Ⅰ 小學四年級生活中的數學知識
1、加法:把兩個數合並成一個數的運算。
2、減法:已知兩個數的和與其中一個加數,求另一個加數的運算。
3、乘法:求相同加數和的簡便計算。
4、除法:已知兩個因數的積和其中一個因數,求另一個因數的運算。
小數四則運算的運算順序和整數四則運算順序相同。
分數四則運算的運算順序和整數四則運算順序相同。
Ⅱ 小學四年級下冊數學復習資料
小學四年級下冊數學復習知識點總結:
第一單元 四則運算
(一)四則運算的運算順序:
1,在沒有括弧的算式里,如果只有加,減法或者只有乘,除法,都要從左往右按順序計算.
2,在沒有括弧的算式里,有乘,除法和加,減法,要先算乘除法,再算加減法.
3,算式有括弧,要先算括弧裡面的,再算括弧外面的;括弧裡面的算式計算順序遵循以上的計算順序.
(二)關於"0"的運算:
1,"0"不能做除數; 字母表示:a÷0錯誤
2,一個數加上0還得原數; 字母表示:a+0= a
3,一個數減去0還得原數; 字母表示:a-0= a
4,被減數等於減數,差是0; 字母表示:a-a = 0
4,一個數和0相乘,仍得0; 字母表示:a×0= 0
5,0除以任何非0的數,還得0; 字母表示:0÷a(a≠0)= 0
第二單元 位置與方向
復習目標:
1,能根據任意方向和距離確定物體的位置.
2,對任意角度具體方向能夠准確描述.
3,能准確的量出物體所在位置的角度及正確畫出路線圖
確定物體的位置需要的條件——方向、距離。
一般我們把東、南、西、北這四個方向稱為正方向。這個30°角是怎麼形成的?
我們一般就把這個角的正方向說在前,這個方位就應該是:東偏北30°。
如果量出30°上面的角是60°,那該怎麼描述呢?北偏東60°
② 距離:
我們根據圖例,知道圖上的一厘米代表10千米, 所以要在這條線上按1厘米平均分份。
平均分成了3份,說明藍軍距離炮兵連30千米。
③ 現在,你知道司令員應怎樣表示藍軍的位置嗎?
藍軍在炮兵連的東偏北30°方向30千米處。
注意步驟:
確定方向時:先確定正方向,再量角度。
確定距離時:根據單位長度,測量推算。
根據路線圖說一說每一賽段所走的方向和路程
從起點到觀測點1:東偏北約30°,距離:( )米。
從觀測點1到觀測點2:西偏北30°,距離:( )米。
從觀測點2到終點:西偏南45°,距離:( )米。
第三單元 運算定律與簡便運算
(一)加法運算定律:
1,兩個加數交換位置,和不變,這叫做加法交換律.
字母公式:a+b=b+a
2,先把前兩個數相加,或者先把後兩個數相加,和不變,這叫做加法結合律.
字母公式:(a+b) +c=a+(b+c)
(二)乘法運算定律:
1,交換兩個因數的位置,積不變,這叫做乘法交換律.
字母公式:a×b=b×a
2,先乘前兩個數,或者先乘後兩個數,積不變,這叫做乘法結合律.
字母公式:(a×b)×c=a×(b×c)
3,兩個數的和與一個數相乘,可以先把它們與這個數分別相乘,再相加,這叫做乘法分配律.
用字母公式:(a+b)×c=a×c+b×c 或 a×(b+c) =a×b+a×c
拓展:(a-b)×c=a×c-b×c 或 a×(b-c) =a×b-a×c
(三)減法簡便運算:
1,一個數連續減去兩個數,可以用這個數減去這兩個數的和.
用字母表示:a-b-c=a-(b+c)
2,一個數連續減去兩個數,可以用這個數先減去後一個數再減去前一個數.
用字母表示:a-b-c=a—c-b
(四)除法簡便運算:
1,一個數連續除以兩個數,可以用這個數除以這兩個數的積.
用字母表示:a÷b÷c=a÷(b×c)
2,一個數連續除以兩個數,可以用這個數先除以後一個數再除以前一個數.
用字母表示:a÷b÷c=a÷c÷b
第四單元 小數的意義和性質
1,小數的計數單位是十分之一,百分之一,千分之一……分別寫作0.1, 0.01, 0.001……
2,每相鄰兩個記數單位間的進率是(10).
3,小數的數位是十分位,百分位,千分位……最高位是十分位.整數部分的最低位是個位.個位和十分位的進率是10.
4, 小數的數位順序表
5,小數的讀法:先讀整數部分(按照原來的讀法),再讀小數點,再讀小數部分.讀小數部分,小數部分要依次讀出每個數字,而且有幾個0就讀幾個0.
6,小數的寫法:先寫整數部分(按照原來的寫法),再寫小數點,再小數部分:寫小數部分,小數部分要依次寫出每個數字,而且有幾個0就寫幾個0.
