導航:首頁 > 小學學科 > 小學數學機器人數圖形

小學數學機器人數圖形

發布時間:2020-12-07 23:09:49

小學數學圖形題目

◆小學數學圖形題
懸賞分:0 - 解決時間:2008-2-9 15:18
△-□=2.8,□+○=9.2,△+○=△△△,那麼,△,○,□,分別等於幾?
提問者: 善良天使的翅膀 - 試用期 一級 最佳答案
由△+○=△△△,兩邊同時減去△,可得○=2△
將□+○=9.2轉換為□+2△=9.2
用式1+式2,
得△-□+□+2△=2.8+9.2
3△=12
△=4
根據△=4,則○=2×4=8
4-□=2.8,
□=1.2
回答者: 葉天驕 - 經理 四級 2-4 15:14
◆小學數學圖形題 求解
懸賞分:5 - 解決時間:2005-12-14 23:16
一個長方形,如果長增加2厘米,寬增加5厘米,那麼面積增加60平方厘米,這時恰好是一個正方形.原來長方形的面積是多少平方厘米?

要過程,謝謝!
問題補充:謝謝回答的朋友!由於我的標題寫錯了,不是要解設.需要列式計算的方法做出本題.本人小學生,再次感謝大家幫忙!
提問者: Bewon - 魔法學徒 一級 最佳答案
設長為a,寬為b
a+2=b+5
(a+2)(b+5)=ab+60
解得a=8 b=5
ab=40
原來的長方形面積為40平方厘米
回答者: Battle_II - 經理 五級 12-14 22:16
◆小學數學圖形題 求解
一個長方形,如果長增加2厘米,寬增加5厘米,那麼面積增加60平方厘米,這時恰好是一個正方形.原來長方形的面積是多少平方厘米?

要過程,謝謝!
12個 伴讀書童
最佳答案 - 由投票者2008-06-06 03:54:43選出
設長為a,寬為b
a+2=b+5
(a+2)(b+5)=ab+60
解得a=8 b=5
ab=40
原來的長方形面積為40平方厘米

2008-06-06 03:54:43 - 檢舉

② 在小學數學中,圖形的面積是如何編排的

現在一般是兩年級左右學正方形和長方形(長x寬 最簡單 計算方便 符合低年級學生能力)

平行四邊形好像是4年級學, 因為計算方法和長方形正方形類似 也很簡便
組合圖形3年級就有了 不過是一些容易的 比如幾個正方形和一個長方形。。

5年級會有三角形 梯形,三角形是在平行四邊形的基礎上去掉一半 又進了一層,梯形也是以橫向的兩個梯形拼成的平行四邊形為基礎再除以2 【(上底+下底)X高÷2】 計算步驟逐漸開始多了,這時的五年級學生計算能力也完全跟得上
同樣五年級也是組合圖形最多的時候,也是最難的時候。有幾本練習冊最後幾十頁全是組合圖形,一半左右都是難題(不分思考題,全部的一半都是難題!)

六年級,上半學期末會學圓形和扇形,因為要用到圓周率π,計算會很復雜,計算錯誤率也高,很多人計算能力會開始跟不上,尤其是扇形,在圓形的基礎上乘以360之圓心角 當然這時的組合圖形幾乎道道都能算思考題

