A. 小學數學經典智力題
1、有兩根不均勻分布的香,香燒完的時間是一個小時,你能用什麼方法來確定一段15分鍾的時間?
2、一個經理有三個女兒,三個女兒的年齡加起來等於13,三個女兒的年齡乘起來等於經理自己的年齡,有一個下屬已知道經理的年齡,但仍不能確定經理三個女兒的年齡,這時經理說只有一個女兒的頭發是黑的,然後這個下屬就知道了經理三個女兒的年齡。請問三個女兒的年齡分別是多少?為什麼?
3、有三個人去住旅館,住三間房,每一間房$10元,於是他們一共付給老闆$30,第二天,老闆覺得三間房只需要$25元就夠了於是叫小弟退回$5給三位客人,誰知小弟貪心,只退回每人$1,自己偷偷拿了$2,這樣一來便等於那三位客人每人各花了九元,於是三個人一共花了$27,再加上小弟獨吞了不$2,總共是$29。可是當初他們三個人一共付出$30那麼還有$1呢?
4、有兩位盲人,他們都各自買了兩對黑襪和兩對白襪,八對襪了的布質、大小完全相同, 而每對襪了都有一張商標紙連著。兩位盲人不小心將八對襪了混在一起。他們每人怎樣才能取回黑襪和白襪各兩對呢?
5、有一輛火車以每小時15公里的速度離開洛杉磯直奔紐約,另一輛火車以每小時20公里的速度從紐約開往洛杉磯。如果有一隻鳥,以30公里每小時的速度和兩輛火車同時啟動,從洛杉磯出發,碰到另一輛車後返回,依次在兩輛火車來回飛行,直到兩輛火車相遇,請問,這只小鳥飛行了多長距離?
6、你有兩個罐子,50個紅色彈球,50個藍色彈球,隨機選出一個罐子,隨機選取出一個彈球放入罐子,怎麼給紅色彈球最大的選中機會?在你的計劃中,得到紅球的准確幾率是多少?
7、你有四個裝葯丸的罐子,每個葯丸都有一定的重量,被污染的葯丸是沒被污染的重量+1.只稱量一次,如何判斷哪個罐子的葯被污染了?
8、你有一桶果凍,其中有黃色,綠色,紅色三種,閉上眼睛,抓取兩個同種顏色的果凍。抓取多少個就可以確定你肯定有兩個同一顏色的果凍?
9、對一批編號為1~100,全部開關朝上(開)的燈進行以下*作:凡是1的倍數反方向撥一次開關;2的倍數反方向又撥一次開關;3的倍數反方向又撥一次開關……問:最後為關熄狀態的燈的編號。
10、想像你在鏡子前,請問,為什麼鏡子中的影像可以顛倒左右,卻不能顛倒上下?
11、一群人開舞會,每人頭上都戴著一頂帽子。帽子只有黑白兩種,黑的至少有一頂。每個人都能看到其它人帽子的顏色,卻看不到自己的。主持人先讓大家看看別人頭上戴的是什幺帽子,然後關燈,如果有人認為自己戴的是黑帽子,就打自己一個耳光。第一次關燈,沒有聲音。於是再開燈,大家再看一遍,關燈時仍然鴉雀無聲。一直到第三次關燈,才有劈劈啪啪打耳光的聲音響起。問有多少人戴著黑帽子?
12、兩個圓環,半徑分別是1和2,小圓在大圓內部繞大圓圓周一周,問小圓自身轉了幾周?如果在大圓的外部,小圓自身轉幾周呢?
13、1元錢一瓶汽水,喝完後兩個空瓶換一瓶汽水,問:你有20元錢,最多可以喝到幾瓶汽水?
14。 假設有一輛車,它的油箱恰好和一個油桶一樣大,而且車上恰好可以
運載一個桶。假設一桶油可以讓車開一百公里。現在在起點,車裝滿
了油,另外起點還有100桶油。問,這車最遠能離開起點多遠?
15。有三個囚徒,將要被執行死刑,現在給他們一次赦免的機會。
10分鍾後,他們將被帶往三個互相隔離的房間,由獄警丟硬幣決定給他們戴上紅色或藍色的帽子。囚徒互相之間不能通信息,但可以看到其他囚徒頭上帽子的顏色。
現在囚徒要猜自己頭上帽子的顏色,只能猜一次,每個囚徒都必須在10秒鍾之內說「紅」、「藍」或「過」。
(1)如果任何一個囚徒違反規則,三個囚徒都將被砍頭;
(2)如果三個囚徒都說「過」,也是全體砍頭;
(3)如果任何一個囚徒說錯了自己頭上帽子的顏色,也是全體砍頭;
(4)不然的話,就全體釋放。
現在這三個囚徒有10分鍾的時間可以商量,要採取什麼措施,使得獲釋的機會最大。
提示:如果三個囚徒都胡亂猜測的話,則成功的機會為1/8;如果兩個囚徒都說「過」,而第三個囚徒胡亂猜測的話,成功的機會為1/2。
還有更好的方案嗎?