7,小數的性質:小數的末尾添上"0"或者去掉"0",小數的大小不變.
8,小數的大小比較:(1) 先比較整數部分;(2)如果整數部分相同,就比較十分位;(3)十分位相同,就比較百分位;(4)以此類推,直到比較出大小.
9,小數點的移動
小數點向右移:
移動一位,小數就擴大到原數的10倍;
移動兩位,小數就擴大到原數的100倍;
移動三位,小數就擴大到原數的1000倍;
移動四位,小數就擴大到原數的10000倍;……
小數點向左移:
移動一位,小數就縮小10倍,即小數就縮小到原數的1/10;
移動兩位,小數就縮小100倍,即小數就縮小到原數的1/100;
移動三位,小數就縮小1000倍,即小數就縮小到原數的1/1000;
移動四位,小數就縮小10000倍,即小數就縮小到原數的1/10000;……
10,生活中常用的單位:
重量: 1噸=1000千克; 1千克=1000克
長度: 1千米=1000米 1分米=10厘米 1厘米=10毫米
1分米=100毫米 1米=10分米=100厘米=1000毫米
面積: 1平方米= 100平方分米 1平方分米=100平方厘米
1平方千米=100公頃 1公頃=10000平方米 1平方千米=1000000平方米
人民幣: 1元=10角 1角=10分 1元=100分
11,小數的近似數(用"四捨五入"的方法):
(1)保留整數,表示精確到個位,就是要把小數部分省略,要看十分位,如果十分位的數字大於或等於5則向前一位進一.如果小於五則舍.
(2)保留一位小數,表示精確到十分位,就要把第一位小數以後的部分全部省略, 這時要看小數的第二位,如果第二位的數字比5小則全部舍.反之,要向前一位進一.
(3)保留兩位小數,表示精確到百分位,就要把第二位小數以後的部分全部省略,這時要看小數的第三位,如果第三位的數字比5小則全部舍.反之,要向前一位進一.
(4)為了讀寫的方便,常常把不是整萬或整億的數改寫成用"萬"或"億"作單位的數.改寫成"萬"作單位的數就是小數點向左移4位,即在萬位的右邊點上小數點,在數的後面加上"萬"字.改寫成"億"作單位的數就是小數點往左移8位即在億位的右邊點上小數點,在數的後面加上"億"字.然後再根據小數的性質把小數末尾的零去掉即可.
第五單元 三角形
1,由三條線段圍成的圖形(每相鄰兩條線段的端點相連)叫做三角形.
2,從三角形的一個頂點到它的對邊做一條垂線,頂點到垂足之間的線段叫做三角形的高,這條邊叫做三角形的底.三角形只有3條高.
3,三角形具有穩定性.
4,三角形任意兩邊之和大於第三邊.
5,三個角都是銳角的三角形叫做銳角三角形.
6,有一個角是直角的三角形叫做直角三角形.
7,有一個角是鈍角的三角形叫做鈍角三角形.
8,每個三角形都至少有兩個銳角;每個三角形都最多有1個直角;每個三角形都最多有1個鈍角.
9,兩條邊相等的三角形叫做等腰三角形.
10,三條邊都相等的三角形叫等邊三角形,也叫正三角形.
11,等邊三角形是特殊的等腰三角形
12,三角形的內角和是180°.
13,四邊形的內角和是360°
14,用2個相同的三角形可以拼成一個平行四邊形.
15,用2個相同的直角三角形可以拼成一個平行四邊形,一個長方形,一個大三角形.
16,用2個相同的等腰的直角的三角形可以拼成一個平行四邊形,一個正方形.一個大的等腰的直角的三角形.
第六單元:小數的加法和減法
1,小數的加,減法要注意:小數點要對齊也就是把數位對齊,得數的末尾有0,一般要把0去掉.
2,整數的運算定律(以及簡便的方法)在小數運算中同樣適用.
第七單元:統計
折線統計圖最大的優點就是能夠清晰反映出數據的變化情況.