另外1 2年級做教材附帶的練習冊就夠了 3~5年級推薦每日精煉 6年級可以買同步精煉 不過其中有 拓展練習 和 頭腦風暴 的部分很難;也可以買世紀精煉

附:1~6年級的所有圖形都是在平行四邊形的基礎上求得的 利用割補、翻轉、移動圖形的方法改動平行四邊形 所以說平行四邊形是最重要的

正方形
長方形--平行四邊形--圓形
三角形 扇形
梯形

③ 小學數學空間與圖形資料

課題 認識物體 內容 北師大版數學第二冊64-67頁 課型 新授
教學目標 1.通過實物和模型辨認長方體、正方體、圓柱和球等立體圖形,知道它們的名稱並能識別。
2.學生在看一看、分一分、玩一玩、摸一摸的實踐活動中,經歷認識長方體、正方體、圓柱和球的認識過程,建立初步的空間觀念。
3.鼓勵學生積極參與數學游戲,增強主動參與,樂於合作的意識,感受數學學習的樂趣。
重點 認識長方體、正方體、圓柱和球的特徵。 難點 正確區分長方體和正方體。 關鍵 在看一看、分一分、玩一玩、摸一摸的實踐活動中,經歷認識長方體、正方體、圓柱和球的認識過程,建立初步的空間觀念。
教學准備 教師 1、多媒體課件。
2、准備顏色、大小不一的長方體、正方體、圓柱、球的模型若干,分成5組。
學生 准備形狀為長方體、正方體、圓柱、球的實物。
環節時間 教 學 內 容 師 生 活 動 復 案
一、興趣導入:
1、 今天老師問你們一個最容易的問題:我是誰?你是怎麼記住的?
2、 師小結:其實認識一個人或認識一個事物方法很簡單——只要仔細觀察知道他張的什麼樣子(即:了解他的特點),再知道他叫什麼名字就可以了。
3、 今天我們就用這種方法來認識物體好嗎?板書課題

二、認識物體:
藉助實物,感知形狀。
1、 你們在課前收集了很多各種形狀的物體,舉起來給大家看看,誰願意把你帶來的物體介紹一下:你帶來的是什麼?它是什麼樣子的?(學生介紹)
2、 為幫助大家認識物體,老師為同學們准備了小禮物。請小組長領禮物。(教師按組發模型)
3、 你能將形狀相同的物體放一起嗎?先在小組里討論,再按照討論得出的方法分一分。
4、 學生分類後,課件演示分類的方法。
動手實踐,感受特徵。
1、 找出自己最喜歡的物體,用手來摸一摸,數一數,然後在組內說一說它的特點,能給它起個名字嗎?
2、 指名介紹,其他同學補充。
3、 區分長方體與正方體:他們那裡不同?找出來說一說。
4、 師小結:像這樣,六個面一模一樣的是正方體,六個面不都一樣的是長方體。
5、 我們知道了它們的名稱,現在你把這些物體在桌面上滾一滾,比較一下,它們之間有什麼不同?邊做邊在組內說一說你的發現。
6、 引導:這類物體叫什麼名字?為什麼叫球體呢?像彈力球、乒乓球這樣的物體我們就叫做球體。
7、 游戲:你說我擺。
抽象圖形,二次分類。
1、 說一說:生活中還有什麼物體的形狀是長方體、正方體、圓柱或球。
2、 現在我們脫去它們的花外衣,你還能認出它們嗎?誰來給它們找找自己的家。(課件演示)
3、 閉上眼睛,想一想這四種形狀。在我們的周圍,還有哪些物體的形狀是長方體、正方體、圓柱、球呢?看誰找得多、說得准?
4、 小結:生活中這些形狀的物體隨處可見,用處可大了。

三、練習鞏固:
1、 同學們找的多說的准,說明你們學的特別快,下面我們做一組練習,檢驗一下自己的學習成果。
1、 說出下面物品的形狀。(圖略)
2、 數一數。
這道題是什麼意思?現在同學們數一數,然後填上後再想一想你是怎麼數的?
四、總結:
板書設計
課後反思