16。四隻烏龜在邊長為3米的正方形四個角上,以每秒1厘米的速度同時勻速爬行,每隻烏龜爬行的方向都是追擊(注意:是追擊)其右鄰角上的烏龜,問經過多少時間他們才能在正方形的中心碰頭?
17。有2000方格排成一排,兩個玩家輪流在方格里寫S或O,誰先在連續的三個方格里寫出SOS,誰就獲勝;如果都寫不出來就算平局。請證明:後寫的人有勝算。
18。這是簡單明快的一道題,主要證明了三角形兩邊之和=第三邊。你能找出其中的錯誤嗎?
19。盧姆教授說:「有一次我目擊了兩只山羊的一場殊死決斗,結果引出了一個有趣的數學問題。我的一位鄰居有一隻山羊,重54磅,它已有好幾個季度在附近山區稱王稱霸。後來某個好事之徒引進了一隻新的山羊,比它還要重出3磅。 開始時,它們相安無事,彼此和諧相處。可是有一天,較輕的那隻山羊站在陡峭的山路頂上,向它的競爭對手猛撲過去,那對手站在土丘上迎接挑戰,而挑戰者顯然擁有居高臨下的優勢。不幸的是,由於猛烈碰撞,兩只山羊都一命嗚呼了。
現在要講一講本題的奇妙之處。對飼養山羊頗有研究,還寫過書的喬治·阿伯克龍比說道:「通過反復實驗,我發現,動量相當於一個自20英尺高處墜落下來的30磅重物的一次撞擊,正好可以打碎山羊的腦殼,致它死命。」如果他說得不錯,那麼這兩只山羊至少要有多大的逼近速度,才能相互撞破腦殼?你能算出來嗎?
B. 小學數學智力題
給你提供一些常見的智力題希望對你有幫助
1、有兩根不均勻分布的香,香燒完的時間是一個小時,你能用什麼方法來確定一段15分鍾的時間?
答:把兩根香同時點起來,第一支香兩頭點著,另一支香只燒一頭,等第一支香燒完的同時(這是燒完總長度的3/4),把第二支香另一頭點燃,另一頭從燃起到熄滅的時間就是15分!
2、一個經理有三個女兒,三個女兒的年齡加起來等於13,三個女兒的年齡乘起來等於經理自己的年齡,有一個下屬已知道經理的年齡,但仍不能確定經理三個女兒的年齡,這時經理說只有一個女兒的頭發是黑的,然後這個下屬就知道了經理三個女兒的年齡。請問三個女兒的年齡分別是多少?為什麼?
答:三女的年齡應該是2、2、9。因為只有一個孩子黑頭發,即只有她長大了,其他兩個還是幼年時期即小於3歲,頭發為淡色。再結合經理的年齡應該至少大於25。
3、有三個人去住旅館,住三間房,每一間房$10元,於是他們一共付給老闆$30, 第二天,老闆覺得三間房只需要$25元就夠了於是叫小弟退回$5給三位客人, 誰知小弟貪心,只退回每人$1,自己偷偷拿了$2,這樣一來便等於那三位客人每人各花了九元, 於是三個人一共花了$27,再加上小弟獨吞了不$2,總共是$29。可是當初他們三個人一共付出$30那麼還有$1呢?
答:一共付出的30元包括27元(25元給老闆+小弟貪污2元)和每人退回1元(共3元),拿27和2元相加純屬混淆視聽。
4、有兩位盲人,他們都各自買了兩對黑襪和兩對白襪,八對襪了的布質、大小完全相同, 而每對襪了都有一張商標紙連著。兩位盲人不小心將八對襪了混在一起。他們每人怎樣才能取回黑襪和白襪各兩對呢?
答:每對襪子都拆開,每人各拿一支,襪子無左右,最後取回黑襪和白襪各兩對。
5、有一輛火車以每小時15公里的速度離開洛杉磯直奔紐約,另一輛火車以每小時20公里的速度從紐約開往洛杉磯。如果有一隻鳥,以30公里每小時的速度和兩輛火車同時啟動,從洛杉磯出發,碰到另一輛車後返回,依次在兩輛火車來回飛行,直到兩輛火車相遇,請問,這只小鳥飛行了多長距離?
答:把鳥的飛行距離換算成時間計算。設洛杉磯和和紐約之間的距離為a,兩輛火車相遇的時間為a/(15+20)=a/25,鳥的飛行速度為30,則鳥的飛行距離為a/25*30=6/5a.
6、你有兩個罐子,50個紅色彈球,50個藍色彈球,隨機選出一個罐子,隨機選取出一個彈球放入罐子,怎麼給紅色彈球最大的選中機會?在你的計劃中,得到紅球的准確幾率是多少?
答:一個罐子放一個紅球,另一個罐子放49個紅球和50個藍球,概率接近75%.
