『壹』 求小學時有用的數學公式定律
周長公式:
長方形周長=(長+寬)×2 C=2(a+b)
正方形周長=邊長×4 C=4a
圓的周長=圓周率×直徑 C= πd C=2πr
半圓的周長=圓周長的一半+直徑 C=πr+d
面積公式:
長方形面積=長×寬 S=ab
正方形面積=邊長×邊長 S=a2
平行四邊形面積=底×高 S=ah
三角形面積=底×高÷2 S=ah÷2
三角形高=面積×2÷底 h=s2÷a
三角形底=面積×2÷高 b=s2÷h
梯形面積=(上底+下底)×高÷2 S=(a+b)÷2
梯形的高=面積×2÷(上底+下底) h=s×2÷(+b)
梯形的(上底+下底)=面積×2÷高 (a+b)=s×2÷h
梯形的(上底+下底)=面積×2÷高-下底 a=s×2÷h-b
圓的面積=圓周率×半徑的平方 S=πr2
圓柱的側面積=底面周長×高 S=ch
表面積公式:
長方形表面積=(長寬+長高+寬高)2 S=(ab+ah+bh)×2
正方體表面積=邊長×邊長×6 S=6a2
圓柱體側面積=底面周長×高 S=ch
圓柱體表面積=側面積+底面積×2 S=s側+2s底
體積公式:
長方體體積=長×寬×高 V=abh
正方體體積=棱長×棱長×棱長 V=a3
圓柱體體積=底面積×高 V=sh
(將近似長方體平方得到:
圓柱體體積=側面積的一半×半徑 V=ch÷2×r=2πr÷2×r
圓錐體體積=底面積×高÷3 V=sh÷3或1/3
關系式:
分數應用題:
單住「1」的量×分率(百分率)=對應量
已知量÷對應分率(百分率)=單位「1」的量
比較量÷單位「1」的量=分率(百分率)
工程問題:
工作效率×工作時間=工作總量
工作總量÷工作時間=工作效率
工作總量÷工作效率=工作時間
相遇問題:
速度和×相遇時間=路程
路程÷速度和=相遇時間
路程÷相遇時間=速度和
歸一問題:
單一量×數量=總量
總量÷單一量=數量
總量÷數量=單一量
比例尺:
圖上距離:實際距離=比例尺
圖上距離=實際距離×比例尺
實際距離=圖上距離÷比例尺
平均數:
總數÷總份數=平均數
正比例關系:
y=k(一定) 反比例:xy=k(一定)
一般運算規則:
(1)加數+加數=和
(2)一個加數=和-另一個加數 和-一個加數=另一個加數
(3)被減數-減數=差
(4)減數=被減數-差
(5)被減數=減數+差
(6)因數×因數=積
(7)一個因數=積÷另一個因數
(8)被除數÷除數=商
(9)除數=被除數÷商
(10)被除數=商×除數
(11)有餘數的除法:被除數=商×除數+余數
(12)每份數×份數=總數
(13)總數÷每份數=份數
(14)總數÷份數=每份數
(15)1倍數×倍數=幾倍數
(16)幾倍數÷1倍數=倍數
(17)幾倍數÷倍數=1倍數
(18)速度×時間=路程
(19)路程÷時間=速度
(20)路程÷速度=時間
(21)單價×數量=總量
(22)總價÷單價=數量
(23)總價÷數量=單價
單 位 換 算
長度單位
1千米=1000米 1米=10分米 1分米=10厘米
1米=100厘米 1厘米=10毫米
面積單位
1平方千米=100公頃 1公頃=10000平方米
1平方米=100平方分米 1平方分=100平方厘米
1平方厘米=100平方毫米
體(溶)積單位
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量單位
1噸=1000 千克
1千克=1000克
1千克=1公斤
1公斤=2市斤
1斤=500克
人民幣換直
1元=10角
1角=10分
1元=100分
時間換算
1世紀=100年
1年=12月
大月(31天)有1/3/5/7/8/10/12月
小月(30天)有4/6/9/11月
平年2月28天,潤年2月29天
平均全年365天,潤年全年366天
1日=24小時
1時=60分
1分=60秒
1時=3600秒
數 學 定 義 、定 理
1、加法交換律:
兩數相加交換加數的位置.和不變.
2、加法結合律:
三個數相加.先把前兩個數相加.或先把後兩個數相加,再同第三個數相加.和不變.
3、乘法交換律:
兩數相乘,交換因數的位置.積不變.
4、乘法結合律
三個數相乘先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變.
5、乘法分配律
兩個數的和同一個數相乘,可以把兩個加數分別同這處數相乘,再把兩個積相加,結果不變.