折線統計圖與條形統計圖不同的是:折線統計圖繪制更加簡單;提供的信息不僅能表示數量的多少,而且能看出數量的增減變化,以方便我們根據提供的數據進行未來趨勢的預測。
相同點:
(1)統計圖的標題。
(2)橫軸、縱軸、單位量及數據的單位。
不同點:
(1)條形統計圖是用直條表示數量的多少;折線統計圖是用點在圖上的位置表示數量的多少。
(2)條形統計圖便於比較數量的多少;折線統計圖除了能表示數量的多少,還能看出數量的增減變化。
第八單元 數學廣角
(一)植樹問題:
1, 兩端要栽:間隔數=總長÷間距; 總長=間距×間隔數;
棵數=間隔數+1; 間隔數=棵數-1
2, 兩端不栽:間隔數=總長÷間距; 總長=間距×間隔數;
棵數=間隔數-1; 間隔數=棵數+1
不封閉路線的植樹問題。
2、總結。
在一條不封閉的路線(如:一條線段、一條折線、半圓等)上植樹,有三種情況:
(1)兩端都種: 間隔數+1=棵數
(2)兩端不種: 間隔數-1 =棵數
(3)一端種一端不種: 間隔數=棵數
記憶規律的方法(手指當樹,指間當間隔)
(二)鋸木問題:
段數=次數+1; 次數=段數-1
總時間=每次時間×次數
(三)方陣問題:
最外層的數目是:邊長×4—4或者是(邊長-1)×4
整個方陣的總數目是:邊長×邊長
(四)封閉的圖形(例如圍成一個圓形,橢圓形):
總長÷間距=間隔數;棵數=間隔數
在封閉圖形的植樹問題中: 間隔數=棵數
(一棵樹對應一個間隔)
Ⅲ 四年級下冊數學資料
加法交換律:a+b=b+b
加法結合律:a+b+c=a+(b+c)
1
每份數×份數=總數
總數÷每份數=份數
總數÷份數=每份數
2
1倍數×倍數=幾倍數
幾倍數÷1倍數=倍數
幾倍數÷倍數=1倍數
3
速度×時間=路程
路程÷速度=時間
路程÷時間=速度
4
單價×數量=總價
總價÷單價=數量
總價÷數量=單價
5
工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時間=工作效率
6
加數+加數=和
和-一個加數=另一個加數
7
被減數-減數=差
被減數-差=減數
差+減數=被減數
8
因數×因數=積
積÷一個因數=另一個因數
9
被除數÷除數=商
被除數÷商=除數
商×除數=被除數
小學數學圖形計算公式
1
正方形
C周長
S面積
a邊長
周長=邊長×4
C=4a
面積=邊長×邊長
S=a×a
2
正方體
V:體積
a:棱長
表面積=棱長×棱長×6
S表=a×a×6
體積=棱長×棱長×棱長
V=a×a×a
3
長方形
C周長
S面積
a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4
長方體
V:體積
s:面積
a:長
b:
寬
h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5
三角形
s面積
a底
h高
面積=底×高÷2
s=ah÷2
三角形高=面積
×2÷底
三角形底=面積
×2÷高
6
平行四邊形
s面積
a底
h高
面積=底×高
s=ah
7
梯形
s面積
a上底
b下底
h高
面積=(上底+下底)×高÷2
s=(a+b)×
h÷2
8
圓形
S面積
C周長
∏
d=直徑
r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9
圓柱體
v:體積
h:高
s;底面積
r:底面半徑
c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10
圓錐體
v:體積
h:高
s;底面積
r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者
和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或
小數+差=大數)
Ⅳ 四年級下冊數學復習資料
加法交換律:a+b=b+b
加法結合律:a+b+c=a+(b+c)
1 每份數×份數=總數
總數÷每份數=份數
總數÷份數=每份數
2 1倍數×倍數=幾倍數
幾倍數÷1倍數=倍數
幾倍數÷倍數=1倍數
3 速度×時間=路程
路程÷速度=時間
路程÷時間=速度
4 單價×數量=總價
總價÷單價=數量
總價÷數量=單價
5 工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時間=工作效率
6 加數+加數=和
和-一個加數=另一個加數
7 被減數-減數=差
被減數-差=減數
差+減數=被減數
8 因數×因數=積
積÷一個因數=另一個因數
9 被除數÷除數=商
被除數÷商=除數
商×除數=被除數
小學數學圖形計算公式
1 正方形
C周長 S面積 a邊長
周長=邊長×4
C=4a
面積=邊長×邊長
S=a×a
2 正方體
V:體積 a:棱長
表面積=棱長×棱長×6
S表=a×a×6
體積=棱長×棱長×棱長
V=a×a×a
3 長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
有的可能不是
例題在這里
Ⅳ 小學四年級數學手抄報的資料!!
一元錢哪裡去了
三人住旅店,每人每天的價格是十元,每人付了十元錢,總共給了老闆三十元,後來老闆優惠了五元,讓服務員退給他們,結果服務員貪污了兩元,剩下三元每人退了一元錢,也就是說每人消費了9元錢。三個人總共花了27元,加上服務員貪污的2元總共29元。那一元錢到哪去了?
分蘋果
小咪家裡來了5位同學。小咪的爸爸想用蘋果來招待這6位小朋友,可是家裡只有5個蘋果。怎麼辦呢?只好把蘋果切開了,可是又不能切成碎塊,小咪的爸爸希望每個蘋果最多切成3塊。這就成了又一道題目:給6個孩子平均分配5個蘋果,每個蘋果都不許切成3塊以上。
小咪的爸爸是怎樣做的呢?