這是所能達到的最大概率了。
實際上,只要一個罐子放<50個紅球,不放籃球,
另一個罐子放剩下的球,拿出紅球的概率就大於50%
7、你有四個裝葯丸的罐子,每個葯丸都有一定的重量,被污染的葯丸是沒被污染的重量+1.只稱量一次,如何判斷哪個罐子的葯被污染了?
答:1號罐取1丸,2號罐取2丸,3號罐取3丸,4號罐取4丸,稱量該10個葯丸,比正
常重量重幾就是幾號罐的葯有問題。
8、你有一桶果凍,其中有黃色,綠色,紅色三種,閉上眼睛,抓取兩個同種顏色的果凍。抓取多少個就可以確定你肯定有兩個同一顏色的果凍?
答:4個
9、對一批編號為1~100,全部開關朝上(開)的燈進行以下*作:凡是1的倍數反方向撥一次開關;2的倍數反方向又撥一次開關;3的倍數反方向又撥一次開關……問:最後為關熄狀態的燈的編號。
答:當該數的方根為整數(即完全平方數)時朝下,其它的朝上。
這樣 1、4、9、16、25、36、49、64、81、100號朝下
10、想像你在鏡子前,請問,為什麼鏡子中的影像可以顛倒左右,卻不能顛倒上下?
答:鏡像對稱的軸是人的中軸
11、一群人開舞會,每人頭上都戴著一頂帽子。帽子只有黑白兩種,黑的至少有一頂。每個人都能看到其它人帽子的顏色,卻看不到自己的。主持人先讓大家看看別人頭上戴的是什幺帽子,然後關燈,如果有人認為自己戴的是黑帽子,就打自己一個耳光。第一次關燈,沒有聲音。於是再開燈,大家再看一遍,關燈時仍然鴉雀無聲。一直到第三次關燈,才有劈劈啪啪打耳光的聲音響起。問有多少人戴著黑帽子?
答:有三個人戴黑帽。假設有N個人戴黑,當N=1時,戴黑人看見別人都為白則能肯
定自己為黑。於是第一次關燈就應該有聲。可以斷定N>1。對於每個戴黑的人來說,他能看見N-1頂黑帽 ,並由此假定自己為 白。但等待N-1次還沒有人打自己以後,每個戴黑人都能知道自己也是黑的了。所以第N次關燈就有N個人打自己。
12、兩個圓環,半徑分別是1和2,小圓在大圓內部繞大圓圓周一周,問小圓自身轉了幾周?如果在大圓的外部,小圓自身轉幾周呢?
答:無論內外,小圓轉兩圈。小圓、大圓經歷的距離相等。
13、1元錢一瓶汽水,喝完後兩個空瓶換一瓶汽水,問:你有20元錢,最多可以喝到幾瓶汽水?
答:39瓶,從第2瓶開始,相當於1元買2瓶。
C. 數學智力題大全及答案
小明問爸爸媽媽借了500元,買了一雙鞋用了970元,還給爸爸媽媽各10元,自己留了10元,等於和爸爸媽媽各借了490元,加上自己留下的10元,得出的數是980+10=990元,還有10元去哪裡了?
所以,不能加了。
D. 六年級數學趣味智力題(附上答案)
1、設p、q是兩個數,規定:p△q=3×p-(p+q)÷2,求7△(2△4)。16
2、如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,……,那麼4*3=4+44+444 ;105*2=105+1155 。
3、x,y是自然數,規定x*y=4x-3y,如果5*a=8,那麼a是幾?4
4、設a*b=5a-3b,已知x*(3*2)=18,求x。9
5、設a*b=4a-b,求(5*4)*(10*6)。2
6、設x,y是兩個數,規定:x*y=x/y-y/x,求18*3-1/3。5 又1/2
7、規定a*3=a+(a+1)+(a+2),那麼x*5=45,求x。7
8、小芳三天看完一本書,第一天看了全書的1/3,第二天看餘下的3/4,第二天比第一天多看了20頁,這本書共有多少頁?120
9、運送一堆水泥,第一天運了這堆水泥的1/4,第二天運的是第一天的2/3,還剩84噸沒有運,這堆水泥有多少噸?144
10、修路隊修一條公路,第一天修了這條公路的2/5,第二天修了餘下的1/3,已知這兩天共修路120米,這條公路全長多少米?200
11、某工廠有三個車間,第一車間的人數佔三個車間總人數的20%,第二車間的人數是第三車間的2/3。已知第一車間比第二車間少30人,三個車間一共有多少人?250
12、甲比乙多60%,乙比甲少百分之幾?37。5
13、加工一批零件,甲先加工了這批零件的1/3,接著乙加工了餘下的5/6。已知乙加工的個數比甲多160個,這批零件共有多少個?720
14、學校體育室有籃球、排球和足球,籃球的只數佔三種球25總數的3/5,足球的只數是排球的2/3,足球比籃球少11隻,這三種球一共有多少只?25
15、實驗小學六年級三個班植樹,一班植樹的棵樹佔三個班總棵樹的1/4,二班與三班植樹棵樹的比是3:4,二班比三班少植樹24棵,這三個班各植多少棵? 56,72,96
(也可以找過去希望杯,華杯賽,五洋杯,兩岸四地的題)
E. 簡單的六年級數學智力題
一、填空題 ,很多了,自己慢慢看吧。
1.有兩列火車,一列長102米,每秒行20米;一列長120米,每秒行17米.兩車同向而行,從第一列車追及第二列車到兩車離開需要幾秒?