如:(2+4)×5=2×5+4×5
6、除法的性質
在除法里被除數和除數同時擴大(或縮小)相同的倍數.商不變.0除以任何不是0的數都得0.
7、等式
等號左邊的數值與等號右邊的數值相等的式子叫做等式.
等式的基本性質:
等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立.
8、方程式
含的未知數的等式叫方程式
9、一元一次方程式
含有一個未知數.並且未數的次數是一次的等式叫做一元一次方程式.
10、分數
把單位」1」平均分成若干份,表示這樣的一份或幾份的數,叫做分數.
11、分數的加、減法則
同分線母的分數相加減,只把分子相加減,分母不變。
異分母的分數相加減,先通分然後再加減。
12、分數大小的比較
同分母的分數相比較,分子大的大,分子小的小。
異分母的分數相比較,先通分然後再比較。若分子相同,分母大的反而小。
13、分數乘整數
用分數的分子和整數相乘的積作分子,分母不變。
14、分數乘分數
用分子相乘的積作分子,分母相乘的積作分母。
15分數除以整數(0除外)
等於分數乘以這個整數的倒數。
16、真分數
分子比分母小的數叫做真分數。
17、假分數
分子比分母大或者分子和分母相等的分數叫做假分數,假分數大於或等於1。
18、帶分數
把假分數寫成整數和真分數的形式叫做帶分數。
19、分數的基本性質
分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
20、一個數除以分數,等於這個數乘以分數的倒數。
21、甲數除以乙數(0除外)等於甲數乘以乙數的倒數。
數 量 關 系 計 算 公 式
1、比
兩個數相除就叫做兩個數的比
如:2÷5或3:6或1/3。比的前項和後項同時乘以或除以一個相同的數。(0除外)比值不變。
2、比例
(1)定義
表示兩個比相等的式子叫做比例。
如:3:6=9:18
(2)基本性質
在比例里,兩外項之積等於兩內項之積。
(3)解比例
求比例中的未知項叫做解比例。
如:3:x=9:18
(4)正比例
兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的比值(也就是商K)一定。這兩種量就叫做成正比的量,它們的關系就叫做正比例關系。
如:y/k=k(k一定) kx=y
(5)反比例
兩種相關聯的量,一種量變化,另一種量也隨著變化。如果這兩種量中相對應的兩個數的積一定。這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。
如:xy=k(k一定)或k/x=y
(6)百分數
表示一胩數或另一個數的百分之幾的數叫做百分數,百分數也叫做百分率或百分比。
3、小數、分數、百分數
(1)把小數化成百分數,只要把小數點向後移動兩位,同時後面添上百分號,其實,把小數化成百分數,只要把這個數乘以100%就行了。
(2)把分數化百分數,通常先把分數化成小數(除不盡時通常保留三位小數),再把小數化成百分數,其實,把分數化成百分數,要先先把分數化成小數後,再乘以100%就行了。
(3)把分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
(4)把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
4、最大公約數
幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的最大公約數,(或幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個叫做最大公約數)
5、互質數
公約數只有1的兩個數,叫做互質數 。
6、最小公倍數
幾個數公有的倍數叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。
7、通分
把異分母分數的分別化成和原來分數相等的同分母的分數。叫做通分(通分用最小公位數)
8、約分
把一個分數化成同它相等,但分子、分母都比較小的分數叫做約分(約分用量大公位數)
9、最簡分數
分子、分母是互質數的分數叫做最簡分數
(1)分數計算到最後,得數必須成最簡分數。
(2)個位上是0、2、4、6、8的數,都能被2整除。即能用2進行約分。
(3)個位上是0或5的數,都能被5整除,即能用5通分。
(4)每個數位上的數字的和是3的倍數。即能用3進行通分。
10、偶數和奇數
能被2整除的數叫偶數,不能被2整除的數叫奇數。
11、質數(素數)
一個數(如11),如果只有1和它本身(11)兩個因數。這樣的數就叫做質數(或素數)
12、合數
一個數(如12),如果除了1和它本身(12)外,還的別的因數,這樣的數叫做合數,1不是質數,也不是合數。
13、利息
利息=本金利率時間(時間一般以或月為單位,應與利率的單位相對應)
14、利率
利息與本金的比值叫做利率,一年的利息與本金鐵比值叫做年利率,一月的利息與本金的比值叫做月利率。
15、自然數
用來表示物體個數的整數,叫做自然數。也可分為質數和偶數。0也是自然數。
一個數的個位上是1、3、5、7或9,這個數是奇數。20以內的質數是2、3、5、7、9、11、13、17、19。
一個數個位上是0、2、4、6、或8,這個數是偶數。
16、循環小數
一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。
如:3.141414
17、不循環小數
一個小數,從小數部分起,沒有一個數字或幾個數字依次不斷重復出現,這樣的小數叫做不循小數。
如:3.141592654
18、無限不循環小數
一個小數,從小數部分起到無限位數,沒有一個數字或幾個數字依次不斷和重復出現,這樣的小數叫做無限不循環小數.
