1/4)+(1 /4-1/5)+……+(1/19-1/20) =1-1/20 =19/20 4.組合思想 組合思想是把所研究的對象進行合理的分組,並對可能出現的各種情況既不重復又不遺漏地一一求解。 例4 在下面的乘法算式中,相同的漢字代表相同的數字, 不同的漢字代表不同的數字,求這個算式。 從小愛數學 × 4 ────── 學數愛小從 分析:由於五位數乘以4的積還是五位數, 所以被乘數的首位數字「從」只能是1或2,但如果「從」=1, 「學」×4的積的個位應是1,「學」無解。所以「從」=2。 在個位上,「學」×4的積的個位是2,「學」=3或8。但由於「學」又是積的首位數字,必須大於或等於 8,所以「學」=8。 在千位上,由於「小」×4不能再向萬位進位,所以「小」=1 或0。若「小」=0,則十位上「數」×4+ 3(進位)的個位是0,這不可能,所以「小」=1。 在十位上,「數」×4+3(進位)的個位是1,推出「數」=7。 在百位上,「愛」×4+3(進位)的個位還是「愛」,且百位必須向千位進3,所以「愛」=9。 故欲求乘法算式為 2 1 9 7 8 × 4 ────── 8 7 9 1 2 上面這種分類求解方法既不重復,又不遺漏,體現了組合思想。 此外,還有符號思想、對應思想、極限思想、集合思想等,在小學數學教學中都應注意有目的、有選擇、 適時地進行滲透。
三、小學數學教學應如何加強數學思想方法的滲透 1.提高滲透的自覺性 數學概念、法則、公式、性質等知識都明顯地寫在教材中,是有「形」的,而數學思想方法卻隱含在數學 知識體系裡,是無「形」的,並且不成體系地散見於教材各章節中。教師講不講,講多講少,隨意性較大,常 常因教學時間緊而將它作為一個「軟任務」擠掉。對於學生的要求是能領會多少算多少。因此,作為教師首先 要更新觀念,從思想上不斷提高對滲透數學思想方法重要性的認識,把掌握數學知識和滲透數學思想方法同時 納入教學目的,把數學思想方法教學的要求融入備課環節。其次要深入鑽研教材,努力挖掘教材中可以進行數 學思想方法滲透的各種因素,對於每一章每一節,都要考慮如何結合具體內容進行數學思想方法滲透,滲透哪 些數學思想方法,怎麼滲透,滲透到什麼程度,應有一個總體設計,提出不同階段的具體教學要求。 2.把握滲透的可行性 數學思想方法的教學必須通過具體的教學過程加以實現。因此,必須把握好教學過程中進行數學思想方法 教學的契機——概念形成的過程,結論推導的過程,方法思考的過程,思路探索的過程,規律揭示的過程等。 同時,進行數學思想方法的教學要注意有機結合、自然滲透,要有意識地潛移默化地啟發學生領悟蘊含於數學 知識之中的種種數學思想方法,切忌生搬硬套、和盤托出、脫離實際等適得其反的做法。 3.注重滲透的反復性 數學思想方法是在啟發學生思維過程中逐步積累和形成的。為此,在教學中,首先要特別強調解決問題以 後的「反思」,因為在這個過程中提煉出來的數學思想方法,對學生來說才是易於體會、易於接受的。如通過 分數和百分數應用題有規律的對比板演,指導學生小結解答這類應用題的關鍵,找到具體數量的對應分率,從 而使學生自己體驗到對應思想和化歸思想。其次要注意滲透的長期性,應該看到,對學生數學思想方法的滲透 不是一朝一夕就能見到學生數學能力提高的,而是有一個過程。數學思想方法必須經過循序漸進和反復訓練, 才能使學生真正地有所領悟。
❻ 小學數學思想有哪些
「基本思想」主要是指演繹和歸納,這應當是整個數學教學的主線,是最上位的思想。 演繹和歸納不是矛盾的,其教學也不是矛盾的,通過歸納來預測結果,然後通過演繹來驗證結果。在具體的問題中,會涉及到數學抽象、數學模型、等量替換、數形結合等數學思想, 但最上位的思想還是演繹和歸納。之所以用「基本思想」而不用基本思想方法,就是要與換元法、遞歸法、配方法等具體的數學方法區別。每一個具體的方法可能是重要的,但它們是個案,不具有一般性。作為一種思想來掌握是不必要的,經過一段時間,學生很可能就忘卻了。這里所說的思想,是大的思想,是希望學生領會之後能夠終生受益的那種思想方法。