2.某人步行的速度為每秒2米.一列火車從後面開來,超過他用了10秒.已知火車長90米.求火車的速度.
3.現有兩列火車同時同方向齊頭行進,行12秒後快車超過慢車.快車每秒行18米,慢車每秒行10米.如果這兩列火車車尾相齊同時同方向行進,則9秒後快車超過慢車,求兩列火車的車身長.
4.一列火車通過440米的橋需要40秒,以同樣的速度穿過310米的隧道需要30秒.這列火車的速度和車身長各是多少?
5.小英和小敏為了測量飛駛而過的火車速度和車身長,他們拿了兩塊跑表.小英用一塊表記下了火車從她面前通過所花的時間是15秒;小敏用另一塊表記下了從車頭過第一根電線桿到車尾過第二根電線桿所花的時間是20秒.已知兩電線桿之間的距離是100米.你能幫助小英和小敏算出火車的全長和時速嗎?
6.一列火車通過530米的橋需要40秒,以同樣的速度穿過380米的山洞需要30秒.求這列火車的速度與車身長各是多少米.
7.兩人沿著鐵路線邊的小道,從兩地出發,以相同的速度相對而行.一列火車開來,全列車從甲身邊開過用了10秒.3分後,乙遇到火車,全列火車從乙身邊開過只用了9秒.火車離開乙多少時間後兩人相遇?
8. 兩列火車,一列長120米,每秒行20米;另一列長160米,每秒行15米,兩車相向而行,從車頭相遇到車尾離開需要幾秒鍾?
9.某人步行的速度為每秒鍾2米.一列火車從後面開來,越過他用了10秒鍾.已知火車的長為90米,求列車的速度.
10.甲、乙二人沿鐵路相向而行,速度相同,一列火車從甲身邊開過用了8秒鍾,離甲後5分鍾又遇乙,從乙身邊開過,只用了7秒鍾,問從乙與火車相遇開始再過幾分鍾甲乙二人相遇?
二、解答題
11.快車長182米,每秒行20米,慢車長1034米,每秒行18米.兩車同向並行,當快車車尾接慢車車尾時,求快車穿過慢車的時間?
12.快車長182米,每秒行20米,慢車長1034米,每秒行18米.兩車同向並行,當兩車車頭齊時,快車幾秒可越過慢車?
13.一人以每分鍾120米的速度沿鐵路邊跑步.一列長288米的火車從對面開來,從他身邊通過用了8秒鍾,求列車的速度.
14.一列火車長600米,它以每秒10米的速度穿過長200米的隧道,從車頭進入隧道到車尾離開隧道共需多少時間?
———————————————答 案——————————————————————
一、填空題
120米
102米
17x米
20x米
尾
尾
頭
頭
1. 這題是「兩列車」的追及問題.在這里,「追及」就是第一列車的車頭追及第二列車的車尾,「離開」就是第一列車的車尾離開第二列車的車頭.畫線段圖如下:
設從第一列車追及第二列車到兩列車離開需要x秒,列方程得:
102+120+17 x =20 x
x =74.
2. 畫段圖如下:
頭
90米
尾
10x
設列車的速度是每秒x米,列方程得
10 x =90+2×10
x =11.
頭
尾
快車
頭
尾
慢車
頭
尾
快車
頭
尾
慢車
3. (1)車頭相齊,同時同方向行進,畫線段圖如下:
則快車長:18×12-10×12=96(米)
(2)車尾相齊,同時同方向行進,畫線段圖如下:
頭
尾
快車
頭
尾
慢車
頭
尾
快車
頭
尾
慢車
則慢車長:18×9-10×9=72(米)
4. (1)火車的速度是:(440-310)÷(40-30)=13(米/秒)
(2)車身長是:13×30-310=80(米)
5. (1)火車的時速是:100÷(20-15)×60×60=72000(米/小時)
(2)車身長是:20×15=300(米)
6. 設火車車身長x米,車身長y米.根據題意,得
①②
解得
7. 設火車車身長x米,甲、乙兩人每秒各走y米,火車每秒行z米.根據題意,列方程組,得
①②
①-②,得:
火車離開乙後兩人相遇時間為:
(秒) (分).
8. 解:從車頭相遇到車尾離開,兩車所行距離之和恰為兩列車長之和,故用相遇問題得所求時間為:(120+60)¸(15+20)=8(秒).
9. 這樣想:列車越過人時,它們的路程差就是列車長.將路程差(90米)除以越過所用時間(10秒)就得到列車與人的速度差.這速度差加上人的步行速度就是列車的速度.
90÷10+2=9+2=11(米)
答:列車的速度是每秒種11米.