如:3.141592654......
19、代數
就是用字母代替數.
20、代數式
用字母表示的式子中做代數式.
如:3x=ab+c
『貳』 小學數學定理有哪些
1.加法交換律:兩數相加交換加數的位置,和不變。
2.加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第 三個數相加,和不變。
3.乘法交換律:兩數相乘,交換因數的位置,積不變。
4.乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5.乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×5。
6.除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。0除以任何不是0的數都得0。
7.等式:等號左邊的數值與等號右邊的數值相等的式子叫做等式。等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
8.方程式:含有未知數的等式叫方程式。
9.一元一次方程式:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。 學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10.分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11.分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12.分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13.分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14.分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15.分數除以整數(0除外),等於分數乘以這個整數的倒數。
16.真分數:分子比分母小的分數叫做真分數。
17.假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
18、帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19.分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。 20.一個數除以分數,等於這個數乘以分數的倒數。
21.甲數除以乙數(0除外),等於甲數乘以乙數的倒數。
『叄』 小學數學十三個定律
加法交換律,加法結合律,乘法交換律,乘法交配律,乘法結合律,除法交換率,除法結合率,除法交配率,減法交換率,減法結合率
『肆』 小學數學定律表
加法交換律:a + b = b+a
加法結合律:(a + b)+ c = a +(b + c)
乘法交內換律:a×容b=b×a
乘法結合律:(a×b)×c=a×(b×c)
乘法分配律:(a + b)×c = a×c + b×c
減法的運算性質:a-b-c=a-(b+c)
除法的運算定律:a÷b÷c=a÷(b×c)
『伍』 小學數學公式定律!要一到五年級的
一、小學部分 1、 每份數×份數=總數 ; 總數÷每份數=份數 ; 總數÷份數=每份數 2、 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數幾倍數÷倍數=1倍數 3、 速度×時間=路程 路程÷速度=時間 路程÷時間=速度 4、 單價×數量=總價 總價÷單價=數量 總價÷數量=單價 5、 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間工作總量÷ 工作時間=工作效率 6、 加數+加數=和和-一個加數=另一個加數 7、 被減數-減數=差 被減數-差=減數 差+減數=被減數 8、 因數×因數=積積÷一個因數=另一個因數 9、 被除數÷除數=商 被除數÷商=除數 商×除數=被除數 小學數學圖形計算公式 1、正方形:C周長 S面積 a邊長 周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a 2、正方體:V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a 3、長方形 C周長 S面積 a邊長 周長=(長+寬)×2 C=2(a+b) 面積=長×寬 S=ab 4、長方體 V:體積 s:面積 a:長 b: 寬 h:高 (1)表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh) (2)體積=長×寬×高 V=abh 5、三角形 s面積 a底 h高 面積=底×高÷2 s=ah÷2 三角形高=面積 ×2÷底 三角形底=面積 ×2÷高 6、平行四邊形:s面積 a底 h高 面積=底×高 s=ah 7、梯形:s面積 a上底 b下底 h高 面積=(上底+下底)×高÷2 s=(a+b)×h÷2 8 圓形:S面積 C周長 ∏ d=直徑 r=半徑 (1)周長=直徑×∏=2×∏×半徑 C=∏d=2∏r (2)面積=半徑×半徑×∏ 9、圓柱體:v體積 h:高 s底面積 r底面半徑 c底面周長 (1)側面積=底面周長×高 (2)表面積=側面積+底面積×2 (3)體積=底面積×高 (4)體積=側面積÷2×半徑 10、圓錐體:v體積 h高 s底面積 r底面半徑 體積=底面積×高÷3 總數÷總份數=平均數 和差問題的公式 (和+差)÷2=大數 (和-差)÷2=小數 和倍問題 和÷(倍數-1)=小數 小數×倍數=大數 (或者 和-小數=大數) 差倍問題 差÷(倍數-1)=小數 小數×倍數=大數 (或 小數+差=大數) 植樹問題 1、非封閉線路上的植樹問題主要可分為以下三種情形: ⑴如果在非封閉線路的兩端都要植樹,那麼: 株數=段數+1=全長÷株距-1 全長=株距×(株數-1) 株距=全長÷(株數-1) ⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼: 株數=段數=全長÷株距 全長=株距×株數 株距=全長÷株數 ⑶如果在非封閉線路的兩端都不要植樹,那麼: 株數=段數-1=全長÷株距-1 全長=株距×(株數+1) 株距=全長÷(株數+1) 2、封閉線路上的植樹問題的數量關系如下 株數=段數=全長÷株距 全長=株距×株數 株距=全長÷株數 盈虧問題 (盈+虧)÷兩次分配量之差=參加分配的份數 (大盈-小盈)÷兩次分配量之差=參加分配的份數 (大虧-小虧)÷兩次分配量之差=參加分配的份數 相遇問題 相遇路程=速度和×相遇時間 相遇時間=相遇路程÷速度和 速度和=相遇路程÷相遇時間 追及問題 追及距離=速度差×追及時間 追及時間=追及距離÷速度差 速度差=追及距離÷追及時間 流水問題 順流速度=靜水速度+水流速度 逆流速度=靜水速度-水流速度 靜水速度=(順流速度+逆流速度)÷2 水流速度=(順流速度-逆流速度)÷2 濃度問題 溶質的重量+溶劑的重量=溶液的重量 溶質的重量÷溶液的重量×100%=濃度 溶液的重量×濃度=溶質的重量 溶質的重量÷濃度=溶液的重量 利潤與折扣問題 利潤=售出價-成本 利潤率=利潤÷成本×100%=(售出價÷成本-1)×100% 漲跌金額=本金×漲跌百分比 折扣=實際售價÷原售價×100%(折扣<1) 利息=本金×利率×時間 稅後利息=本金×利率×時間×(1-20%) 長度單位換算 1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米 面積單位換算 1平方千米=100公頃 1公頃=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 體(容)積單位換算 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升 重量單位換算 1噸=1000 千克 1千克=1000克 1千克=1公斤 人民幣單位換算 1元=10角 1角=10分 1元=100分 時間單位換算 1世紀=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月 平年2月28天, 閏年 2月29天 平年全年365天, 閏年全年366天 1日=24小時 1小時=60分 1分=60秒 1小時=3600秒 小學數學幾何形體周長 面積 體積計算公式 1、長方形的周長=(長+寬)×2 C=(a+b)×2 2、正方形的周長=邊長×4 C=4a 3、長方形的面積=長×寬 S=ab 4、正方形的面積=邊長×邊長 S=a.a= a 5、三角形的面積=底×高÷2 S=ah÷2 6、平行四邊形的面積=底×高 S=ah 7、梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2 8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2 9、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr 10、圓的面積=圓周率×半徑×半徑
『陸』 小學數學定律定義和題
用a,b來表示
a+b=a-(-b)
a+a=2a
a*b=a/(1/b)
a/b=a*(1/b)
另外提醒你一下,數學上只有定義
定理
公理
定義說白了就是告訴你什麼是什麼,就是對某個專有名詞的解釋
定理是通過一直的某些知識證明出來的
公理是人類千百年來總結出來的常識
定律是物理學上的,是科學家通過多次實驗總結出的規律
這些都是不能搞混的哦!
『柒』 小學數學有關於數學定律的基礎知識
加 法
1 加法各部分間的關系
2 加法交換律
3 加法結合律
減 法
1 減法各部分間的關系
2 減法的性質
乘 法
1 乘法各部分間的關系
2 乘法交換律
3 乘法結合律
4 乘法分配律
5 積變化規律
除 法
1 除法各部分間的關系
2 除法的性質
3 商不變規律
4 商變化規律
小 數
1 小數的意義
2 小數的性質
3 小數點位置的移動引起小數大小變化的規律
分 數
1 分數的意義
2 分數的基本性質
比和比例
1 比的意義
2 比的基本性質
3 比、分數、除法的關系
4 比例的意義
5 比例的基本性質
平面圖形
立體圖形
應用題
『捌』 提供一下小學數學所有定律(字母)
你好!