❼ 小學數學教學中應滲透哪些數學思想方法
以下幾種數學思想方法學生不但容易接受,而且對學生數學能力的提高有很好的促進作用。
1.化歸思想
化歸思想是把一個實際問題通過某種轉化、歸結為一個數學問題,把一個較復雜的問題轉化、歸結為一個較簡單的問題。應當指出,這種化歸思想不同於一般所講的「轉化」、「轉換」。它具有不可逆轉的單向性。例1 狐狸和黃鼠狼進行跳躍比賽,狐狸每次可向前跳20米,黃鼠狼每次可向前跳6米。它們每秒種都只跳一次。比賽途中,從起點開始,每隔15米設有一個陷阱,當它們之中有一個掉進陷阱時,另一個跳了多少米?這是一個實際問題,但通過分析知道,當狐狸(或黃鼠狼)第一次掉進陷阱時,它所跳過的距離即是它每次所跳距離20(或6)米的整倍數,又是陷阱間隔15米的整倍數,也就是20和15「 最小公倍數」。針對兩種情況,再分別算出各跳了幾次,確定誰先掉入陷阱,問題就基本解決了。上面的思考過程,實質上是把一個實際問題通過分析轉化、歸結為一個求「最小公倍數」的問題,即把一個實際問題轉化、歸結為一個數學問題,這種化歸思想正是數學能力的表現之一。
2.數形結合思想
數形結合思想是充分利用「形」把一定的數量關系形象地表示出來。即通過作一些如線段圖、樹形圖、長方形面積圖或集合圖來幫助學生正確理解數量關系使問題簡明直觀。例2 一杯牛奶,甲第一次喝了半杯,第二次又喝了剩下的一半,就這樣每次都喝了上一次剩下的一半。甲五次一共喝了多少牛奶?此題若把五次所喝的牛奶加起來,即1/2+1/4+1/8+1/16+1/32就為所求,但這不是最好的解題策略。我們先畫一個正方形,並假設它的面積為單位「1」,由圖可知,1-1/32就為所求,這里不但向學生滲透了數形結合思想,還向學生滲透了類比的思想。
3.組合思想
組合思想是把所研究的對象進行合理的分組,並對可能出現的各種情況既不重復又不遺漏地一一求解。
4.「函數」思想
函數是近代數學的重要概念之一,在現代科學技術中廣泛應用,在小學數學教材中,函數思想的滲透非常廣泛。在第一學段,通過填圖等形式,將函數思想滲透其中;在第二學段,學生掌握了許多計算公式,如s=vt等,這些計算公式實際上就是一些簡單的函數關系式;到了六年級,正、反比例的意義是滲透函數思想的重要內容,因為成正比例和反比例的量反映的是兩個變數之間的依存關系。
此外,還有符號思想、對應思想、極限思想、集合思想等,在小學數學教學中都應注意有目的、有選擇、適時地進行滲透。
此外還有集合思想、符號化思想、對應思想等數學思想和方法。
❽ 談談在小學數學教學中如何運用轉化思想
小學數學修訂後的課標在原來「雙基」的基礎上,提出了「四基」,即基礎知識、基本技能、基本思想和基本活動經驗。 小學數學思想方法許多,基本的數學思想方法有:轉化思想方法、分類思想方法、集合思想方法、統計思想方法、假設思想方法、對應思想方法、比較思想方法、符號化思想方法、類比思想方法、數形結合思想方法、極限思想方法、代換思想方法、可逆思想方法以、化歸思想方法、變中抓不變思想方法、數學模型思想方法、整體思想方法等,結合本周教學比武中的課例談談數學教學中滲透轉化思想方法:
1.化新為舊。根據學生已有的新舊知識的聯系,將新知識轉化為已有的知識來解決。
如:賴傳淇老師執教的《通分》一課中,出示2/5○1/4,進行比較大小。異分母分數大小的比較對學生來說是新的知識,學生不會比較,老師啟發學生將新的知識轉化成已學過的知識進行解決這個問題。學生進行小組討論,然後進行匯報,生1:根據分數的基本性質,把這個兩個分數化成分母相同的分數,2/5=8/20,1/4=5/20,因為8/20>5/20,所以2/5>1/4;生2:把2/5和1/4這兩個分數都化成已學過的小數,2/5=0.4,1/4=0.25,因為0.4>0.25,所以2/5>1/4;生3:根據分數的基本性質,把2/5和1/4這兩個分數的分子化成相同,2/5○1/4=2/8,因為2/5>2/8,所以2/5>1/4;生4:將2/5和1/4用線段來表示,畫一條長20厘米的線段,平均分成5份,取其中的2份,這兩份長8厘米,也就是這條線段總長的2/5,再畫一條長20厘米的線段,平均分成4份,取其中的1份,這一份長5厘米,也就是這條線段總長的1/4,因為8厘米>5厘米,所以2/5>1/4。學生運用了化新為舊的轉化思想解決了新知。