④ 小學數學圖形題好難做

現在的數學題都比較難做,因為都是開拓腦不識路的,比以前的難多了。

⑤ 小學數學所有圖形公式

1 每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數 2 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數 3 速度×時間=路程 路程÷速度=時間 路程÷時間=速度 4 單價×數量=總價 總價÷單價=數量 總價÷數量=單價 5 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率 6 加數+加數=和 和-一個加數=另一個加數 7 被減數-減數=差 被減數-差=減數 差+減數=被減數 8 因數×因數=積 積÷一個因數=另一個因數 9 被除數÷除數=商 被除數÷商=除數 商×除數=被除數 小學數學圖形計算公式 1 正方形 C周長 S面積 a邊長 周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a 2 正方體 V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a 3 長方形 C周長 S面積 a邊長 周長=(長+寬)×2 C=2(a+b) 面積=長×寬 S=ab 4 長方體 V:體積 s:面積 a:長 b: 寬 h:高 (1)表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh) (2)體積=長×寬×高 V=abh 5 三角形 s面積 a底 h高 面積=底×高÷2 s=ah÷2 三角形高=面積 ×2÷底 三角形底=面積 ×2÷高 6 平行四邊形 s面積 a底 h高 面積=底×高 s=ah 7 梯形 s面積 a上底 b下底 h高 面積=(上底+下底)×高÷2 s=(a+b)× h÷2 8 圓形 S面積 C周長 ∏ d=直徑 r=半徑 (1)周長=直徑×∏=2×∏×半徑 C=∏d=2∏r (2)面積=半徑×半徑×∏ 9 圓柱體 v:體積 h:高 s;底面積 r:底面半徑 c:底面周長 (1)側面積=底面周長×高 (2)表面積=側面積+底面積×2 (3)體積=底面積×高 (4)體積=側面積÷2×半徑 10 圓錐體 v:體積 h:高 s;底面積 r:底面半徑 體積=底面積×高÷3 總數÷總份數=平均數 和差問題的公式 (和+差)÷2=大數 (和-差)÷2=小數 和倍問題 和÷(倍數-1)=小數 小數×倍數=大數 (或者 和-小數=大數) 差倍問題 差÷(倍數-1)=小數 小數×倍數=大數 (或 小數+差=大數) 植樹問題 1 非封閉線路上的植樹問題主要可分為以下三種情形: ⑴如果在非封閉線路的兩端都要植樹,那麼: 株數=段數+1=全長÷株距-1 全長=株距×(株數-1) 株距=全長÷(株數-1) ⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼: 株數=段數=全長÷株距 全長=株距×株數 株距=全長÷株數 ⑶如果在非封閉線路的兩端都不要植樹,那麼: 株數=段數-1=全長÷株距-1 全長=株距×(株數+1) 株距=全長÷(株數+1) 2 封閉線路上的植樹問題的數量關系如下 株數=段數=全長÷株距 全長=株距×株數 株距=全長÷株數 盈虧問題 (盈+虧)÷兩次分配量之差=參加分配的份數 (大盈-小盈)÷兩次分配量之差=參加分配的份數 (大虧-小虧)÷兩次分配量之差=參加分配的份數 相遇問題 相遇路程=速度和×相遇時間 相遇時間=相遇路程÷速度和 速度和=相遇路程÷相遇時間 追及問題 追及距離=速度差×追及時間 追及時間=追及距離÷速度差 速度差=追及距離÷追及時間 流水問題 順流速度=靜水速度+水流速度 逆流速度=靜水速度-水流速度 靜水速度=(順流速度+逆流速度)÷2 水流速度=(順流速度-逆流速度)÷2 濃度問題 溶質的重量+溶劑的重量=溶液的重量 溶質的重量÷溶液的重量×100%=濃度 溶液的重量×濃度=溶質的重量 溶質的重量÷濃度=溶液的重量 利潤與折扣問題 利潤=售出價-成本 利潤率=利潤÷成本×100%=(售出價÷成本-1)×100% 漲跌金額=本金×漲跌百分比 折扣=實際售價÷原售價×100%(折扣<1) 利息=本金×利率×時間 稅後利息=本金×利率×時間×(1-20%)

⑥ 小學數學所有所學圖形立體圖形周長表面積以及體積公式

小學數學公式大全
1、長方形的周長=(長+寬)×2 C=(a+b)×2
2、正方形的周長=邊長×4 C=4a
3、長方形的面積=長×寬S=ab
4、正方形的面積=邊長×邊長 S=a.a= a
5、三角形的面積=底×高÷2 S=ah÷2
6、平行四邊形的面積=底×高S=ah
7、梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2
8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2
9、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr
10、圓的面積=圓周率×半徑×半徑 ?=πr
11、長方體的表面積=(長×寬+長×高+寬×高)×2
12、長方體的體積=長×寬×高 V =abh
13、正方體的表面積=棱長×棱長×6 S =6a
14、正方體的體積=棱長×棱長×棱長 V=a.a.a= a
15、圓柱的側面積=底面圓的周長×高S=ch
16、圓柱的表面積=上下底面面積+側面積
S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch
17、圓柱的體積=底面積×高V=Sh
V=πr h=π(d÷2) h=π(C÷2÷π) h
18、圓錐的體積=底面積×高÷3
V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3
19、長方體(正方體、圓柱體)的體
1、每份數×份數=總數總數÷每份數=份數總數÷份數=每份數
2、 1倍數×倍數=幾倍數幾倍數÷1倍數=倍數幾倍數÷倍數=1倍數
3、速度×時間=路程路程÷速度=時間路程÷時間=速度
4、單價×數量=總價總價÷單價=數量總價÷數量=單價
5、工作效率×工作時間=工作總量工作總量÷工作效率=工作時間工作總量÷工作時間=工作效率
6、加數+加數=和和-一個加數=另一個加數
7、被減數-減數=差被減數-差=減數差+減數=被減數
8、因數×因數=積積÷一個因數=另一個因數
9、被除數÷除數=商被除數÷商=除數商×除數=被除數
小學數學圖形計算公式
1 、正方形C周長 S面積 a邊長周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a
2 、正方體V:體積 a:棱長表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a
3 、長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 、長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積×2÷底
三角形底=面積×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長∏d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或小數+差=大數)
植樹問題
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
時間單位換算
1世紀=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 閏年2月29天
平年全年365天, 閏年全年366天
1日=24小時 1時=60分
1分=60秒 1時=3600秒積=底面積×高 V=Sh