加法交換律:a+b=b+a,加法結合律:a+b+c=a+(b+c),乘法交換律:a*b=b*a,乘法結合律:a*b*c=a*(b*c),乘法分配律:(a+b)*C=a*c+b*c
如果對你有幫助,望採納。
『玖』 小學數學所有的公式、定律
第一章數和數的運算
一概念
(一)整數
1整數的意義:自然數和0都是整數。
2自然數:我們在數物體的時候,用來表示物體個數的1,2,3……叫做自然數。一個物體也沒有,用0表示。
3計數單位
一(個)、十、百、千、萬、十萬、百萬、千萬、億……都是計數單位。
每相鄰兩個計數單位之間的進率都是10。這樣的計數法叫做十進制計數法。
4數位
計數單位按照一定的順序排列起來,它們所佔的位置叫做數位。
5數的整除:整數a除以整數b(b≠0),除得的商是整數而沒有餘數,我們就說a能被b整除,或者說b能整除a。
如果數a能被數b(b≠0)整除,a就叫做b的倍數,b就叫做a的約數(或a的因數)。倍數和約數是相互依存的。
因為35能被7整除,所以35是7的倍數,7是35的約數。
7、什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或36或13
比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。
8、什麼叫比例:表示兩個比相等的式子叫做比例。如36=918
9、比例的基本性質:在比例里,兩外項之積等於兩內項之積。
10、解比例:求比例中的未知項,叫做解比例。如3χ=918
11、正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:yx=k(k一定)或kx=y
12、反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。如:x×y=k(k一定)或kx=y
百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
13、把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。
把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
14、把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。
把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
15、要學會把小數化成分數和把分數化成小數的化發。
16、最大公約數:幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的最大公約數。(或幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做最大公約數。)
17、互質數:公約數只有1的兩個數,叫做互質數。
18、最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。
19、通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)
20、約分:把一個分數化成同它相等,但分子、分母都比較小的分數,叫做約分。(約分用最大公約數)
21、最簡分數:分子、分母是互質數的分數,叫做最簡分數。
分數計算到最後,得數必須化成最簡分數。
個位上是0、2、4、6、8的數,都能被2整,即能用2進行
約分。個位上是0或者5的數,都能被5整除,即能用5進行約分。在約分時應注意利用。
22、偶數和奇數:能被2整除的數叫做偶數。不能被2整除的數叫做奇數。
23、質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。
24、合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。
28、利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)
29、利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。
30、自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。
31、循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。
(二)小數
1小數的意義
把整數1平均分成10份、100份、1000份……得到的十分之幾、百分之幾、千分之幾……可以用小數表示。
一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾……
一個小數由整數部分、小數部分和小數點部分組成。數中的圓點叫做小數點,小數點左邊的數叫做整數部分,小數點左邊的數叫做整數部分,小數點右邊的數叫做小數部分。
在小數里,每相鄰兩個計數單位之間的進率都是10。小數部分的最高分數單位「十分之一」和整數部分的最低單位「一」之間的進率也是10。
2小數的分類
純小數:整數部分是零的小數,叫做純小數。例如:0.25、0.368都是純小數。
帶小數:整數部分不是零的小數,叫做帶小數。例如:3.25、5.26都是帶小數。
有限小數:小數部分的數位是有限的小數,叫做有限小數。例如:41.7、25.3、0.23都是有限小數。