又如:郭秋妹老師執教的《兩位數乘兩位數》一課中,學生列出算式24×12後,問學生可以用什麼方法計算?學生回答可以用估算、口算、筆算。師問如何口算24×12,學生一時愣住了,郭老師進行引導,可以將它轉化成已學過的。學生開始嘗試做,不一會兒學生紛紛舉手回答。生1:24×3×4=288,把12拆成3×4,就變成已學過的兩位數乘一位數的了24×3=72,72×4=288;生2:24×2×6=288;生3:12×4×6=288;生4:12×3×8=288;生5:把24看成20和4的和,20×12=240,4×12=48,240+48=288;生6:把12看成10和2的和,24×10=240,24×2=48,240+48=288;生7:把12看成9和3的和,24×9=216,24×3=72,216+72=288……學生運用了化新為舊的轉化思想解決了新知,發散了思維。
2.化難為易。如:蔣友成老師執教的《數學思考》一課中,出示一題20個點最多可以輕連幾條線段?學生一時也無從下手,老師進行引導,將問題化難為易,化大為小,化多為少,將20點轉化為1,2,3,4,5點,分別能畫幾條線段?讓學生動手操作、小組討論。然後學生匯報:點數1,條數0(條);點數2,條數1(條);點數3,條數1+2=3(條);點數4,條數1+2+3=6(條);點數5,條數1+2+3+4=10(條)。讓學生觀察、分析條數與點數的關系,學生通過觀、分析、小組討論發現:條數的計算方法是從1加2加到點數減1的和。學生發現這個規律後,再來解答20個點最多可以輕連幾條線段就輕而易舉了,學生就很快的說出算式1+2+3+4+……+19=190(條)。師生進行小結:遇到難的題目,可以將它轉化為容易的,簡單的來解決,接著找出規律,然後運用規律解決較難的題目,這就是運用了化難為易的轉化思想方法。
3.化數為形。如:在計算1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256+1/512中,通過引導學生化數為形,畫一個正方形, 1/2塗上色,空白的也是1/2,塗色部分可以用1減去空白的;接著在空白的1/2上再塗色一半,塗色部分就是1/2+1/4,塗色部分可以用1減去空白的, 塗色部分就是1-1/4,接著在空白的1/4上再塗色一半,塗色部分就是1/2+1/4+1/8,塗色部分可以用1減去空白的, 塗色部分就是1-1/8。從剛才的過程可以發現規律,塗色部分可以用1減去空白的,因此,1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256+1/512=1-1/512=511/512。通過化數為形,可以把這個算式轉化成1-1/512=511/512。
4.為曲為直。如:圓的面積公式的推導,就要用到化曲為直的思想方法,通過將圓分割成若乾等份,拼成近似的長方形,由圓的半徑與面積的關系轉化為長方形的長寬與面積的關系,由長方形的面積公式,推導出圓的面積的公式。這里,就是將長方形的面積公式轉化為圓的面積公式。在學習圓柱的體積計算時,學生也能很快悟到立體圖形之間的聯系,感悟到圓柱體積的計算公式。
陶行知先生曾說過:「我以為好的先生不是教書,不是教學生,乃是教學生學。」任何功課最終的目的就是要達到不需要教,需要有會學習的能力、會學習的方法,而數學思想的形成及運用就會產生好的方法,就會提高學習的能力,就會為不教奠定基礎。因此,小學數學教師要拓展視野,在教學中滲透數學思想,為學生的終身發展奠基。