小馬虎數雞
春節里,養雞專業戶小馬虎站在院子里,數了一遍雞的總數,決定留下 ,1/2外,把1/4慰問解放軍,1/3送給養老院。他把雞送走後,聽到房內有雞叫,才知道少數了10隻雞。於是把房內房外的雞重數一遍,沒有錯,不多不少,正是留下1/2的數。小馬虎奇怪了。問題出在哪裡呢?你知道小馬虎在院里數的雞是多少只嗎?
來了多少客人一天,小林正在家裡洗碗,小強看見了問道:「怎麼洗那麼多的碗 ?」「
家裡來了客人了。」「來了多少人?」小林說:「我沒有數,只知道他們每人用一個飯碗,,二人合用一個湯碗,三人合用一個菜碗,四人合用一個大酒碗,一共用了15個碗。」你知道來了多少客人嗎?
Ⅵ 小學四年級數學日記
今天,我去學校報名回家後,包好書皮,就開始計算這學期我支出的費用。
首先是學費。學費410元,加上飲水費20元,共430元。接著是奧林匹克數學學校的收費180元,估計還要20元的乘車費用,共200元。還有練習本的錢:《課課通》2本21.5元;《英語練習》1本9.9元;2本《試卷課課通》15.9元;《江蘇大試卷》3本21元。21.5+9.9+15.9+13+21=81.3(元)。
學慣用費:430+200+81.3=711.3(元)。
生活用費:這學期大概要喝完5箱牛奶,5×30=150(元)。每頓飯大概要2~3元,算它2.5元,2.5×3×30×5=1125(元)。「還有什麼呢?」我咬著鉛筆自言自語道,「還有你的學慣用品。」哎,媽媽回來了。沒錯,還有學慣用品。
學慣用品:一隻筆袋8元,一隻鉛筆盒3元(很便宜,清倉貨),六枝鉛筆3元,一塊橡皮0.5元,兩把三角尺1元,兩枝自動鉛筆5元,8+3+0.5+1+5=20.5(元)。
總支出:711.3+150+1125+20.5=2006.8(元)。
哇,沒想到,平時不太花錢的我,竟然會讓父母花2006.8元錢在我這一學期上。看來,我可要節約用錢呀!
Ⅶ 人教版小學四年級數學手抄報資料
數學名人:
數學家高斯小時候的故事
從一加到一百
高斯有許多有趣的故事,故事的第一手資料常來自高斯本人,因為他在晚年時總喜歡談他小時後的事,我們也許會懷疑故事的真實性,但許多人都證實了他所談的故事。
高斯的父親作泥瓦廠的工頭,每星期六他總是要發薪水給工人。在高斯三歲夏天時,有一次當他正要發薪水的時候,小高斯站了起來說:「爸爸,你弄錯了。」然後他說了另外一個數目。原來三歲的小高斯趴在地板上,一直暗地裡跟著他爸爸計算該給誰多少工錢。重算的結果證明小高斯是對的,這把站在那裡的大人都嚇的目瞪口呆。
高斯常常帶笑說,他在學講話之前就已經學會計算了,還常說他問了大人字母如何發音後,就自己學著讀起書來。
七歲時高斯進了 St. Catherine小學。大約在十歲時,老師在算數課上出了一道難題:「把 1到 100的整數寫下來,然後把它們加起來!」每當有考試時他們有如下的習慣:第一個做完的就把石板〔當時通行,寫字用〕面朝下地放在老師的桌子上,第二個做完的就把石板擺在第一張石板上,就這樣一個一個落起來。這個難題當然難不倒學過算數級數的人,但這些孩子才剛開始學算數呢!老師心想他可以休息一下了。但他錯了,因為還不到幾秒鍾,高斯已經把石板放在講桌上了,同時說道:「答案在這兒!」其他的學生把數字一個個加起來,額頭都出了汗水,但高斯卻靜靜坐著,對老師投來的,輕蔑的、懷疑的眼光毫不在意。考完後,老師一張張地檢查著石板。大部分都做錯了,學生就吃了一頓鞭打。最後,高斯的石板被翻了過來,只見上面只有一個數字:5050(用不著說,這是正確的答案。)老師吃了一驚,高斯就解釋他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50對和為 101的數目,所以答案是 50×101=5050。由此可見高斯找到了算術級數的對稱性,然後就像求得一般算術級數合的過程一樣,把數目一對對地湊在一起。
數學家高斯的故事
高斯(Gauss 1777~1855)生於Brunswick,位於現在德國中北部。他的祖父是農民,父親是泥水匠,母親是一個石匠的女兒,有一個很聰明的弟弟,高斯這位舅舅,對小高斯很照顧,偶而會給他一些指導,而父親可以說是一名「大老粗」,認為只有力氣能掙錢,學問這種勞什子對窮人是沒有用的。