無限小數:小數部分的數位是無限的小數,叫做無限小數。例如:4.33……3.1415926……
無限不循環小數:一個數的小數部分,數字排列無規律且位數無限,這樣的小數叫做無限不循環小數。
循環小數:一個數的小數部分,有一個數字或者幾個數字依次不斷重復出現,這個數叫做循環小數。例如:3.555……0.0333……一個循環小數的小數部分,依次不斷重復出現的數字叫做這個循環小數的循環節。例如:3.99……的循環節是「9」,0.5454
……的循環節是「54」。
純循環小數:循環節從小數部分第一位開始的,叫做純循環小數。例如:3.111……0.5656……
混循環小數:循環節不是從小數部分第一位開始的,叫做混循環小數。3.1222……0.03333……
(三)分數
1分數的意義
把單位「1」平均分成若干份,表示這樣的一份或者幾份的數叫做分數。
在分數里,中間的橫線叫做分數線;分數線下面的數,叫做分母,表示把單位「1」平均分成多少份;分數線下面的數叫做分子,表示有這樣的多少份。把單位「1」平均分成若干份,表示其中的一份的數,叫做分數單位。
2分數的分類
真分數:分子比分母小的分數叫做真分數。真分數小於1。假分數:分子比分母大或者分子和分母相等的分數,叫做假分數。假分數大於或等於1。帶分數:假分數可以寫成整數與真分數合成的數,通常叫做帶分數。
3約分和通分
把一個分數化成同它相等但是分子、分母都比較的分數,叫做約分。
分子分母是互質數的分數,叫做最簡分數。
把異分母分數分別化成和原來分數相等的同分母分數,叫做通分。
(四)百分數
1表示一個數是另一個數的百分之幾的數叫做百分數,也叫做百分率或百分比。百分數通常用"%"來表示。百分號是表示百分數的符號。
二方法
(一)數的讀法和寫法
1、整數的讀法:從高位到低位,一級一級地讀。讀億級、萬級時,先按照個級的讀法去讀,再在後面加一個「億」或「萬」字。每一級末尾的0都不讀出來,其它數位連續有幾個0都只讀一個零。
2.整數的寫法:從高位到低位,一級一級地寫,哪一個數位上一個單位也沒有,就在那個數位上寫0。
3.小數的讀法:讀小數的時候,整數部分按照整數的讀法讀,小數點讀作「點」,小數部分從左向右順次讀出每一位數位上的數字。
4.小數的寫法:寫小數的時候,整數部分按照整數的寫法來寫,小數點寫在個位右下角,小數部分順次寫出每一個數位上的數字5.分數的讀法:讀分數時,先讀分母再讀「分之」然後讀分子,分子和分母按照整數的讀法來讀。
6.分數的寫法:先寫分數線,再寫分母,最後寫分子,按照整數的寫法來寫。
7.百分數的讀法:讀百分數時,先讀百分之,再讀百分號前面的數,讀數時按照整數的讀法來讀。
8.百分數的寫法:百分數通常不寫成分數形式,而在原來的分子後面加上百分號「%」來表示。
(二)數的改寫
一個較大的多位數,為了讀寫方便,常常把它改寫成用「萬」或「億」作單位的數。有時還可以根據需要,省略這個數某一位後面的數,寫成近似數。
1.准確數:在實際生活中,為了計數的簡便,可以把一個較大的數改寫成以萬或億為單位的數。改寫後的數是原數的准確數。例如把1254300000改寫成以萬做單位的數是125430萬;改寫成以億做單位的數12.543億。
2.近似數:根據實際需要,我們還可以把一個較大的數,省略某一位後面的尾數,用一個近似數來表示。例如:1302490015省略億後面的尾數是13億。
3.四捨五入法:要省略的尾數的最高位上的數是4或者比4小,就把尾數去掉;如果尾數的最高位上的數是5或者比5大,就把尾數捨去,並向它的前一位進1
數字的大小比較
比較整數大小:比較整數的大小,位數多的那個數就大,如果位數相同,就看最高位,最高位上的數大,那個數就大;最高位上的數相同,就看下一位,哪一位上的數大那個數就大。
比較小數的大小:先看它們的整數部分,,整數部分大的那個數就大;整數部分相同的,十分位上的數大的那個數就大;十分位上的數也相同的,百分位上的數大的那個數就大……
比較分數的大小:分母相同的分數,分子大的分數比較大;分子相同的數,分母小的分數大。分數的分母和分子都不相同的,先通分,再比較兩個數的大小。
(三)數的互化
1.小數化成分數:原來有幾位小數,就在1的後面寫幾個零作分母,把原來的小數去掉小數點作分子,能約分的要約分。
2.分數化成小數:用分母去除分子。能除盡的就化成有限小數,有的不能除盡,不能化成有限小數的,一般保留三位小數。
3.一個最簡分數,如果分母中除了2和5以外,不含有其他的質因數,這個分數就能化成有限小數;如果分母中含有2和5以外的質因數,這個分數就不能化成有限小數。
4.小數化成百分數:只要把小數點向右移動兩位,同時在後面添上百分號。5.百分數化成小數:把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
6.分數化成百分數:通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。
7.百分數化成小數:先把百分數改寫成分數,能約分的要約成最簡分數。
(四)數的整除
1.把一個合數分解質因數,通常用短除法。先用能整除這個合數的質數去除,一直除到商是質數為止,再把除數和商寫成連乘的形式。
2求幾個數的最大公約數的方法是:先用這幾個數的公約數連續去除,一直除到所得的商只有公約數1為止,然後把所有的除數連乘求積,這個積就是這幾個數的的最大公約數。3.求幾個數的最小公倍數的方法是:先用這幾個數(或其中的部分數)的公約數去除,一直除到互質(或兩兩互質)為止,然後把所有的除數和商連乘求積,這個積就是這幾個數的最小公倍數。