第一部分:概念

1、加法交換律:兩數相加交換加數的位置,和不變。

2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。

3、乘法交換律:兩數相乘,交換因數的位置,積不變。

4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。

5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。

如:(2+4)×5=2×5+4×5

6、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。

簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。

7、什麼叫等式?等號左邊的數值與等號右邊的數值相等的式子叫做等式。

等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。

8、什麼叫方程式?答:含有未知數的等式叫方程式。

9、 什麼叫一元一次方程式?答:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。

學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。

10、分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。

11、分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。

12、分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。
異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。

13、分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。

14、分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。

15、分數除以整數(0除外),等於分數乘以這個整數的倒數。

16、真分數:分子比分母小的分數叫做真分數。

17、假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。

18、帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。

19、分數的基本性質:分數的分子和分母同時乘以或除以同一個數

(0除外),分數的大小不變。

20、一個數除以分數,等於這個數乘以分數的倒數。

21、甲數除以乙數(0除外),等於甲數乘以乙數的倒數。

分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。

分數的乘法則:用分子的積做分子,用分母的積做分母。

22、什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3

比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。

23、什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18

24、比例的基本性質:在比例里,兩外項之積等於兩內項之積。

25、解比例:求比例中的未知項,叫做解比例。如3:χ=9:18

26、正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k( k一定)或kx=y

27、反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。 如:x×y = k( k一定)或k / x = y

28、百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。

29、把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。

30、把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。

31、把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。

32、把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。

33、要學會把小數化成分數和把分數化成小數的化發。

34、最大公約數:幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的最大公約數。(或幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做最大公約數。)

35、互質數: 公約數只有1的兩個數,叫做互質數。

36、最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。

37、通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)

38、約分:把一個分數化成同它相等,但分子、分母都比較小的分數,叫做約分。(約分用最大公約數)

39、最簡分數:分子、分母是互質數的分數,叫做最簡分數。

40、分數計算到最後,得數必須化成最簡分數。

41、個位上是0、2、4、6、8的數,都能被2整除,即能用2進行

42、約分。個位上是0或者5的數,都能被5整除,即能用5進行約分。在約分時應注意利用。

43、偶數和奇數:能被2整除的數叫做偶數。不能被2整除的數叫做奇數。

44、質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。

45、合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。

46、利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)

47、利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。

48、自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。

49、循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。如3. 141414

50、不循環小數:一個小數,從小數部分起,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做不循環小數。如圓周率:3. 141592654

51、無限不循環小數:一個小數,從小數部分起到無限位數,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限不循環小數。如3. 141592654……

52、什麼叫代數? 代數就是用字母代替數。

53、什麼叫代數式?用字母表示的式子叫做代數式。如:3x=ab+c

第二部分:定義定理

一、算術方面

1.加法交換律:兩數相加交換加數的位置,和不變。

2.加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第

三個數相加,和不變。

3.乘法交換律:兩數相乘,交換因數的位置,積不變。

4.乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。

5.乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×5。

6.除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。0除以任何不是0的數都得0。

7.等式:等號左邊的數值與等號右邊的數值相等的式子叫做等式。
等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。

8.方程式:含有未知數的等式叫方程式。

9.一元一次方程式:含有一個未知數,並且未知數的次數是一次的等式叫做一元一次方程式。

學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。

10.分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。

11.分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。

12.分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。
異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。