高斯很早就展現過人才華,三歲時就能指出父親帳冊上的錯誤。七歲時進了小學,在破舊的教室里上課,老師對學生並不好,常認為自己在窮鄉僻壤教書是懷才不遇。高斯十歲時,老師考了那道著名的「從一加到一百」,終於發現了高斯的才華,他知道自己的能力不足以教高斯,就從漢堡買了一本較深的數學書給高斯讀。同時,高斯和大他差不多十歲的助教Bartels變得很熟,而Bartels的能力也比老師高得多,後來成為大學教授,他教了高斯更多更深的數學。
老師和助教去拜訪高斯的父親,要他讓高斯接受更高的教育,但高斯的父親認為兒子應該像他一樣,作個泥水匠,而且也沒有錢讓高斯繼續讀書,最後的結論是--去找有錢有勢的人當高斯的贊助人,雖然他們不知道要到哪裡找。經過這次的訪問,高斯免除了每天晚上織布的工作,每天和Bartels討論數學,但不久之後,Bartels也沒有什麼東西可以教高斯了。
1788年高斯不顧父親的反對進了高等學校。數學老師看了高斯的作業後就要他不必再上數學課,而他的拉丁文不久也凌駕全班之上。
數學家華羅庚小時候的軼事
華羅庚(1910——1982)出生於江蘇太湖畔的金壇縣,因出生時被父親華老祥放於籮筐以圖吉利,「進籮避邪,同庚百歲「,故取名羅庚。
華羅庚從小便貪玩,也喜歡湊熱鬧,只是功課平平,有時還不及格。勉強上完小學,進了家鄉的金壇中學,但仍貪玩,字又寫得歪歪扭扭,做數學作業時倒時滿認真地畫來畫去,但像塗鴉一般,所以上初中時的華羅庚仍不被老師喜歡的學生而且還常常挨戒尺。
金壇中學的一位名叫王維克的教員卻獨有慧眼,他研究了華羅庚塗鴉的本子才發現這許多塗改的地方正反映他解題時探索的多種路子。一次王維克老師給學生講[孫子算經]出了這樣一道題:」今有物不知其數,三三數之剩其二,五五數剩其三,七七數剩其二,問物幾何?「正在大家沉默之際,有個學生站起來,大家一看,原來是向來為人瞧不起的華羅庚,當時他才十四歲,你猜一猜華羅庚他說出是多少?
陳景潤:小時候,教授送我一顆明珠
20多年前,一篇轟動全中國的報告文學《哥德巴赫猜想》,使得一位數學奇才一夜之間街知巷聞、家喻戶曉。在一定程度上,這個人的事跡甚至還推動了一個尊重科學、尊重知識和尊重人才的偉大時代早日到來。他的名字叫做陳景潤。
不善言談,他曾是一個「丑小鴨」。通常,一個先天的聾子目光會特別犀利,一個先天的盲人聽覺會十分敏銳,而一個從小不被人注意、不受人歡迎的「丑小鴨」式的人物,常常也會身不由己或者說百般無奈之下窮思冥想,探究事理,格物致知,在天地萬物間重新去尋求一個適合自己的位置,發展自己的潛能潛質。你可以說這是被逼的,但這么一「逼」往往也就「逼」出來不少偉人。比如童年時代的陳景潤。陳景潤1933年出生在一個郵局職員的家庭,剛滿4歲,抗日戰爭開始了。不久,日寇的狼煙燒至他的家鄉福建,全家人倉皇逃入山區,孩子們進了山區學校。父親疲於奔波謀生,無暇顧及子女的教育;母親是一個勞碌終身的舊式家庭婦女,先後育有12個子女,但最後存活下來的只有6個。陳景潤排行老三,上有兄姐、下有弟妹,照中國的老話,「中間小囡軋扁頭「,加上他長得瘦小孱弱,其不受父母歡喜、手足善待可想而知。在學校,沉默寡言、不善辭令的他處境也好不到哪裡去。不受歡迎、遭人欺負,時時無端挨人打罵。可偏偏他又生性倔強,從不曲意討饒,以求改善境遇,不知不覺地便形成了一種自我封閉的內向性格。人總是需要交流的,特別是孩子。稟賦一般的孩子面對這種困境可能就此變成了行為乖張的木訥之人,但陳景潤沒有。對數字、符號那種天生的熱情,使得他忘卻了人生的艱難和生活的煩惱,一門心思地鑽進了知識的寶塔,他要尋求突破,要到那裡面去覓取人生的快樂。所謂因材施教,就是通過一定的教育教學方法和手段,為每一個學生創造一個根據自己的特點充分得到發展的空間。
小小陳景潤,自己對自己因材施教著。
一生大幸,小學生邂逅大教授但是,他畢竟還是個孩子。除了埋頭書卷,他還需要面對面、手把手的引導。畢竟,能給孩子帶來最大、最直接和最鮮活的靈感和歡樂的,還是那種人與人之間的、耳提面命式的,能使人心靈上迸射出輝煌火花的交流和接觸。所幸,後來隨著家人回到福州,陳景潤遇到了他自謂是終身獲益匪淺的名師沈元。