4.成為互質關系的兩個數:1和任何自然數互質;相鄰的兩個自然數互質;當合數不是質數的倍數時,這個合數和這個質數互質;兩個合數的公約數只有1時,這兩個合數互質。
(五)約分和通分
約分的方法:用分子和分母的公約數(1除外)去除分子、分母;通常要除到得出最簡分數為止。
通分的方法:先求出原來的幾個分數分母的最小公倍數,然後把各分數化成用這個最小公倍數作分母的分數。三性質和規律
(一)商不變的規律:在除法里,被除數和除數同時擴大或者同時縮小相同的倍,商不變。
(二)小數的性質:在小數的末尾添上零或者去掉零小數的大小不變。
(三)小數點位置的移動引起小數大小的變化
(四)分數的基本性質:分數的基本性質:分數的分子和分母都乘以或者除以相同的數(零除外),分數的大小不變。
(五)分數與除法的關系:
1.被除數÷除數=被除數/除數2.因為零不能作除數,所以分數的分母不能為零。
3.被除數相當於分子,除數相當於分母。
四運算的意義
(一)整數四則運算
1整數加法:把兩個數合並成一個數的運算叫做加法。
在加法里,相加的數叫做加數,加得的數叫做和。加數是部分數,和是總數。
加數+加數=和一個加數=和-另一個加數
2整數減法:已知兩個加數的和與其中的一個加數,求另一個加數的運算叫做減法。
在減法里,已知的和叫做被減數,已知的加數叫做減數,未知的加數叫做差。被減數是總數,減數和差分別是部分數。
加法和減法互為逆運算。
3整數乘法:求幾個相同加數的和的簡便運算叫做乘法。
在乘法里,相同的加數和相同加數的個數都叫做因數。相同加數的和叫做積。
在乘法里,0和任何數相乘都得0.1和任何數相乘都的任何數。
一個因數×一個因數=積一個因數=積÷另一個因數
4整數除法:已知兩個因數的積與其中一個因數,求另一個因數的運算叫做除法。
在除法里,已知的積叫做被除數,已知的一個因數叫做除數,所求的因數叫做商。
乘法和除法互為逆運算。
在除法里,0不能做除數。因為0和任何數相乘都得0,所以任何一個數除以0,均得不到一個確定的商。
被除數÷除數=商除數=被除數÷商被除數=商×除數
(二)小數四則運算
1.小數加法:小數加法的意義與整數加法的意義相同。是把兩個數合並成一個數的運算。
2.小數減法:小數減法的意義與整數減法的意義相同。已兩個加數的和與其中的一個加數,求另一個加數的運算.
3.小數乘法:小數乘整數的意義和整數乘法的意義相同,就是求幾個相同加數和的簡便運算;一個數乘純小數的意義是求這個數的十分之幾、百分之幾、千分之幾……是多少。
4.小數除法:小數除法的意義與整數除法的意義相同,就是已知兩個因數的積與其中一個因數,求另一個因數的運算。
5.乘方求幾個相同因數的積的運算叫做乘方。例如3×3=32
(三)分數四則運算
1.分數加法:分數加法的意義與整數加法的意義相同。是把兩個數合並成一個數的運算。
2.分數減法:分數減法的意義與整數減法的意義相同。已知兩個加數的和與其中的一個加數,求另一個加數的運算。
3.分數乘法:分數乘法的意義與整數乘法的意義相同,就是求幾個相同加數和的簡便運算。
4.乘積是1的兩個數叫做互為倒數。
5.分數除法:分數除法的意義與整數除法的意義相同。就是已知兩個因數的積與其中一個因數,求另一個因數的運算。
(四)運算定律
1.加法交換律:兩個數相加,交換加數的位置,它們的和不變,即a+b=b+a。
2.加法結合律:三個數相加,先把前兩個數相加,再加上第三個數;或者先把後兩個數相加,再和第一個數相加它們的和不變,即(a+b)+c=a+(b+c)
3.乘法交換律:兩個數相乘,交換因數的位置它們的積不變,即a×b=b×a。
4.乘法結合律:三個數相乘,先把前兩個數相乘,再乘以第三個數;或者先把後兩個數相乘,再和第一個數相乘,它們的積不變,即(a×b)×c=a×(b×c)
5.乘法分配律:兩個數的和與一個數相乘,可以把兩個加數分別與這個數相乘再把兩個積相加,即(a+b)×c=a×c+b×c。
6.減法的性質:從一個數里連續減去幾個數,可以從這個數里減去所有減數的和,差不變,即a-b-c=a-(b+c)。
(五)運演算法則
1.整數加法計演算法則:相同數位對齊,從低位加起,哪一位上的數相加滿十,就向前一位進一。
2.整數減法計演算法則:相同數位對齊,從低位加起,哪一位上的數不夠減,就從它的前一位退一作十,和本位上的數合並在一起,再減。
3.整數乘法計演算法則:先用一個因數每一位上的數分別去乘另一個因數各個數位上的數,用因數哪一位上的數去乘,乘得的數的末尾就對齊哪一位,然後把各次乘得的數加起來。
4.整數除法計演算法則:先從被除數的高位除起,除數是幾位數,就看被除數的前幾位;如果不夠除,就多看一位,除到被除數的哪一位,商就寫在哪一位的上面。如果哪一位上不夠商1,要補「0」佔位。每次除得的余數要小於除數。
5.小數乘法法則:先按照整數乘法的計演算法則算出積,再看因數中共有幾位小數,就從積的右邊起數出幾位,點上小數點;如果位數不夠,就用「0」補足。
6.除數是整數的小數除法計演算法則:先按照整數除法的法則去除,商的小數點要和被除數的小數點對齊;如果除到被除數的末尾仍有餘數,就在余數後面添「0」,再繼續除。
7.除數是小數的除法計演算法則:先移動除數的小數點,使它變成整數,除數的小數點也向右移動幾位(位數不夠的補「0」),然後按照除數是整數的除法法則進行計算。
8.同分母分數加減法計算方法:同分母分數相加減,只把分子相加減,分母不變。
9.異分母分數加減法計算方法:先通分,然後按照同分母分數加減法的的法則進行計算。0.帶分數加減法的計算方法:整數部分和分數部分分別相加減,再把所得的數合並起來。