13.分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。

14.分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。

15.分數除以整數(0除外),等於分數乘以這個整數的倒數。

16.真分數:分子比分母小的分數叫做真分數。

17.假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。

18.帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。

19.分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。

20.一個數除以分數,等於這個數乘以分數的倒數。

21.甲數除以乙數(0除外),等於甲數乘以乙數的倒數。

第三部分:幾何體
1.正方形
正方形的周長=邊長×4 公式:C=4a
正方形的面積=邊長×邊長 公式:S=a×a
正方體的體積=邊長×邊長×邊長 公式:V=a×a×a
2.正方形
長方形的周長=(長+寬)×2 公式:C=(a+b)×2
長方形的面積=長×寬 公式:S=a×b
長方體的體積=長×寬×高公式:V=a×b×h
3.三角形

三角形的面積=底×高÷2。 公式:S= a×h÷2
4.平行四邊形
平行四邊形的面積=底×高 公式:S= a×h
5.梯形
梯形的面積=(上底+下底)×高÷2 公式:S=(a+b)h÷2
6.圓
直徑=半徑×2 公式:d=2r
半徑=直徑÷2 公式:r=d÷2
圓的周長=圓周率×直徑 公式:c=πd =2πr
圓的面積=半徑×半徑×π 公式:S=πrr
7.圓柱
圓柱的側面積=底面的周長×高。公式:S=ch=πdh=2πrh
圓柱的表面積=底面的周長×高+兩頭的圓的面積。 公式:S=ch+2s=ch+2πr2
圓柱的總體積=底面積×高。公式:V=Sh
8.圓錐
圓錐的總體積=底面積×高×1/3 公式:V=1/3Sh

三角形內角和=180度。
平行線:同一平面內不相交的兩條直線叫做平行線
垂直:兩條直線相交成直角,像這樣的兩條直線,
我們就說這兩條直線互相垂直,其中一條直線叫做另一條直線的垂線,這兩條直線的交點叫做垂足。

第四部分:計算公式

數量關系式:
1、每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數
2、 1倍數×倍數=幾倍數幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數
3、速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率
6、加數+加數=和 和-一個加數=另一個加數
7、被減數-減數=差 被減數-差=減數 差+減數=被減數
8、因數×因數=積 積÷一個因數=另一個因數
9、被除數÷除數=商 被除數÷商=除數 商×除數=被除數

******************************************************
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或小數+差=大數)
******************************************************
植樹問題:
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
******************************************************
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
******************************************************
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
******************************************************
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
******************************************************
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
******************************************************
濃度問題:
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
******************************************************
利潤與折扣問題:
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
******************************************************
面積,體積換算
(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米
(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米
(4)1公頃=10000平方米 1畝=666.666平方米
(5)1升=1立方分米=1000毫升 1毫升=1立方厘米
******************************************************
重量換算:
1噸=1000 千克
1千克=1000克
1千克=1公斤
******************************************************
人民幣單位換算
1元=10角
1角=10分
1元=100分
******************************************************
時間單位換算:
1世紀=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 閏年2月29天
平年全年365天, 閏年全年366天
1日=24小時 1時=60分
1分=60秒 1時=3600秒

⑦ 小學數學數圖形...

(1)最大三角形面抄積為:
(1+3+5+…+9)×12
=((1+9)×5÷2〕×12
=300(厘米2)。

(2)火柴棍的數目為:
3+6+9+…+15
=(3+15)×5÷2=45(根)。

答:最大三角形的面積是300平方厘米,整個圖形由45根火柴擺成。

⑧ 小學數學全部的圖形的公式

圖形的周長、面積及體積:
(1)周長(外周圍的長度)
C長方形 =(長+寬) ×2
C平行四邊形=相鄰兩邊長之和的2倍
C正方形=邊長×4
C圓=2πr(r為半徑)= πd(d為直徑)
C梯形=兩底長+兩腰長
(2)面積
S△=底×高÷2 =ah÷2
S長方形=長×寬=ab
S平行四邊形=底×高=ab
S正方形=邊長的平方a^2
S圓=πr^2(r是半徑)
S梯形=(上底+下底) ×高÷2 =h(a+b)÷2