10. 要求過幾分鍾甲、乙二人相遇,就必須求出甲、乙二人這時的距離與他們速度的關系,而與此相關聯的是火車的運動,只有通過火車的運動才能求出甲、乙二人的距離.火車的運行時間是已知的,因此必須求出其速度,至少應求出它和甲、乙二人的速度的比例關系.由於本問題較難,故分步詳解如下:
①求出火車速度 與甲、乙二人速度 的關系,設火車車長為l,則:
(i)火車開過甲身邊用8秒鍾,這個過程為追及問題:
故 ; (1)
(i i)火車開過乙身邊用7秒鍾,這個過程為相遇問題:
故 . (2)
由(1)、(2)可得: ,
所以, .
②火車頭遇到甲處與火車遇到乙處之間的距離是:
.
③求火車頭遇到乙時甲、乙二人之間的距離.
火車頭遇甲後,又經過(8+5×60)秒後,火車頭才遇乙,所以,火車頭遇到乙時,甲、乙二人之間的距離為:
④求甲、乙二人過幾分鍾相遇?
(秒) (分鍾)
答:再過 分鍾甲乙二人相遇.
二、解答題
11. 1034÷(20-18)=91(秒)
12. 182÷(20-18)=91(秒)
13. 288÷8-120÷60=36-2=34(米/秒)
答:列車的速度是每秒34米.
14. (600+200)÷10=80(秒)
答:從車頭進入隧道到車尾離開隧道共需80秒.
平均數問題
1. 蔡琛在期末考試中,政治、語文、數學、英語、生物五科的平均分是 89分.政治、數學兩科的平均分是91.5分.語文、英語兩科的平均分是84分.政治、英語兩科的平均分是86分,而且英語比語文多10分.問蔡琛這次考試的各科成績應是多少分?
2. 甲乙兩塊棉田,平均畝產籽棉185斤.甲棉田有5畝,平均畝產籽棉203斤;乙棉田平均畝產籽棉170斤,乙棉田有多少畝?
3. 已知八個連續奇數的和是144,求這八個連續奇數。
4. 甲種糖每千克8.8元,乙種糖每千克7.2元,用甲種糖5千克和多少乙種糖混合,才能使每千克糖的價錢為8.2元?
5. 食堂買來5隻羊,每次取出兩只合稱一次重量,得到十種不同的重量(千克):47、50、51、52、53、54、55、57、58、59.問這五隻羊各重多少千克?
等差數列
1、下面是按規律排列的一串數,問其中的第1995項是多少?
解答:2、5、8、11、14、……。 從規律看出:這是一個等差數列,且首項是2,公差是3, 這樣第1995項=2+3×(1995-1)=5984
2、在從1開始的自然數中,第100個不能被3除盡的數是多少?
解答:我們發現:1、2、3、4、5、6、7、……中,從1開始每三個數一組,每組前2個不能被3除盡,2個一組,100個就有100÷2=50組,每組3個數,共有50×3=150,那麼第100個不能被3除盡的數就是150-1=149.
3、把1988表示成28個連續偶數的和,那麼其中最大的那個偶數是多少?
解答:28個偶數成14組,對稱的2個數是一組,即最小數和最大數是一組,每組和為: 1988÷14=142,最小數與最大數相差28-1=27個公差,即相差2×27=54, 這樣轉化為和差問題,最大數為(142+54)÷2=98。
4、在大於1000的整數中,找出所有被34除後商與余數相等的數,那麼這些數的和是多少?
解答:因為34×28+28=35×28=980<1000,所以只有以下幾個數:
34×29+29=35×29
34×30+30=35×30
34×31+31=35×31
34×32+32=35×32
34×33+33=35×33
以上數的和為35×(29+30+31+32+33)=5425
5、盒子里裝著分別寫有1、2、3、……134、135的紅色卡片各一張,從盒中任意摸出若干張卡片,並算出這若干張卡片上各數的和除以17的余數,再把這個余數寫在另一張黃色的卡片上放回盒內,經過若干次這樣的操作後,盒內還剩下兩張紅色卡片和一張黃色卡片,已知這兩張紅色的卡片上寫的數分別是19和97,求那張黃色卡片上所寫的數。
解答:因為每次若干個數,進行了若干次,所以比較難把握,不妨從整體考慮,之前先退到簡單的情況分析: 假設有2個數20和30,它們的和除以17得到黃卡片數為16,如果分開算分別為3和13,再把3和13求和除以17仍得黃卡片數16,也就是說不管幾個數相加,總和除以17的余數不變,回到題目1+2+3+……+134+135=136×135÷2=9180,9180÷17=540, 135個數的和除以17的余數為0,而19+97=116,116÷17=6……14, 所以黃卡片的數是17-14=3。
6、下面的各算式是按規律排列的:
1+1,2+3,3+5,4+7,1+9,2+11,3+13,4+15,1+17,……, 那麼其中第多少個算式的結果是1992?