11.分數乘法的計演算法則:分數乘整數,用分數的分子和整數相乘的積作分子,分母不變;分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。
12.分數除法的計演算法則:甲數除以乙數(0除外),等於甲數乘乙數的倒數。
(六)運算順序:小數四則運算的運算順序和整數四則運算順序相同。
2.分數四則運算的運算順序和整數四則運算順序相同。
3.沒有括弧的混合運算:同級運算從左往右依次運算;兩級運算先算乘、除法,後算加減法。
4.有括弧的混合運算:先算小括弧裡面的,再算中括弧裡面的,最後算括弧外面的。
5.第一級運算:加法和減法叫做第一級運算。第二級運算:乘法和除法叫做第二級運算。
圖形
三角形的面積=底×高÷2。公式S=a×h÷2
正方形的面積=邊長×邊長公式S=a×a
長方形的面積=長×寬公式S=a×b
平行四邊形的面積=底×高公式S=a×h
梯形的面積=(上底+下底)×高÷2公式S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的體積=長×寬×高公式:V=abh
長方體(或正方體)的體積=底面積×高公式:V=abh
正方體的體積=棱長×棱長×棱長公式:V=aaa
圓的周長=直徑×π公式:L=πd=2πr
圓的面積=半徑×半徑×π公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
分數的除法則:除以一個數等於乘以這個數的倒數。
讀懂理解會應用以下定義定理性質公式
一、算術方面
1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
3、乘法交換律:兩數相乘,交換因數的位置,積不變。
4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。
如:(2+4)×5=2×5+4×5
6、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。O除以任何不是O的數都得O。
簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
7、么叫等式?等號左邊的數值與等號右邊的數值相等的式子
叫做等式。
等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,
等式仍然成立。
8、什麼叫方程式?答:含有未知數的等式叫方程式。
9、什麼叫一元一次方程式?答:含有一未知數,並且未知數的次數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10、分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11、分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12、分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13、分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14、分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15、分數除以整數(0除外),等於分數乘以這個整數的倒數。
16、真分數:分子比分母小的分數叫做真分數。
17、假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
18、帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19、分數的基本性質:分數的分子和分母同時乘以或除以同一個數
(0除外),分數的大小不變。
20、一個數除以分數,等於這個數乘以分數的倒數。
21、甲數除以乙數(0除外),等於甲數乘以乙數的倒數。
數量關系計算公式方面
1、單價×數量=總價2、單產量×數量=總產量3、速度×時間=路程4、工效×時間=工作總量
5、加數+加數=和一個加數=和+另一個加數被減數-減數=差減數=被減數-差被減數=減數+差
因數×因數=積一個因數=積÷另一個因數被除數÷除數=商除數=被除數÷商被除數=商×除數
有餘數的除法:被除數=商×除數+余數
6一個數連續用兩個數除,可以先把後兩個數相乘,再用它們的積去除這個數,結果不變。例:90÷5÷6=90÷(5×6)
進律
1公里=1千米1千米=1000米
1米=10分米1分米=10厘米1厘米=10毫米
1平方米=100平方分米1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1噸=1000千克1千克=1000克=1公斤=1市斤
1公頃=10000平方米。1畝=666.666平方米。
1升=1立方分米=1000毫升1毫升=1立方厘米
代數就是用字母代替數。用字母表示的式子叫做代數式。如:3x=(a+b)*c
應用:求發芽率、出勤率、合格率、出油率、成活率…的方法都是用發芽的棵樹、出勤人數、合格人數、出油重量、成活棵樹等除以它們各自的總數,再乘以百分之一百。
注意:單位「1」是的「的」的前面或在「比」的後面。「問號」前面的是單位,所以個別應用題可以用帶有「問號」前面的單位的數去除以單位「1」。