❾ 小學數學教學設計的指導思想有哪些
一年級學生剛進入小學學習,新的學習和生活對孩子們來說充滿了好奇和有趣,對學校、對環境、對老師、對同學、對課堂、對學習、對學校的要求都充滿了新鮮感。同時他們年齡小,好動、易興奮、易疲勞,注意力容易分散,尤其是剛入學時,40分鍾的課堂學習對於他們來說真的很難!然而「學會傾聽」是新課標中對一年級小學生提出的一項重要目標。現代心理學證明,注意力集中的學生,聽課效率和學習水平遠遠高於注意力分散的學生。針對這些特點,我得想方設法運用各種手段來激發學生專心聽講的興趣,從而培養好習慣。首先在課堂語言上要力求兒童化和趣味化。其次,讓學生有盡可能多的回答問題的機會,促使他們始終處於積極主動的學習狀態。對於學習有困難的學生及時個別輔導,對於優秀生盡量讓他「吃得飽」。
二、本學期教學的指導思想
1、根據兒童發展的生理和心理特徵培養學生自主探索的能力。重視以學生的已有經驗知識和生活經驗為基礎,提供學生熟悉體情景,幫助學生理解數學知識。
2、增加聯系實際的內容,為學生了解現實生活中的數學,感受數學與日常生活的密切聯系。
3、注意選取富有兒童情趣的學習素材和活動內容,激發學生的學習興趣,獲得愉悅的數學學習體驗。
4、重視引導學生自主探索,合作交流的學習方式,讓學生在合作交流與自主探索的氣氛中學習。
5、把握教學要求,促進學生發展適當改進評價學生的方法,比如建立學生課堂發言的「奇思妙語錄」等。
三、教學內容
這一冊教材包括下面一些內容:數一數,比一比,10以內數的認識和加減法,認識圖形,分類,11~20各數的認識,認識鍾表,20以內的進位加法,用數學,數學實踐活動。這一冊的重點教學內容是10以內的加減法和20以內的進位加法。這兩部分內容和20以內的退位減法(一般總稱一位數的加法和相應的減法)是學生學習認數和計算的開始,在日常生活中有廣泛的應用,同時它們又是多位數計算的基礎。因此,一位數的加法和相應的減法是小學數學中最基礎的內容,是學生終身學習與發展必備的基礎知識和基本技能,必須讓學生切實掌握。
除了認數和計算以外,教材安排了常見幾何圖形的直觀認識,比較多少、長短和高矮,簡單的分類,以及初步認識鍾面等。雖然每一單元的內容都不多,但是都很重要,有利於學生了解數學的實際應用,培養學生學習數學的興趣。
四、本學期教學的主要目的要求
(一)、知識和技能方面
1、使學生正確地數出不同物體的個數。逐步抽象出數,能區分「幾個」和「第幾個」熟練地掌握10以內的組成,會正確,工整地書寫數字。
2、使學生認識計數單位「一」和「十」,初步理解個位和十位上的數所表示的意義,能熟練地數出20以內的數,正確地讀、寫20以內的數,掌握20以內的數是由一個十和幾個一組成的。掌握20以內的數的順序,會比較20以內數的大小。
3、使學生初步認識=、>、<三種符號,會使用這些符號表示數的大小。
4、使學生初步知道加和減法的含義,直觀地了解加法交換律和加法與減法的關系,能熟練地口算10以內的加減法和20以內的進位加法。能比較熟練地計算20以內的連加、連減和加減混合運算式題。
5、使學生會根據加、減法的含義解答比較容易的加減法一步計算的圖文應用題。知道題目中的條件和問題。知道題目中的條件和問題,會列出算式,註明得數的單位名稱,口述答案,能看實物或直觀圖口述題意,簡單的講述和與求剩餘的數量關系。
6、使學生直觀地認識長方體、正方體、圓柱和球。對這些圖形有初步的了解。
7、結合主題圖和插圖及有關數據,對學生進行愛祖國、愛科學的教育,培養學生認真做題,正確計算,書寫整潔的良好習慣,學會有條理,有根據地思考問題。
(二)、數學思考方面
1、能運用生活經驗,對有關數學信息作出解釋,並初步學會用具體的數據描繪現實世界中的簡單現象。