沈元是中國著名的空氣動力學家,航空工程教育家,中國航空界的泰斗。他本是倫敦大學帝國理工學院畢業的博士、清華大學航空系主任,1948年回到福州料理家事,正逢戰事,只好留在福州母校英華中學暫時任教,而陳景潤恰恰就是他任教的那個班上的學生。
大學名教授教幼童,自有他與眾不同、出手不凡的一招。針對教學對象的年齡和心理特點,沈元上課,常常結合教學內容,用講故事的方法,深入淺出地介紹名題名解,輕而易舉地就把那些年幼的學童循循誘入了出神入化的科學世界,激起他們嚮往科學、學習科學的巨大熱情。比如這一天,沈元教授就興致勃勃地為學生們講述了一個關於哥德巴赫猜想的故事。
師手遺「珠「,照亮少年奮斗的前程
「我們都知道,在正整數中,2、4、6、8、10......,這些凡是能被2整除的數叫偶數;1、3、5、7、9,等等,則被叫做奇數。還有一種數,它們只能被1和它們自身整除,而不能被其他整數整除,這種數叫素數。「
像往常一樣,整個教室里,寂靜地連一根綉花針掉在地上的聲音都能聽見,只有沈教授沉穩渾厚的嗓音在回響。
「二百多年前,一位名叫哥德巴赫的德國中學教師發現,每個不小於6的偶數都是兩個素數之和。譬如,6=3+3,12=5+7,18=7+11,24=11+13......反反復復的,哥德巴赫對許許多多的偶數做了成功的測試,由此猜想每一個大偶數都可以寫成兩個素數之和。」沈教授說到這里,教室里一陣騷動,有趣的數學故事已經引起孩子們極大的興趣。
「但是,猜想畢竟是猜想,不經過嚴密的科學論證,就永遠只能是猜想。」這下子輪到小陳景潤一陣騷動了。不過是在心裡。
該怎樣科學論證呢?我長大了行不行呢?他想。後來,哥德巴赫寫了一封信給當時著名的數學家歐勒。歐勒接到信十分來勁兒,幾乎是立刻投入到這個有趣的論證過程中去。但是,很可惜,盡管歐勒為此幾近嘔心瀝血,鞠躬盡瘁,卻一直到死也沒能為這個猜想作出證明。從此,哥德巴赫猜想成了一道世界著名的數學難題,二百多年來,曾令許許多多的學界才俊、數壇英傑為之前赴後繼,競相折腰。教室里已是一片沸騰,孩子們的好奇心、想像力一下全給調動起來。
「數學是自然科學的皇後,而這位皇後頭上的皇冠,則是數論,我剛才講到的哥德巴赫猜想,就是皇後皇冠上的一顆璀璨奪目的明珠啊!」
沈元一氣呵成地講完了關於哥德巴赫猜想的故事。同學們議論紛紛,很是熱鬧,內向的陳景潤卻一聲不出,整個人都「痴」了。這個沉靜、少言、好冥思苦想的孩子完全被沈元的講述帶進了一個色彩斑斕的神奇世界。在別的同學嘖嘖贊嘆、但贊嘆完了也就完了的時候,他卻在一遍一遍暗自跟自己講:
「你行嗎?你能摘下這顆數學皇冠上的明珠嗎?」
一個是大學教授,一個是黃口小兒。雖然這堂課他們之間並沒有嚴格意義上的交流、甚至連交談都沒有,但又的確算得上一次心神之交,因為它奠就了小陳景潤一個美麗的理想,一個奮斗的目標,並讓他願意為之奮斗一輩子!多年以後,陳景潤從廈門大學畢業,幾年後,被著名數學家華羅庚慧眼識中,伯樂相馬,調入中國科學院數學研究所。自此,在華羅庚的帶領下,陳景潤日以繼夜地投入到對哥德巴赫猜想的漫長而卓絕的論證過程之中。
1966年,中國數學界升起一顆耀眼的新星,陳景潤在中國《科學通報》上告知世人,他證明了(1+2)!
1973年2月,從「文革「浩劫中奮身站起的陳景潤再度完成了對(1+2)證明的修改。其所證明的一條定理震動了國際數學界,被命名為「陳氏定理」。不知道後來沈元教授還能否記得自己當年對這幫孩子們都說了些什麼,但陳景潤卻一直記得,一輩子都那樣清晰。
名人成長路
陳景潤(1933-1996),當代著名數學家。1950年,僅以高二學歷考入廈門大學,1953年畢業留校任教。1957年調入中國科學院數學研究所,後任研究員。1973年發表論文《大偶數表為一個素數及一個不超過二個素數的乘積之積》。1979年,論文《算術級數中的最小素數》問世。1980年當選為中國科學院學部委員(中國科學院院士)。
四年級思考題:
1.一個鍋里能同時放2張餅,烙一面要1分鍾,現在要烙7張餅,至少需要( )分鍾.