解答:先找出規律: 每個式子由2個數相加,第一個數是1、2、3、4的循環,第二個數是從1開始的連續奇數。 因為1992是偶數,2個加數中第二個一定是奇數,所以第一個必為奇數,所以是1或3, 如果是1:那麼第二個數為1992-1=1991,1991是第(1991+1)÷2=996項,而數字1始終是奇數項,兩者不符, 所以這個算式是3+1989=1992,是(1989+1)÷2=995個算式。
7、如圖,數表中的上、下兩行都是等差數列,那麼同一列中兩個數的差(大數減小數)最小是多少?
解答:從左向右算它們的差分別為:999、992、985、……、12、5。 從右向左算它們的差分別為:1332、1325、1318、……、9、2, 所以最小差為2。
8、有19個算式:
那麼第19個等式左、右兩邊的結果是多少?
解答:因為左、右兩邊是相等,不妨只考慮左邊的情況,解決2個問題: 前18個式子用去了多少個數? 各式用數分別為5、7、9、……、第18個用了5+2×17=39個, 5+7+9+……+39=396,所以第19個式子從397開始計算; 第19個式子有幾個數相加? 各式左邊用數分別為3、4、5、……、第19個應該是3+1×18=21個, 所以第19個式子結果是397+398+399+……+417=8547。
9、已知兩列數: 2、5、8、11、……、2+(200-1)×3; 5、9、13、17、……、5+(200-1)×4。它們都是200項,問這兩列數中相同的項數共有多少對?
解答:易知第一個這樣的數為5,注意在第一個數列中,公差為3,第二個數列中公差為4,也就是說,第二對數減5即是3的倍數又是4的倍數,這樣所求轉換為求以5為首項,公差為12的等差數的項數,5、17、29、……, 由於第一個數列最大為2+(200-1)×3=599; 第二數列最大為5+(200-1)×4=801。新數列最大不能超過599,又因為5+12×49=593,5+12×50=605, 所以共有50對。
10、如圖,有一個邊長為1米的下三角形,在每條邊上從頂點開始,每隔2厘米取一個點,然後以這些點為端點,作平行線將大正三角形分割成許多邊長為2厘米的小正三角形。求⑴邊長為2厘米的小正三角形的個數,⑵所作平行線段的總長度。
解答:⑴ 從上數到下,共有100÷2=50行, 第一行1個,第二行3個,第三行5個,……,最後一行99個, 所以共有(1+99)×50÷2=2500個; ⑵所作平行線段有3個方向,而且相同, 水平方向共作了49條, 第一條2厘米,第二條4厘米,第三條6厘米,……, 最後一條98厘米, 所以共長(2+98)×49÷2×3=7350厘米。
11、某工廠11月份工作忙,星期日不休息,而且從第一天開始,每天都從總廠陸續派相同人數的工人到分廠工作,直到月底,總廠還剩工人240人。如果月底統計總廠工人的工作量是8070個工作日(一人工作一天為1個工作日),且無人缺勤,那麼,這月由總廠派到分廠工作的工人共多少人?
解答:11月份有30天。 由題意可知,總廠人數每天在減少,最後為240人,且每天人數構成等差數列,由等差數列的性質可知,第一天和最後一天人數的總和相當於8070÷15=538 也就是說第一天有工人538-240=298人,每天派出(298-240)÷(30-1)=2人, 所以全月共派出2*30=60人。
12、小明讀一本英語書,第一次讀時,第一天讀35頁,以後每天都比前一天多讀5頁,結果最後一天只讀了35頁便讀完了;第二次讀時,第一天讀45頁,以後每天都比前一天多讀5頁,結果最後一天只需讀40頁就可以讀完,問這本書有多少頁?
解答:第一方案:35、40、45、50、55、……35 第二方案:45、50、55、60、65、……40 二次方案調整如下: 第一方案:40、45、50、55、……35+35(第一天放到最後惶熘腥ィ?/P>第二方案:40、45、50、55、……(最後一天放到第一天) 這樣第二方案一定是40、45、50、55、60、65、70,共385頁。
13、7個小隊共種樹100棵,各小隊種的查數都不相同,其中種樹最多的小隊種了18棵,種樹最少的小隊最少種了多少棵?