2、能對簡單物體和圖形的形狀、大小、位置關系、運動的探索過程中,發展空間觀念。
3、在教師的幫助下,初步學會選擇有用的信息進行簡單的歸納和類比。
(三)、解決問題方面
1、經歷從生活中發現並提出問題、解決問題的過程,體驗數學與日常生活的密切聯系,感受數學在日常生活中的作用。
2、了解同一問題可以有不同的解決辦法。
3、有與同學合作解決問題的經驗。
4、初步學會表達解決問題的大致過程和結果。
(四)、情感與態度方面
1、在他人的鼓勵和幫助下,對身邊與數學有關的某些事物有好奇心,能積極參與生動、直觀的教學活動。
2、在他人的鼓勵和幫助下,能克服在數學活動中遇到的某些困難,獲得成功的體驗,有學好數學的信心。
3、經歷觀察、操作、歸納等學習數學的過程,感受數學思考過程的合理性。
4、在他人的指導下,能夠發現數學活動中的錯誤,並及時改正。
5、體會學習數學的樂趣,提高學習數學的興趣,建立學好數學的信心。
6、使學生從小養成認真學習、認真作業、書寫整潔的良好習慣。
五、本學期提高教學質量的具體措施
1、從學生的年齡特點出發,多採取游戲式的教學,引導學生樂於參與數學學習活動。
2、在課堂教學中,注意多一些有利於孩子理解的問題,而不是一味的難、廣。應該考慮學生實際的思維水平,多照顧中等生以及思維偏慢的學生。
3、布置一些比較有趣的作業,比如動手的作業,少一些呆板的練習。
4、加強家庭教育與學校教育的聯系,適當教給家長一些正確的指導孩子學習的方法。
❿ 如何運用小學數學教學的分類思想
一、分類——讓概念的引用無痕化
數學對於大多數學生來說是一門比較復雜的學科。因此,對有些數學概念的講授,教師一定要明確說明,並舉出相似概念間的異同點,這樣就能有效防止學生各個相似概念之間發生混淆、導致分類錯誤情況的發生。這不利於學生知識之間發生同化、順應的反應,也就不利於學生及時有效地吸收理解知識。因此,小學數學教材中分類思想的應用首先就是要採用合適的方法,幫助學生明確各概念的基本內容。比如:教學「等邊三角形」概念的時候,可以採用以下的教學方式。若三角形的一個角也就是角A為60度,其餘兩個角分別是角B和角C,那麼它是什麼三角形?在這個題目當中,我們要有一定的分類思想,要根據三角形的角度或者邊來進行劃分。第一,我們就以角度為標准將三角形進行劃分。首先三角形的一個角為60度,那麼可以肯定這個三角形至少有一個銳角了,另兩個角的和加起來就是120度,所以當角B為鈍角時,那麼角C為銳角,此三角形就有兩個銳角,一個鈍角,因此三角形ABC是鈍角三角形。如果角B是銳角,角C也是銳角,那麼這個三角形就是銳角三角形;如果角B或者角C當中有一個是直角,那麼這個三角形就是直角三角形。如果將三角形按照邊來劃分,首先,它可以是一個等腰三角形,因為只要保證三角形兩邊相等就可以推斷出來。它可不可能是一個等邊三角形呢,我們都知道等邊三角形的三個角都是60度,而這個三角形已經有一個角是60度了,那麼另外兩個角可以調整,因此若角B和角C都是60度,那麼這個三角形是等邊三角形。
二、分類——讓復雜的問題簡單化
數學學習的本質是學生在教師的引導下能動的組建認知結構,並使自己得到全面發展的過程。分類中的逐級討論,可以使學生思維互補深入。應用分類,可以化整為零,對每種情況分別討論,各個擊破,再合零為整,可以使看似復雜的問題變得簡單。分類思想能更快更好的幫助學生理解知識之間的本質聯系,這樣有助於提高解題效率。比如教師在教「奇數」、「偶數」、「質數」、「合數」概念的時候,可以通過向學生提出以下問題來達到教學目的。在1到10之間的整數(不包括1和10)當中,按照不同的分類標准進行分類,會有多少種結果呢?首先,1到10的整數是2、3、4、5、6、7、8、9八個數字。按照整數的奇偶性來劃分,1到10之間的奇數有3、5、7、9四個整數,偶數有2、4、6、8四個整數;如果按照質數與合數來劃分,那麼1到10之間的質數有3、5、7三個整數,合數有4、6、8、9四個整數。