答案:7乘2=14面 算出烙幾面
14/2=7次 除以每次能烙幾張算出烙幾次
7*1=7分 烙幾次乘以每面所需要的時間
答:7分
7*1=7分
公式:張數*以烙一面的時間 注釋:只適用於烙兩張餅,其它的用上面的算式
2.黑板上寫出1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 張華和李玲兩個人輪流劃掉任意兩個相鄰的數,張華劃掉後李玲就沒有數可以劃了,張華有必勝的方法嗎?
答案:(1)a²-b²
(2)一個數的平方加上另一個數的平方等於這兩數的和乘以這兩個數的差
(3)(a+b)*(a-b)將其展開得
(a+b)*(a-b)=a²-ab+ab-b²=a²-b²
Ⅷ 小學四年級數學復習提綱
一、數與計算
整數數位順序表
數級 億級 萬級 個級
數位 千億位 百億位 十億位 億位 千萬位 百萬位 十萬位 萬位 千位 百位 十位 個位
計數單位 … 千億 百億 十億 億 千萬 百萬 十萬 萬 千 百 十 一
1.每相鄰的兩個計數單位之間的進率都是十,這種計數方法叫做十進制計數法。
2.看錶說一說:如10個一千萬是一億,一千萬是10個一百萬。
數位:個位、十位、百位、千位、萬位、十萬位、百萬位、千萬位、億位、十億位…
計數單位:個、十、百、千、萬、十萬、百萬、千萬、億、十億…
個級的數表示的是多少個「一」。萬級的數表示多少個「萬」。億級的數表示多少個「億」。
每四個數位為一級。分為:個級、萬級、億級。
讀數:從高位讀起,一級一級往下讀,讀億級或萬級的數按照個級的讀法讀,再在後面加上一個「億」字或「萬」字。數中間有一個0或連續有幾個0,都只讀一個零,每級末尾的零都不讀。
寫數:先寫億級,再寫萬級,最後寫個級,哪一位上一個單位也沒有,就寫0佔位。
3.308 4000 0860是由3個百億、8個億、4個千萬、8個百、6個十組成;也可以說是由308個億、4000個萬、860個一組成。
4. 「四捨五入」法:4、3、2、1、0捨去;5、6、7、8、9捨去後向前一位進1。
5. 用「=」和「≈」的區別:
7580000=758萬 7508000≈751萬
9000000000=90億 9420000000≈94億
省略與改寫:958 5006 5200
省略億位後面的尾數時,要看千萬位:959 0000 0000
改寫用「億」作單位的數是: 959億
6.比較數的大小
位數不同,位數多的數就大;位數相同,左起第一位的數大的那個數就大,如果左起第一位上的數相同,就比較左起第二位上的數……
7. 表示物體個數的1、2、3、4、5、6、7、8、9、10、11,…都是自然數。
一個物體也沒有,用0表示。0也是自然數。
最小的自然數是0。沒有最大的自然數,自然數的個數是無限的。
0不能作除數。比如:5÷0不能得到商,因為找不到一個數同0相乘得到5。
又如:0÷0不可能得到一個確定的商,因為任何數同0相乘都得0。
8. 在乘法里,一個因數不變,另一個因數乘幾或除以幾,積也要乘幾或除以幾。
在除法里,被除數和除數同時擴大或縮小相同倍數(0除外),商不變。
在除法里,除數不變,被除數變大,商也變大。
在除法里,被除數不變,除數變大,商反而變小。
180÷30:可看作180除以30或30除180。
兩位數除法的估算,一般是把兩位數看作與它比較接近的整十數,再口算出結果。
在筆算除法時,把除數看做整十數,想這個整十數乘幾,積小於並且最接近被除數,就商幾或用幾試商。
從被除數的高位數起,先看被除數的前兩位;如果前兩位比除數小,就要看前三位;除到被除數的哪一位,商就寫在那一位的上面;餘下的數必須比除數小
兩位數乘法,先用一個乘數個位上的數去乘另一個乘數,得數的末尾和個位對齊;再用這個乘數十位上的數去乘另一個乘數,得數的末尾和十位對齊,最後把兩次乘得的積加起來。
先把0前面的數相乘,乘完以後再看乘數末尾共有幾個0,就在乘得的數的末尾填寫幾個0
二、空間與圖形
1. 線段有兩個端點,可以量出長度。
射線只有一個端點,可以向一端無限延伸。從一點出發可以畫無數條射線。
直線沒有端點,可以向兩端無限延伸。經過任意一點可以畫無數條直線,經過任意兩點只能畫一條直線。
2. 從一點引出兩條射線所組成的圖形叫做角。這個點叫做角的頂點,這兩條射線叫做角的邊。角的符號用「∠」表示。
量角的大小,要用量角器。角的計量單位是「度」。用符號「°」表示。
角的大小與角的兩邊畫出的長短沒有關系,角的大小要看兩條邊叉開的大小。