解答:由已知得,其它6個小隊共種了100-18=82棵, 為了使釕俚男《又值氖髟繳僭膠茫
F. 六年級數學智力題
1、把分數都換成以120為底的數字,即通分,會發現有三個數分子不為10的整數倍,此三數應為一行,所以結果是:
3/10——1/5——1/20
| | |
——1/2——1/4
| | |
1/3 ——1/6——1/12
2、由於31、32是同一張紙,所以只找回了5張紙,即10面,還有36面沒有找到。
3、因為是小學題,用簡單點的方式算:甲兩小時走了28千米,與乙相遇即乙走了22千米,乙的速度為22/2=11千米/小時。
甲減速20%即速度為14*80%=11.2
乙加速20%即速度為11*120%=13.2
22/11.2=1.96小時
28/13.2=2.12小時;
所以甲先到達目的地。
4、設這個數字十位為a,個位為b,則這個數字為10a+b;
由題目,得
(10b+a)/(10a+b)=4/7
得出b=2a
所以這個數可以是12、24、36、48,共4個。
5、由題,加入6克鋅前,合金重量為36-6=30克。
根據質量比,算出原有銅12克;鋅18克,添加後為18+6=24克。
12/24=1:2
即新質量比為1:2。
6、褲和衫同價,即10%價也相同,都是九角。各賣一件不賠不賺。
修改:感覺你的第一題還是有問題啊,改後不可能滿足五個正方形都是1,只能滿足四個... ...看看其他人有什麼高見了~~~
1/2 ——7/60——1/4
| | |
1/20 ——1/3——3/10
| | |
1/12 ——1/5——1/6
G. 請教小學數學智力題,找規律.....用小學六年級知識解決
這是小學奧數常考的裂項法,還有你第一題算錯了,是2/3,望採納
H. 小學數學智力題
他們同時出發,相向而行,若設小張的速度為張,小李的速度為李,甲乙距離為距。版由兩人1小時後相遇權得到張×1+李×1=距。當第一次相遇時,要再次相遇,實際上轉化為追及問題了,而這是他們兩個人之間的距離實際是從第一次相遇點到甲村距離的2倍,也就是小張1小時走的路程(張*1=張)。而兩人的速度差是(李-張),第二次相遇用了40分鍾=2/3小時。則有2/3(李-張)=2張,化簡得李=4張,也就是小李的速度是小張的4倍,那麼,路程全長距=李+張=4張+張=5張。第二次相遇時張又走了2/3張的路程,再加上以前走的路程,張一共走了(1+2/3)張的路程,距離乙村還有【5-(1+2/3)】張=10/3張的路程,而此時到第三次相遇,又變成了相遇問題,兩人相距的距離就是2×10/3張,兩人的速度和李+張=4張+張=5張,則他們經過2×10/3張÷5張=4/3小時相遇,合計80分鍾。
I. 小學數學智力題,要答案、題
1.小華的爸爸1分鍾可以剪好5隻自己的指甲。他在5分鍾內可以剪好幾只自己的指甲? 2.小華帶50元錢去商店買一個價值38元的小汽車,但售貨員只找給他2元錢,這是為什麼?3. 三個孩子吃三個餅要用3分鍾,九十個孩子吃九十個餅要用多少時間?4、有兩位盲人,他們都各自買了兩對黑襪和兩對白襪,八對襪子的布質、大小完全相同,而每對襪了都有一張商標紙連著。兩位盲人不小心將八對襪了混在一起。他們每人怎樣才能取回黑襪和白襪各兩雙呢? (30秒30分)5. 填空: 1 1 2 3 5 ___ 13 21 346. 什麼字全世界通用? 7.時鍾剛敲了13下,你現在應該怎麼做? 8、中國古代的四大古發明有哪些?(說出其二)9.媽媽有7塊糖,想平均分給三個孩子,但又不願把餘下的糖切開,媽媽怎麼辦好呢? 10、有兩根不均勻分布的香,香燒完的時間是一個小時,你能用什麼方法來確定一段15分鍾的時間?(1分鍾50分) 11. 食堂運回來白菜和蘿卜共70筐,蘿卜比白菜多18筐,那麼,運來白菜( )筐,蘿卜( )筐。12.一個房子4個角,一個角有一隻貓,每隻貓前面有3隻貓,請問房裡共有幾只貓? 13.一個房子4個角,一個角有一隻貓,每隻貓前面有4隻貓,請問房裡共有幾只貓? 15.公園的路旁有一排樹,每棵樹之間相隔3米,請問第一棵樹和第六棵樹之間相隔多少米? 16.在廣闊的草地上,有一頭牛在吃草。這頭牛一年才吃了草地上一半的草。問,它要把草地上的草全部吃光,需要幾年? 17. 1元錢可以買一瓶汽水,汽水喝完後,兩個空瓶可以換一瓶汽水,問:你有20元錢,最多可以喝到幾瓶汽水?18. 題目是這樣的1=52=253=754=2435問5=? 19. 請只移動一個數字,使62-63=1成立。20.填空: 1 2 4 7 ___ 16 2221. 一隻用繩子拴在樹幹上的小狗,貪吃地上的一根骨頭,但繩子不夠長,差了5厘米。你能教小狗用什麼辦法抓著骨頭呢?22.填空:1 1/2 1/3 1/4 ___ 1/6 1/723.世界最高峰是_____,它的高度是_________24.6匹馬拉著一架大車跑了6里,每匹馬跑了多少里?6匹馬一共跑了多少里? 