圓柱體的計算公式如下:
圓柱體側面積公式:側面積=底面周長×高 S側=C底×h
圓柱體的表面積公式:表面積=2πr2+底面周長×高 S表=S底+C底×h
圓柱體的體積公式:體積=底面積×高 V圓柱=S底×h

長方體的體積公式:
長方體的體積=長X寬X高
如果用a、b、h分別表示長方體的長、寬、高則公式為:V長=abh

正方體的表面積公式:
表面積=棱長×棱長×6 S正=6a^2
正方體的體積公式:
正方體的體積=棱長×棱長×棱長=a·a·a=a^3

圓錐體的體積=1/3×底面面積×高 V圓錐=1/3×S底×h

⑨ 小學數學《圖形的運動》有哪些類型

小學數學《圖形的運動》有三種類型,分別是平行,旋轉,軸對稱。

平行是在平面上兩條直線、空間的兩個平面以及空間的一條直線與一平面之間沒有任何公共點時,稱它們平行。如圖直線AB平行於直線CD,記作AB∥CD,平行線在無論多遠都不相交。

旋轉是物體圍繞一個點或一個軸做圓周運動。如地球繞地軸旋轉,同時也圍繞太陽旋轉。(《新華字典》(第11版)[1]及《現代漢語詞典》(第7版)[2]讀音均為xuánzhuǎn;但天旋地轉的轉為zhuàn無爭議。)數學中,旋轉是圖形運動的一種。

軸對稱是如果一個平面圖形沿著一條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形(a figure has reflectional symmetry),這條直線叫做對稱軸。

平行,旋轉,軸對稱都是圖形運動的基本類型。

(9)小學數學機器人數圖形擴展閱讀

直線與曲面也是可以平行的,曲面與曲面也可以是平行的(這就如同平面與平面是可以平行的一樣),當然曲線與曲線也可以是平行的。

在平面內,將某個圖形,繞一個頂點沿某個方向旋轉一個角度,這樣的圖形運動稱為旋轉。在平面內,把一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動稱為旋轉。點O叫做旋轉中心,旋轉的角叫做旋轉角,如果圖形上的點P經過旋轉變為點Pˊ,那麼這兩個點叫做這個旋轉的對應點。

成軸對稱的兩個圖形全等,如果兩個圖形成軸對稱,那麼對稱軸是對稱點連線的垂直平分線。

參考資料來源

網路-軸對稱

網路-平行

網路-旋轉


⑩ 小學數學圖形與位置

「空間與圖形」內容包括圖形的認識與測量、圖形與變換、圖形與位置三部分。
一、圖形的認識與測量,有平面圖形→立體圖形。無論是平面圖形,還是立體圖形,都可以歸結為圖形特徵的認識,圖形周長、面積、體積的測量與計算這樣兩個方面的內容。以及圖形認識與測量的簡單實際應用。
二、圖形與變換,有軸對稱、平移、旋轉三種基本的幾何變換。還有作圖操作、利用比例知識計算面積等知識。
三、圖形與位置,確定物體的相對位置,辨認方向和使用路線圖(包括比例尺的應用)。
兩條基本線索是:確定物體相對位置的兩種方式,即根據方向、距離確定物體的位置和用數對表示位置
圖形與位置需要用到角、距離等知識,此外還有數對、比例尺等知識。

閱讀全文

與小學數學機器人數圖形相關的資料

熱點內容
小學讀書計劃表格模板 瀏覽:342
小學語文四年級感嘆句 瀏覽:243
天通苑中山實驗小學 瀏覽:596
小學三年級語文補習班內容 瀏覽:921
吉安師范附屬小學作文 瀏覽:396
小學教師備課網站 瀏覽:1
私立美男學院 瀏覽:383
小學六年級上冊語文第六單元試卷涼州島 瀏覽:915
小學1年級手gong大全 瀏覽:459
小學生手抄報的圖片大全圖片大全 瀏覽:68
小學健康知識講座 瀏覽:120
小學畢業季適合發老師的句子 瀏覽:451
汕尾鳳山中心小學校長 瀏覽:606
小學生畢業匯演舞蹈 瀏覽:702
小學生抗擊疫情的表演 瀏覽:107
私立華聯大學本科 瀏覽:61
小學三年級作文我想謝謝你400 瀏覽:855
中小學生睡眠問題 瀏覽:174
小學生公共生活守規則教案 瀏覽:313
淮河私立學校 瀏覽:99