銳角:小於90° 直角:等於90° 鈍角:大於90°而小於180°
平角:等於180° 周角:等於360° 1平角=2直角 1周角=2平角=4直角
鍾表每一小時是30°,比如2小時的夾角就是60°。
三角形內角之和是180°,四邊形內角之和是360°。
∠1和∠2如果在同一條線的同一側上,就是兩角成平角,∠1+2=180°。
3. 在同一個平面內不相交的兩條直線叫做平行線,也可以說這兩條直線互相平行。
如果兩條直線相交成直角,就說這兩條直線互相垂直,其中一條直線叫做另一條直線的垂線,這兩條直線的交點叫做垂足。
4. 從直線外一點到這條直線所畫的垂直線段最短,它的長度叫做這點到直線的距離。
5. 平行線之間的距離處處相等。
6. 兩組對邊分別平行的四邊形叫做平行四邊形。平行四邊形容易變形。
長方形和正方形可以看成是特殊的平行四邊形。
只有一組對邊平行的四邊形叫做梯形。兩腰相等的梯形叫做等腰梯形。
從平行四邊形一條邊上的一點到對邊引一條垂線,這點和垂足之間的線段叫做平行四邊形的高,垂足所在的邊叫做平行四邊形的底。畫高線要用虛線,並做出垂足記號。
兩個完全一樣的梯形可以拼成一個平行四邊形。
兩個高相等的平行四邊形拼在一起還是平行四邊形。
7. 四邊形之間的關系圖。
8. 平行四邊形:兩組對邊分別平行;兩組對邊分別相等。
長方形:兩組對邊分別平行;兩組對邊分別相等;有4個直角。
正方形:兩組對邊分別平行;兩組對邊分別相等;四邊相等,4個直角。
長方形有2條對稱軸,正方形有4條對稱軸,等腰梯形只有1條對稱軸。
三、熟記數量關系
速度 × 時間 = 路程 單價 × 數量= 總價
工作效率 × 工作時間= 工作總量
路程 ÷ 時間 = 速度 總價÷ 數量 =單價
如:每小時80千米:80千米/時 240千米 3時 每本5元:5元/本 40元 8本
每分鍾225米: 225米/分 1800米 8分 每件28元:28元/件 168元 6件
第一單元 除法
1、除數是兩位數的除法的筆演算法則:
(1)從被除數的高位數起,先看被除數的前兩位;
(2)如果前兩位比除數小,就要看前三位;除到被除數的哪一位,商就寫在那一位的上面;
(3)餘下的數必須比除數小。
2、除數是兩位數的除法,一般把除數看作和它接近的整十數來試商;試商大了要調小,試商小了要調大。
3、在有餘數的除法算式中,被除數=商х除數+余數
4、三位數除以兩位數,商可能是一位數,也可能是兩位數。
第二單元 角
1、 把線段的一端無限延長,就得到一條射線。把線段的兩端都無限延長,就得到一條直線。線段和射線都是直線的一部分。
圖形 相同點 不同點
線段 都是直的 有兩個端點,有限長(可以度量)
射線 有一個端點,無限長
直線 沒有端點,無限長
2、經過一點可以畫無數條直線,經過兩點只可以畫一條直線(兩點確定一條直線)。
3、兩點間所有連線中,線段最短。
連接兩點的線段的長度叫做這兩點間的距離。
4、從一點起畫兩條射線,可以組成一個角。角通常用符號「∠」來表示。
5、角有一個頂點,兩條邊。
6、角的大小與兩條邊的*開的大小有關,與邊的長短無關。
7、量角器就是度量角的工具。把半圓分成180等份(平均分成180份),每一份所對的角就是1度的角。「度」是計量角的單位,用符號「°」表示,如1度記做1°。
8、量角和畫角要做到「點對點,線對邊,再看另一邊。0在內數內,0在外數外。」
9、銳角小於90°;直角等於90°;鈍角大於90°又小於180°;平角180°;周角360°。
1周角=2平角=4直角
10、1小時,時針轉一大格,所對的角是30°;分針轉一圈,所對的角是360°。
第三單元混合運算
1、在沒有括弧的混合運算中,如果只含有加減法或只含有乘除法應從左往右計算;如果含有加減法和乘除法應先算乘除法,在算加減法。
2、在有括弧的混合運算中,應先算括弧裡面的。
第四單元平行和相交
1、同一平面內,不相交的兩條直線互相平行,其中一條直線是另一條直線的平行線。(同一平面內,兩條直線不平行就相交)
2、畫平行線應先放三角尺,再放直尺,平移三角尺。
3、兩條直線相交成直角時,這兩條直線互相垂直,其中一條直線是另一條直線的垂線,這兩條直線的交點叫垂足。
4、畫垂線應先放直尺,再放三角尺,平移三角尺。
5、點到直線之間垂直線段最短。
從直線外一點到這條直線所畫的垂直線段的長度,叫做這點到這條直線的距離。
6、兩條平行線之間所有的垂直線段的長度相等。