25.中國古代將圓周率推算至小數點後7位的數學家是______,它的值為_____26.直角三角形中斜邊的平方等於兩直角邊的平方和叫____定理,國外又稱畢達哥拉斯定理27.中國有位有名的數學家,他證明了哥德巴赫猜想的「1+1」,這個科學家是____A 丘成桐 B 陳景潤 C 王元 D 華羅庚28. 想像你在鏡子前,鏡子中的影像可以左右顛倒,怎樣才能讓影像上下顛倒呢?29.數字填空: 3 6 12 ___ 48 96 30.請你說出三個和數字有關系的四字成語(詞語) 必須是日常用語31、小王說某條件下4-1=5,並用某種方式證明了。問他是如何證明的?猜猜看32、蛋有10個,雞蛋一打有幾個?33、1、2、5、6、7、8 打一成語34、8個圓環連在一起,你能只切斷其中一個就使8個圓環全部都分開嗎?35、2、4、6、8、10 打一成語36、北京到杭州的火車全程需用15小時,現在火車開了7小時,問它現在在哪裡?37、什麼情況下一度與一噸相同?38、全世界死亡率最高的地方在哪裡?39、你能用三支粉筆搭成一個比3大比4 小的數字嗎?40、再見了媽媽,打一數學常用名詞。41、下周我去辦幾件事,買書,參觀展覽,去銀行交房費,看病。書店周二休息,銀行周六日關門,展覽館二、三、五展出,醫院周二、五、六開門,我哪天出門能一天辦完所有事情?42、在兩個數2和3之間加個什麼記號可以得到一個比2大比3小的數字?43、18、20、23、28、35、_______ 請在橫線處填上適當的數A 42 B 46 C 48 D 5144、A離學校5km,B離學校10km,A、B相距多少千米?45、5、4、3、2、1 打一數學用語答案:1.20隻,包括手指甲和腳指甲2.因為他付給售貨員40元,所以只找給他2元;3. 三分鍾,九十個孩子同時吃4、每對襪子都拆開,每人各拿一支,襪子無左右,最後取回黑襪和白襪各兩對。 5. 86. 阿拉伯數字7.應該修理時鍾;8、中國古代的四大古發明有指南針,火葯,活字印刷術和造紙術。(說出其二可)9.媽媽先吃一塊,再分給每個孩子兩塊;10、不管從哪一頭點,燒完整跟都是1小時,所以同時點兩頭就是半小時燒完,但是最後燒完的地方不一定是香的中間。所以同時點燃第一根的兩端和第二根的一端,第一根燒完是半個小時,這時點燃第二根的另一端並開始計時,全部燒完就是15分鍾。11.26;4412.4隻;13.5隻;15.15米;16.它永遠不會把草吃光,因為草會不斷生長;17、共可以喝37瓶;18.5=119 20、1121.只要教小狗轉過身子用後腳抓骨頭,就行了。22. 1/523.珠穆朗瑪峰; 8844.43(2005.5.22中國國家測繪局); 8848.13(1975中國) 24.6里,36里;25.南北朝時期(公元5世紀下半葉)的祖沖之 3.1415926 比歐洲人早了1000多年26. 勾股定理。《周髀算經》記載了勾股定理的公式與證明,相傳是在商代由商高發現,故又有稱之為商高定理。國外據說畢達哥拉斯定理由古希臘的畢達哥拉斯所證明,證明了這個定理後,即斬了一百頭牛作慶祝,因此又稱「百牛定理」。27. B王元證明了 「3+4 」 「3+3 」和 「2+3 」 「1+4 」哥德巴赫猜想有兩個內容,第一部分叫做奇數的猜想,第二部分叫做偶數的猜想。奇數的猜想指出,任何一個大於等於7的奇數都是三個素數的和。偶數的猜想是說,大於等於4的偶數一定是兩個素數的和。」(引自《哥德巴赫猜想與潘承洞》) 丘成桐(數學界最高榮譽菲爾茲獎得主之一。陳省身是丘成桐的老師 28. 因為照鏡子的時候鏡子的擺放是縱向的,而鏡子是對稱面,所以在縱向上不會顛倒,只在橫向上有顛倒。試想若鏡子平鋪在地板上,人站在上面的話,鏡中的人就是大頭朝下而左右正常了。29.2430.一見鍾情 二龍戲珠 三生有幸 四海為家 五福臨門 六六大順 七嘴八舌 八仙過海 九九歸一 十全十美 31、把矩形桌子用刀砍去一角,此時桌子的角變為5個32、0個 (全打了)33、丟三落四34、把其中7個圓環全都套在第8個圓環上,然後把第這個圓環切斷35、無獨有偶36、鐵軌上37、水表上38、床上39、 40、分母41、周五42、小數點43、4644、5km到15km的范圍內; (5,15)45、倒數
J. 小學數學智力題
第一題:[(398/2-1)*0.5+746]/65=13(分鍾)
答:需要13分鍾
第二題:解:設甲桶原來有X千克油。
4(X-28)-6=92-X
4X-118=92-X
5X-210=0
X=42
92-42=50(千克)
答:甲原來有42千克,乙原來有50千克
第三題:85*3-(84*3-91)=94(分)
答:語文94分
第四題:丙=(78-4+2*3)/10=8
乙=8*3-2=22
甲=22*2+4=48
要好好學習,這不是難題,不用問別人,靠自己想